Seabed Acoustic Mapping Revealing an Uncharted Habitat of Circular Depressions Along the Southeast Brazilian Outer Shelf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seabed Acoustic Mapping
2.2. Circular Depression Mapping
2.3. Ground Truthing
3. Results
3.1. Acoustic Mapping, Distribution, and Morphometric Characteristics
3.2. Circular Depression Sampling and Characterization
3.2.1. Circular Depressions on the Valley Edges
3.2.2. Circular Depressions on Inter-Valley
3.2.3. Circular Depressions on Valley Flanks
4. Discussion
4.1. CD Acoustic Mapping and Characteristics
4.2. Potential Origin of the CDs and Morphological Interpretation
Feature Name | Location | Diameter (m) | Relief (m) | Depth (m) | Origin | Reference |
---|---|---|---|---|---|---|
Circular depressions | Costa das Algas MPA, Brazil | 12.93 (±4.1) | 0.83 (±0.7) | 46–85 | Unknown | This paper |
Burrows | Hudson Submarine Canyon, USA | <5 | 2–3 | 110–230 | Tilefish burrow construction associated with crabs | [28] |
Pockmarks | North West Continental Shelf, Australia | 5 | 1 | 45 | Fish excavation | [29] |
Pits | North Sea, Germany | 19.4 | 0.05–0.2 | 28–28.5 | Macrofauna burrow | [12] |
Buracas | Abrolhos Bank, Brazil | 10–75 | 8–39 | 24–65 | Karstification | [27] |
Pockmarks | North Sea, England | 20–100 | 3–4 | 120–150 | Gas escape | [23] |
Pockmarks | Canterbury Margin, New Zealand | 20 | <1 | 80–140 | Fluid flow and seepage | [30] |
Pockmarks | Canterbury Margin, New Zealand | 50–200 | <20 | 500–1100 | Fluid flow and seepage | [30] |
Pockmarks | Brazil | 1000 | 100 | 300–700 | Hydrocarbon seepage in oil exploration fields | [44,45,46,47,48] |
Pockmarks | Belfast Bay, Maine, USA Blue Hill Bay, Maine, USA Passamoquoddy Bay, Maine, USA | 5 2 1 | - | 2.72–87.46 5.97–108.3 0–88.15 | Methane escape linked to organic matter estuarine deposits | [37] |
Pockmarks | California, USA | 156 | 5 | 500–1500 | Sediment gravity flow | [31] |
4.3. CDs and Benthic Habitat Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menandro, P.; Bastos, A. Seabed Mapping: A Brief History from Meaningful Words. Geosciences 2020, 10, 273. [Google Scholar] [CrossRef]
- Robert, K.; Huvenne, V.A.I.; Georgiopoulou, A.; Jones, D.O.B.; Marsh, L.; Carter, G.D.O.; Chaumillon, L. New Approaches to High-Resolution Mapping of Marine Vertical Structures. Sci. Rep. 2017, 7, 9005. [Google Scholar] [CrossRef] [PubMed]
- Misiuk, B.; Lecours, V.; Bell, T. A Multiscale Approach to Mapping Seabed Sediments. PLoS ONE 2018, 13, e0193647. [Google Scholar] [CrossRef] [PubMed]
- Misiuk, B.; Lecours, V.; Dolan, M.F.J.; Robert, K. Evaluating the Suitability of Multi-Scale Terrain Attribute Calculation Approaches for Seabed Mapping Applications. Mar. Geod. 2021, 44, 327–385. [Google Scholar] [CrossRef]
- Greene, H.G.; Bizzarro, J.J.; O’Connell, V.M.; Brylinsky, C.K. Construction of Digital Potential Marine Benthic Habitat Maps Using a Coded Classification Scheme and Its Application. Geol. Assoc. Can. Spec. Pap. 2007, 47, 141–155. [Google Scholar]
- Lavagnino, A.C.; Bastos, A.C.; Amado Filho, G.M.; De Moraes, F.C.; Araujo, L.S.; De Moura, R.L. Geomorphometric Seabed Classification and Potential Megahabitat Distribution in the Amazon Continental Margin. Front. Mar. Sci. 2020, 7, 190. [Google Scholar] [CrossRef]
- Dolan, M.; Bøe, R.; Bjarnadóttir, L.R. Delivering Seabed Geodiversity Information through Multidisciplinary Mapping Initiatives: Experiences from Norway. GEUS Bull. 2022, 52, 8325. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G.; Roche, M.; Lurton, X.; Degrendele, K.; Terseleer, N.; Van Lancker, V. Seafloor Change Detection Using Multibeam Echosounder Backscatter: Case Study on the Belgian Part of the North Sea. Mar. Geophys. Res. 2018, 39, 229–247. [Google Scholar] [CrossRef]
- Schimel, A.C.G.; Brown, C.J.; Ierodiaconou, D. Automated Filtering of Multibeam Water-Column Data to Detect Relative Abundance of Giant Kelp (Macrocystis Pyrifera). Remote Sens. 2020, 12, 1371. [Google Scholar] [CrossRef]
- Lamarche, G.; Lurton, X.; Verdier, A.-L.; Augustin, J.-M. Quantitative Characterisation of Seafloor Substrate and Bedforms Using Advanced Processing of Multibeam Backscatter—Application to Cook Strait, New Zealand. Cont. Shelf Res. 2011, 31, S93–S109. [Google Scholar] [CrossRef]
- Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F. Evaluation of Seabed Mapping Methods for Fine-Scale Classification of Extremely Shallow Benthic Habitats—Application to the Venice Lagoon, Italy. Estuar. Coast. Shelf Sci. 2016, 170, 45–60. [Google Scholar] [CrossRef]
- von Deimling, S.J.; Hoffmann, J.; Geersen, J.; Koschinski, S.; Lohrberg, A.; Gilles, A.; Belkin, I.; Böttner, C.; Papenmeier, S.; Krastel, S. Millions of Seafloor Pits, Not Pockmarks, Induced by Vertebrates in the North Sea. Commun. Earth Environ. 2023, 4, 478. [Google Scholar] [CrossRef]
- Quaresma, V.S.; Bastos, A.C.; Leite, M.D.; Costa, A.; Cagnin, R.C.; Grilo, C.F.; Zogheib, L.F.; Santos Oliveira, K.S. The Effects of a Tailing Dam Failure on the Sedimentation of the Eastern Brazilian Inner Shelf. Cont. Shelf Res. 2020, 205, 104172. [Google Scholar] [CrossRef]
- Franco, T.; Zorzal-Almeida, S.; Sá, F.; Bianchini, A.; Dergam, J.A.; Eskinazi-Sant’anna, E.M.; Albino, J.; Vieira, L.S.; Santos, L.G.M.; Ribeiro, A.P.L.; et al. Ex-Post. Impact Assessment on a Large Environmental Disaster. Environ. Chall. 2024, 15, 100889. [Google Scholar] [CrossRef]
- Vieira, F.V.; Bastos, A.C.; Quaresma, V.S.; Leite, M.D.; Costa, A.; Oliveira, K.S.S.; Dalvi, C.F.; Bahia, R.G.; Holz, V.L.; Moura, R.L.; et al. Along-Shelf Changes in Mixed Carbonate-Siliciclastic Sedimentation Patterns. Cont. Shelf Res. 2019, 187, 103964. [Google Scholar] [CrossRef]
- Oliveira, N.D.; Lavagnino, A.C.; Rocha, G.A.; Moura, R.L.D.; Bastos, A.C. Geomorphological Significance of Shelf-Incised Valleys as Mesophotic Habitats. Front. Remote Sens. 2023, 4, 1111825. [Google Scholar] [CrossRef]
- Oliveira, N.; Bastos, A.C.; da Silva Quaresma, V.; Vieira, F.V. The Use of Benthic Terrain Modeler (BTM) in the Characterization of Continental Shelf Habitats. Geo-Mar. Lett. 2020, 40, 1087–1097. [Google Scholar] [CrossRef]
- Bourguignon, S.N.; Bastos, A.C.; Quaresma, V.S.; Vieira, F.V.; Pinheiro, H.; Amado-Filho, G.M.; De Moura, R.L.; Teixeira, J.B. Seabed Morphology and Sedimentary Regimes Defining Fishing Grounds along the Eastern Brazilian Shelf. Geosciences 2018, 8, 91. [Google Scholar] [CrossRef]
- Bastos, A.C.; D’Agostini, D.P.; Silva, A.E.; Menandro, P.S.; Vieira, F.V.; Boni, G.C.; Quaresma, V.S.; Cetto, P.H. Sedimentological and Morphological Evidences of Meltwater Pulse 1B in the Southwestern Atlantic Margin. Mar. Geol. 2022, 450, 106850. [Google Scholar] [CrossRef]
- Ximenes Neto, A.R.; Quaresma, V.S.; Menandro, P.S.; Cetto, P.H.; Bastos, A..C. Drowned barriers and valleys: A morphological archive of base level changes in the western South Atlantic. Mar. Geol. 2024, 477, 107404. [Google Scholar] [CrossRef]
- Rocha, G.A.; Bastos, A.C.; Amado-Filho, G.M.; Boni, G.C.; Moura, R.L.; Oliveira, N. Heterogeneity of Rhodolith Beds Expressed in Backscatter Data. Mar. Geol. 2020, 423, 106136. [Google Scholar] [CrossRef]
- Menandro, P.S.; Misiuk, B.; Brown, C.J.; Bastos, A.C. Multispectral Multibeam Backscatter Response of Heterogeneous Rhodolith Beds. Sci. Rep. 2023, 13, 20220. [Google Scholar] [CrossRef] [PubMed]
- Menandro, P.S.; Lavagnino, A.C.; Vieira, F.V.; Boni, G.C.; Franco, T.; Bastos, A.C. The Role of Benthic Habitat Mapping for Science and Managers: A Multi-Design Approach in the Southeast Brazilian Shelf after a Major Man-Induced Disaster. Front. Mar. Sci. 2022, 9, 1004083. [Google Scholar] [CrossRef]
- Vieira, F.V.; Bastos, A.C.; Quaresma, V.S. Submerged Reef and Inter-Reef Morphology in the Western South Atlantic, Abrolhos Shelf (Brazil). Geomorphology 2023, 442, 108917. [Google Scholar] [CrossRef]
- Menandro, P.S.; Bastos, A.C.; Misiuk, B.; Brown, C.J. Applying a Multi-Method Framework to Analyze the Multispectral Acoustic Response of the Seafloor. Front. Remote Sens. 2022, 3, 860282. [Google Scholar] [CrossRef]
- King, L.H.; MacLean, B. Pockmarks on the Scotian Shelf. GSA Bull. 1970, 81, 3141–3148. [Google Scholar] [CrossRef]
- Bastos, A.C.; Amado-Filho, G.M.; Moura, R.L.; Sampaio, F.M.; Bassi, D.; Braga, J.C. Origin and Sedimentary Evolution of Sinkholes (Buracas) in the Abrolhos Continental Shelf, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 462, 101–111. [Google Scholar] [CrossRef]
- Able, K.W.; Grimes’, B.; Cooper, R.A.; Uzmann, J.R. Burrow Construction and Behavior of Tilefish, Lopholutilus Chumaeleonticeps, in Hudson Submarine Canyon. Environ. Biol. Fishes 1982, 7, 199–205. [Google Scholar] [CrossRef]
- Mueller, R.J. Evidence for the Biotic Origin of Seabed Pockmarks on the Australian Continental Shelf. Mar. Pet. Geol. 2015, 64, 276–293. [Google Scholar] [CrossRef]
- Micallef, A.; Averes, T.; Hoffmann, J.; Crutchley, G.; Mountjoy, J.J.; Person, M.; Cohen, D.; Woelz, S.; Bury, S.J.; Ahaneku, C.V.; et al. Multiple Drivers and Controls of Pockmark Formation across the Canterbury Margin, New Zealand. Basin Res. 2022, 34, 1374–1399. [Google Scholar] [CrossRef]
- Lundsten, E.; Paull, C.K.; Gwiazda, R.; Dobbs, S.; Caress, D.W.; Kuhnz, L.A.; Walton, M.; Nleminski, N.; McGann, M.; Lorenson, T.; et al. Pockmarks offshore Big Sur, California provide evidence for recurrent, regional, and unconfined sediment gravity flows. J. Geophys. Res. Earth Surf. 2024, 129, e2023JF007374. [Google Scholar] [CrossRef]
- Misiuk, B.; Brown, C.J.; Robert, K.; Lacharité, M. Harmonizing Multi-Source Sonar Backscatter Datasets for Seabed Mapping Using Bulk Shift Approaches. Remote Sens. 2020, 12, 601. [Google Scholar] [CrossRef]
- Gafeira, J.; Long, D.; Diaz-Doce, D. Semi-automated Characterisation of Seabed Pockmarks in the Central North Sea. Near Surf. Geophys. 2012, 10, 301–312. [Google Scholar] [CrossRef]
- Gafeira, J.; Dolan, M.; Monteys, X. Geomorphometric Characterization of Pockmarks by Using a GIS-Based Semi-Automated Toolbox. Geosciences 2018, 8, 154. [Google Scholar] [CrossRef]
- Larsonneur, C. La Cartographie Des Depots Meubles Sur Le Plateau Continental Français: Méthode Mise Au Point et Utilisée En Manche. J. Recherché Océanographique 1977, 2, 33–39. [Google Scholar]
- Menandro, P.S.; Bastos, A.C.; Boni, G.; Ferreira, L.C.; Vieira, F.V.; Lavagnino, A.C.; Moura, R.L.; Diesing, M. Reef Mapping Using Different Seabed Automatic Classification Tools. Geosciences 2020, 10, 72. [Google Scholar] [CrossRef]
- Lundine, M.A.; Brothers, L.B.; Trembanis, A.C. Deep learning for pockmark detection: Implications for quantitative seafloor characterization. Geomorphology 2023, 421, 108524. [Google Scholar] [CrossRef]
- Lioupa, V.; Karsiotis, P.; Arosio, R.; Hasiotis, T.; Wheeler, A.J. A Comparative Crash-Test of Manual and Semi-Automated Methods for Detecting Complex Submarine Morphologies. Remote Sens. 2024, 16, 4093. [Google Scholar] [CrossRef]
- Lambeck, K.; Rouby, H.; Purcell, A.; Sun, Y.; Sambridge, M. Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 2014, 111, 15296–15303. [Google Scholar] [CrossRef]
- Nalin, R.; Nelson, C.S.; Basso, D.; Massari, F. Rhodolith-bearing Limestones as Transgressive Marker Beds: Fossil and Modern Examples from North Island, New Zealand. Sedimentology 2008, 55, 249–274. [Google Scholar] [CrossRef]
- Bastos, A.C.; Quaresma, V.S.; Marangoni, M.B.; D’Agostini, D.P.; Bourguignon, S.N.; Cetto, P.H.; Silva, A.E.; Amado Filho, G.M.; Moura, R.L.; Collins, M. Shelf Morphology as an Indicator of Sedimentary Regimes: A Synthesis from a Mixed Siliciclastic–Carbonate Shelf on the Eastern Brazilian Margin. J. S. Am. Earth Sci. 2015, 63, 125–136. [Google Scholar] [CrossRef]
- Díaz-Mendoza, G.A.; Krämer, K.; Von Rönn, G.A.; Schwarzer, K.; Heinrich, C.; Reimers, H.-C.; Winter, C. Circular Structures on the Seabed: Differentiating between Natural and Anthropogenic Origins—Examples from the Southwestern Baltic Sea. Front. Earth Sci. 2023, 11, 1170787. [Google Scholar] [CrossRef]
- Land, L.A.; Paull, C.K.; Hobson, B. Genesis of a Submarine Sinkhole without Subaerial Exposure: Straits of Florida. Geology 1995, 23, 949–951. [Google Scholar] [CrossRef]
- Sumida, P.Y.G.; Yoshinaga, M.Y.; Madureira, L.A.S.-P.; Hovland, M. Seabed Pockmarks Associated with Deepwater Corals off SE Brazilian Continental Slope, Santos Basin. Mar. Geol. 2004, 207, 159–167. [Google Scholar] [CrossRef]
- Cooke, C.V.; Madureira, L.S.P.; Griep, G.H.; Pinho, M.P.D. Análise de Dados de Ecossondagem de Fundo Oriundos de Cruzeiros Realizados Entre Fortaleza (CE) e Chuí (RS) Com Enfoque Na Morfologia e Tipos de Fundo. Rev. Bras. Geof. 2007, 25, 443–457. [Google Scholar] [CrossRef]
- Mueller, D.J.; Ketzer, J.M.; Viana, A.R.; Kowsmann, R.O.; Freire, A.F.M.; Oreiro, S.G.; Augustin, A.H.; Lourega, R.V.; Rodrigues, L.F.; Heemann, R.; et al. Natural Gas Hydrates in the Rio Grande Cone (Brazil): A New Province in the Western South Atlantic. Mar. Pet. Geol. 2015, 67, 187–196. [Google Scholar] [CrossRef]
- Mahiques, M.M.; Schattner, U.; Lazar, M.; Sumida, P.Y.G.; Souza, L.A.P.D. An Extensive Pockmark Field on the Upper Atlantic Margin of Southeast Brazil: Spatial Analysis and Its Relationship with Salt Diapirism. Heliyon 2017, 3, e00257. [Google Scholar] [CrossRef]
- Ramos, R.B.; Dos Santos, R.F.; Schattner, U.; Figueira, R.C.L.; Bícego, M.C.; Lobo, F.J.; De Mahiques, M.M. Deep Pockmarks as Natural Sediment Traps: A Case Study from Southern Santos Basin (SW Atlantic Upper Slope). Geo-Mar. Lett. 2020, 40, 989–999. [Google Scholar] [CrossRef]
- Correa do Espirito Santo, L.D.A.; dos Santos Salomão, M.; Campos Pedroso, E.; Appi, C.J. Oil Seep Detection Using Microwave Remote Sensing at Espírito Santo Basin, Eastern Brazil. Anuário Inst. Geociências 2023, 46, 48346. [Google Scholar] [CrossRef]
- Bastos, A.C.; Moura, R.L.; Amado-Filho, G.M.; D’Agostini, D.P.; Secchin, N.A.; Francini-Filho, R.B.; Güth, A.Z.; Sumida, P.Y.G.; Mahiques, M.M.; Thompson, F.L. Buracas: Novel and Unusual Sinkhole-like Features in the Abrolhos Bank. Cont. Shelf Res. 2013, 70, 118–125. [Google Scholar] [CrossRef]
- Mylroie, J.E.; Carew, J.L.; Moore, A.I. Blue Holes: Definition and Genesis. Carbonates Evaporites 1995, 10, 225–233. [Google Scholar] [CrossRef]
- Stieglitz, T. Habitat Engineering by Decadal-Scale Bioturbation around Shipwrecks on the Great Barrier Reef Mid-Shelf. Mar. Ecol. Prog. Ser. 2013, 477, 29–40. [Google Scholar] [CrossRef]
- Vallim, A.; Schenone, S.; Thrush, S. Megafauna: The Ignored Bioturbators. Mar. Ecol. Prog. Ser. 2024, 733, 137–144. [Google Scholar] [CrossRef]
- Amado-Filho, G.M.; Pereira-Filho, G.H.; Bahia, R.G.; Abrantes, D.P.; Veras, P.C.; Matheus, Z. Occurrence and Distribution of Rhodolith Beds on the Fernando de Noronha Archipelago of Brazil. Aquat. Bot. 2012, 101, 41–45. [Google Scholar] [CrossRef]
- Clark, E.; Pohle, J.F.; Halstead, B. Ecology and behavior of tilefishes, Hoplolatius starcki, H. fronticinctus and related species (Malacanthidae): Non-mound and mound builders. Environ. Biol. Fishes 1998, 52, 395–417. [Google Scholar] [CrossRef]
- Foster, M.S. Rhodoliths: Between Rocks and Soft Places. J. Phycol. 2001, 37, 659–667. [Google Scholar] [CrossRef]
- Amado-Filho, G.M.; Maneveldt, G.W.; Pereira-Filho, G.H.; Manso, R.C.; Bahia, R.G.; Barros-Barreto, M.B.; Guimarães, S.M. Seaweed Diversity Associated with a Brazilian Tropical Rhodolith Bed. Cienc. Mar. 2010, 36, 371–391. [Google Scholar] [CrossRef]
- Twichell, D.C.; Grimes, C.B.; Jones, R.S.; Able, K.W. The Role of Erosion by Fish in Shaping Topography Around Hudson Submarine Canyon. SEPM J. Sediment. Res. 1985, 55, 712–719. [Google Scholar] [CrossRef]
Area (m2) | Perimeter (m) | Diameter (m) | Relief (m) | |
---|---|---|---|---|
Min | 25.56 | 18.10 | 5.77 | −0.01 |
Max | 459.57 | 114.22 | 36.37 | −5.21 |
Mean | 131.86 | 40.68 | 12.96 | −0.83 |
Std Dev | 70.80 | 12.91 | 4.11 | 0.71 |
Area (m2) | Diameter (m) | Relief (m) | Depth (m) | Backscatter Inner—avg. min. max (dB) | Backscatter Outside—avg (dB) | |
---|---|---|---|---|---|---|
CD 01 | 225.72 | 17.94 | −2.15 | 55 | −22.22 (−26.54; −18.04) | −22.30 |
CD 02 | 166.31 | 14.87 | −2.11 | 54 | −22.85 (−24.97; −19.93) | −22.41 |
CD 06 | 266.95 | 19.43 | −2.55 | 53.5 | −21.55 (−24.97; −18.67) | −20.97 |
CD 08 | 197.26 | 16.16 | −3.14 | 51 | −21.56 (−24.34; −18.98) | −21.42 |
CD 10 | 190.79 | 15.89 | −3.28 | 51.5 | −25.95 (−32.52; −18.67) | −20.92 |
CD13 | 246.95 | 18.42 | −2.91 | 55.8 | −22.43 (−28.43; −16.46) | −21.76 |
CD 14 | 260.27 | 18.58 | −2.39 | 55.7 | −21.85 (−26.23; −17.09) | −21.66 |
CD 15 | 197.37 | 16.19 | −2.4 | 58.4 | −22.32 (−27.17; −15.83) | −21.21 |
CD 16 | 212.55 | 16.82 | −2.23 | 59 | −23.15 (−28.12; −18.35) | −21.70 |
CD 19 | 224.84 | 17.47 | −2.3 | 72.5 | −27.15 (−34.41; −21.50) | −25.63 |
CD 20 | 392.31 | 25.44 | −3.09 | 70.5 | −28.12 (−36.30; −22.45) | −28.41 |
CD 01 Inner | Outer |
Aggregation of reddish rhodoliths and algae | Spaced reddish rhodoliths |
CD 02 Inner | Outer |
Aggregation of rhodoliths | Spaced reddish rhodoliths |
CD 06 Inner | Outer |
Aggregation of calcareous fragments | Reddish rhodoliths and red algae |
CD 08 Inner | Outer |
Aggregation of whitish algae fragments | Calcareous gravel and algae mound |
CD 10 Inner | Outer |
Steepest “hole” with finer sediment | Spaced fragment and algae |
CD 13 Inner | Outer |
Aggregation of gravel and algae | Algae and gravel mounds |
CD 14 Inner | Outer |
Aggregation of gravel and algae | Spaced gravel and mounds |
CD 15 Inner | Outer |
Aggregations of algae and the presence of fish | Algae and gravel |
CD 16 Inner | Outer |
Aggregations of algae and the presence of fish | Algae and gravel mounds |
CD 19 Inner | Outer |
Aggregation of algae with a fine matrix and bioturbation indication | Spaced algae and fragments |
CD 20 Inner | Outer |
Aggregation of algae with a fine matrix and bioturbation indication | Spaced algae and fragments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavagnino, A.C.; Leite, M.D.; Franco, T.; Menandro, P.S.; Vieira, F.V.; Boni, G.C.; Bastos, A.C. Seabed Acoustic Mapping Revealing an Uncharted Habitat of Circular Depressions Along the Southeast Brazilian Outer Shelf. Geosciences 2025, 15, 7. https://doi.org/10.3390/geosciences15010007
Lavagnino AC, Leite MD, Franco T, Menandro PS, Vieira FV, Boni GC, Bastos AC. Seabed Acoustic Mapping Revealing an Uncharted Habitat of Circular Depressions Along the Southeast Brazilian Outer Shelf. Geosciences. 2025; 15(1):7. https://doi.org/10.3390/geosciences15010007
Chicago/Turabian StyleLavagnino, Ana Carolina, Marcos Daniel Leite, Tarcila Franco, Pedro Smith Menandro, Fernanda Vedoato Vieira, Geandré Carlos Boni, and Alex Cardoso Bastos. 2025. "Seabed Acoustic Mapping Revealing an Uncharted Habitat of Circular Depressions Along the Southeast Brazilian Outer Shelf" Geosciences 15, no. 1: 7. https://doi.org/10.3390/geosciences15010007
APA StyleLavagnino, A. C., Leite, M. D., Franco, T., Menandro, P. S., Vieira, F. V., Boni, G. C., & Bastos, A. C. (2025). Seabed Acoustic Mapping Revealing an Uncharted Habitat of Circular Depressions Along the Southeast Brazilian Outer Shelf. Geosciences, 15(1), 7. https://doi.org/10.3390/geosciences15010007