Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province
Abstract
:1. Introduction
2. Previous Work
3. Methods
3.1. Geochemistry
3.2. Calcite Twin Analysis
3.3. EBSD Methods
4. Results
4.1. Stable Isotopes
4.2. Martinsburg Fm. Traverse
4.3. Calcareous Siltstone Layers
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chapple, W.M. Mechanics of thin-skinned fold-and-thrust belts. Geol. Soc. Am. Bull. 1978, 89, 1189–1198. [Google Scholar] [CrossRef]
- Marshak, S. Salients, recesses, arcs, oroclines, and syntaxes—A review of ideas concerning the formation of map-view curves in fold-thrust belts. In Thrust Tectonics and Hydrocarbon Systems: American Association of Petroleum Geologists Memoir 82; McClay, K.R., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2004; pp. 1–26. [Google Scholar]
- Sussman, A.J.; Weil, A.B. Orogenic Curvature: Integrating Paleomagnetic and Structural Analyses; Geological Society of America Special Paper 383; Geological Society of America: Boulder, CO, USA, 2004. [Google Scholar]
- Maxwell, J.C. Origin of slaty and fracture cleavage in the Delaware Water Gap are, New Jersey and Pennsylvania. In Petrologic Studies: A Volume in Honor of A.F. Buddington; Engel, A.E.J., James, H.L., Leonard, B.F., Eds.; Geological Society of America: Boulder, CO, Canada, 1962; pp. 281–311. [Google Scholar]
- Groshong, R.H., Jr. Strain and pressure solution in the Martinsburg slate, Delaware Water Gap, New Jersey. Am. J. Sci. 1976, 276, 1131–1146. [Google Scholar] [CrossRef]
- Beutner, E.C.; Jancin, M.D.; Simon, R.W. Dewatering origin of cleavage in light of deformed calcite veins and clastic dikes in Martinsburg slate, Delaware Water Gap, New Jersey. Geology 1977, 5, 118–122. [Google Scholar] [CrossRef]
- Beutner, E.C. Slate cleavage and related strain in Martinsburg slate, Delaware Water Gap, New Jersey. Am. J. Sci. 1978, 278, 1–23. [Google Scholar] [CrossRef]
- Ong, P.F.; van der Pluijm, B.A.; van der Voo, R. Early rotation in the Pennsylvania salient (US Appalachians): Evidence from calcite-twinning analysis of Paleozoic carbonates. Geol. Soc. Am. Bull. 2007, 119, 796–804. [Google Scholar] [CrossRef]
- Wise, D.U. Pennsylvania salient of the Appalachian’s: A two-azimuth transport model based on new compilations of Piedmont data. Geology 2004, 32, 777–780. [Google Scholar] [CrossRef]
- Sak, P.B.; McQuarrie, N.; Oliver, B.P.; Lavdovsky, N.; Jackson, M.S. Unraveling the central Appalachian fold-thrust belt, Pennsylvania of sequentially restored balanced cross sections for a blind fold-thrust belt. Geosphere 2012, 8, 685–702. [Google Scholar] [CrossRef]
- Rodgers, J. The Tectonics of the Appalachians; Wiley-Interscience: New York, NY, USA, 1970; p. 271. [Google Scholar]
- Thomas, W.A. Evolution of Appalachian salients and recesses from reentrants and promontories in the continental margin. Am. J. Sci. 1977, 277, 1233–1278. [Google Scholar] [CrossRef]
- Hatcher, R.D., Jr. Tectonic synthesis of the U.S. Appalachians. In The Appalachian-Ouachita Orogen in the United States; Hatcher, R.D., Jr., Thomas, W.A., Viele, G.W., Eds.; Geological Society of America: Boulder, CO, USA, 1989; pp. 275–288. [Google Scholar]
- Faill, R.T. A geologic history of the north-central Appalachians; Part 1, Orogenesis from the Mesoproterozoic through the Taconic Orogeny. Am. J. Sci. 1997, 297, 551–619. [Google Scholar] [CrossRef]
- Faill, R.T. A geologic history of the north-central Appalachians; Part 2, The Appalachian Basin from the Silurian through Carboniferous. Am. J. Sci. 1997, 297, 729–761. [Google Scholar] [CrossRef]
- Hatcher, R.D., Jr. The Appalachian orogeny: A brief summary. Geol. Soc. Am. Mem. 2010, 206, 1–19. [Google Scholar]
- Craddock, J.P.; McKiernan, A.; de Wit, M. Calcite twin analysis in synorogenic calcite, Cape Fold Belt: Implications for fold rotation and cleavage formation. J. Struct. Geol. 2007, 27, 1100–1113. [Google Scholar] [CrossRef]
- Cloos, E. Oolite deformation in the South Mountain fold, Maryland. Geol. Soc. Am. Bull. 1947, 58, 843–918. [Google Scholar] [CrossRef]
- Wright, T.O.; Platt, L.B. Pressure solution and cleavage in the Martinsburg shale. Am. J. Sci. 1982, 282, 122–135. [Google Scholar] [CrossRef]
- Wiltschko, D.V.; Medwedeff, D.A.; Millson, H.E. Distribution and mechanisms of strain within rocks on the northwest ramp of Pine Mountain block, southern Appalachian foreland: A field test of theory. Geol. Soc. Am. Bull. 1985, 96, 426–435. [Google Scholar] [CrossRef]
- Kilsdonk, W.; Wiltschko, D.V. Deformation mechanisms in the southeastern ramp region of the Pine Mountain block, Tennessee. Geol. Soc. Am. Bull. 1988, 100, 644–653. [Google Scholar] [CrossRef]
- Hnat, J.S.; van der Pluijm, B.A. Foreland signature of indenter tectonics: Insights from calcite twin analysis in the Tennessee salient of the southern Appalachians, USA. Lithosphere 2011, 3, 317–327. [Google Scholar] [CrossRef]
- Wiltschko, D.V.; Chapple, W.M. Flow of weak rocks in Appalachian plateau folds. Am. Assoc. Petrol. Geol. 1977, 65, 653–670. [Google Scholar]
- Nickelsen, R.P. Fossil distortion and penetrative rock deformation in the Appalachian plateau, Pennsylvania. J. Geol. 1966, 74, 924–931. [Google Scholar] [CrossRef]
- Engelder, T.; Engelder, R. Fossil distortion and decollement tectonics of the Appalachian plateau. Geology 1977, 5, 457–460. [Google Scholar] [CrossRef]
- Craddock, J.P.; van der Pluijm, B.A. Late Paleozoic deformation of the cratonic carbonate cover of eastern North America. Geology 1989, 17, 416–419. [Google Scholar] [CrossRef]
- Craddock, J.P.; Jackson, M.; van der Pluijm, B.A.; Versical, R. Regional shortening fabrics in eastern North America: Far-field stress transmission from the Appalachian–Ouachita orogenic belt. Tectonics 1993, 12, 257–264. [Google Scholar] [CrossRef]
- Drake, A.A., Jr. Precambrian and lower Paleozoic geology of the Delaware Valley, New Jersey-Pensylvania. In Geology of Selected Areas in New Jersey and Eastern Pennsylvania; Geological Society of America: Boulder, CO, USA, 1969; pp. 51–205. [Google Scholar]
- Drake, A.A., Jr.; Epstein, J.B.; Aaron, J.M. Geologic Maps and Sections of Parts of the Portland and Belvidere Quadrangles; Series Maps I-522 (1:24,000); U.S. Geological Survey Miscellaneous Investigations: Easton, PA, USA, 1967.
- Epstein, J.B. Geology of the Delaware Water Gap National Recreation area, New Jersey-Pennsylvania. Geol. Soc. Am. Field Guides 2006, 8, 47–64. [Google Scholar]
- Crawford, M.L.; Mark, L.E. Evidence from metamorphic rocks for overthrusting, Pennsylvania Piedmont, USA. Can. Mineral. 1982, 20, 333–347. [Google Scholar]
- Herman, G.C.; Monteverder, D.H.; Schlische, R.W.; Pitcher, D.M. Foreland crustal structure of the New York recess, northeastern United States. Geol. Soc. Am. Bull. 1997, 109, 955–977. [Google Scholar] [CrossRef]
- Craddock, J.C. Stratigraphy and Structure of the Kinderhook Quadrangle, New York, and the “Taconic Klippe”. Geol. Soc. Am. Bull. 1957, 68, 675–723. [Google Scholar] [CrossRef]
- Beutner, E.C.; Diegel, F.A. Determination of fold kinematics from syntectonic fibers in pressure shadows, Martinsburg slate, New Jersey. Am. J. Sci. 1985, 285, 16–50. [Google Scholar] [CrossRef]
- Housen, B.A.; van der Pluijm, B.A. Slaty cleavage development and magneticanisotropy fabrics. J. Geophys. Res. 1991, 96, 9937–9946. [Google Scholar] [CrossRef]
- Housen, B.A.; van der Pluijm, B.A.; van Der Voo, R. Magnetite dissolution and neocrystallization during cleavage formation: Paleomagnetic study of the Martinsburg Fm., Lehigh Gap, Pennsylvania. J. Geophys. Res. 1993, 98, 13799–13813. [Google Scholar] [CrossRef]
- Pares, J.M.; van der Pluijm, B.A. Magnetic fabrics and strain in pencil structures of the Knobs Fm. Valley and Ridge province, US Appalachians. J. Struct. Geol. 2003, 25, 1349–1358. [Google Scholar] [CrossRef]
- Nuriel, P.; Rosenbaum, G.; Zhao, J.-X.; Feng, Y.; Golding, S.D.; Villemant, B.; Weinberger, R. U-Th dating of striated fault planes. Geology 2012, 40, 647–650. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Strain calculated from twinning in calcite. Bull. Geol. Soc. Am. 1972, 83, 2025–2038. [Google Scholar] [CrossRef]
- Turner, F.J. Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. Am. J. Sci. 1953, 251, 276–298. [Google Scholar] [CrossRef]
- Turner, F.J. “Compression” and “tension” axes deduced from {0112} twinning in calcite. J. Geophys. Res. 1962, 67, 1660. [Google Scholar]
- Paulsen, T.S.; Wilson, T.J.; Demosthenous, C.; Millan, C.; Jarrad, R.; Laufer, A. Kinematics of the Neogene Terror rift: Constraints from calcite twinning strains in the ANDRILL McMurdo Ice Shelf (AND-1B) core, Victoria Land Basin, Antarctica. Geosphere 2014, 10, 828–841. [Google Scholar] [CrossRef]
- Craddock, J.P.; van der Pluijm, B. Kinematic analysis of an en echelon-continuous vein complex. J. Struct. Geol. 1988, 10, 445–452. [Google Scholar] [CrossRef]
- Engelder, T. The nature of deformation within the outer limits of the central Appalachian foreland fold-and-thrust belt in New York state. Tectonophysics 1979, 55, 289–310. [Google Scholar] [CrossRef]
- Spang, J.H.; Groshong, R.H., Jr. Deformation mechanisms and strain history of a minor fold from the Appalachian Valley and Ridge Province. Tectonophysics 1981, 72, 323–342. [Google Scholar] [CrossRef]
- Mosar, J. Internal deformation in the Prealpes Medianes, Switzerland. Ecol. Geol. Helv. 1989, 82, 765–793. [Google Scholar]
- Ferrill, D.A. Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone. J. Struct. Geol. 1991, 13, 675–677. [Google Scholar] [CrossRef]
- Craddock, J.P.; Neilson, K.J.; Malone, D.H. Calcite twinning strain constraints on Heart Mountain detachment kinematics, Wyoming. J. Struct. Geol. 2000, 22, 983–991. [Google Scholar] [CrossRef]
- Amrouch, K.; Lacombe, O.; Bellahsen, N.; Daniel, J.M.; Callot, J.P. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Craddock, J.P.; Moshoian, A.; Pearson, A.M. Kinematic analysis from twinned calcite strains in the marble mylonites of the central Grenville province, Canada. Geol. Soc. Am. Abstr. Progr. 1991, 23, 236–237. [Google Scholar]
- Craddock, S.D.; Craddock, J.P. Strain Variations in Carbonates across the Proterozoic Grenville Orogen. In Proceedings of the 58th ILSG Annual Meeting, Thunder Bay, ON, Canada, 16–20 May 2012.
- Craddock, J.P.; Pearson, A. Non-coaxial horizontal shortening strains preserved in amygdule calcite, DSDP Hole 433C, Suiko Seamount. J. Struct. Geol. 1994, 16, 719–724. [Google Scholar] [CrossRef]
- Craddock, J.P.; Pearson, A.; McGovern, M.; Kropf, E.P.; Moshoian, A.; Donnelly, K. Post-Extension Shortening Strains Preserved in Calcites of the Keweenawan Rift: Middle Proterozoic to Cambrian Rifting; Ojakgangas, R.W., Dickas, A.B., Green, J.C., Eds.; Geological Society of America Special Paper 213; Geological Society of America: Boulder, CO, USA, 1997. [Google Scholar]
- Craddock, J.P.; Farris, D.; Roberson, A. Calcite-twinning constraints on stress-strain fields along the Mid-Atlantic Ridge, Iceland. Geology 2004, 32, 49–52. [Google Scholar] [CrossRef]
- Craddock, J.P.; Anziano, J.; Wirth, K.R.; Vervoort, J.D.; Singer, B.; Zhang, X. Structure, geochemistry and geochronology of a lamprophyre dike swarm, Archean Wawa terrane, Michigan, USA. Precambrian Res. 2007, 157, 50–70. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Takeshita, T.; Bechler, E.; Erskine, B.G.; Matthies, S. Pure Shear and Simple Shear Calcite Textures. Comparison of Experimental, Theoretical and Natural Data. J. Struct. Geol. 1987, 9, 731–745. [Google Scholar] [CrossRef]
- Burkhard, M. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: A review. J. Struct. Geol. 1993, 15, 351–368. [Google Scholar] [CrossRef]
- Lacombe, O.; Laurent, P. Determination of deviatoric stress tensors based on inversion of calcite twin data from experimentally deformed monophase samples: Preliminary results. Tectonophysics 1996, 255, 189–202. [Google Scholar] [CrossRef]
- Ferrill, D.A. Critical re-evaluation of differential stress estimates from calcite twins in coarse-grained limestone. Tectonophysics 1998, 285, 77–86. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr.; Teufel, L.W.; Gasteiger, C.M. Precision and accuracy of the calcite strain-gage technique. Bull. Geol. Soc. Am. 1984, 95, 357–363. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Experimental test of least-squares strain calculations using twinned calcite. Bull. Geol. Soc. Am. 1974, 85, 1855–1864. [Google Scholar] [CrossRef]
- Jamison, W.R.; Spang, J.H. Use of calcite twin lamellae to infer differential stress. Bull. Geol. Soc. Am. 1976, 87, 868–872. [Google Scholar] [CrossRef]
- Rowe, K.J.; Rutter, E.H. Paleostress estimation using calcite twinning: Experimental calibration and application to nature. J. Struct. Geol. 1990, 12, 1–17. [Google Scholar] [CrossRef]
- Teufel, L.W. Strain analysis of experimental superposed deformation using calcite twin lamellae. Tectonophysics 1980, 65, 291–309. [Google Scholar] [CrossRef]
- Evans, M.A.; Groshong, R.H., Jr. A Computer Program for the Calcite Strain-Gage Technique. J. Struct. Geol. 1994, 16, 277–281. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Morris, A.P.; Evans, M.A.; Burkhard, M.; Groshong, R.H.; Onasch, C.M. Calcite Twin Morphology: A Low-Temperature Deformation Geothermometer. J. Struct. Geol. 2004, 26, 1521–1529. [Google Scholar] [CrossRef]
- Gray, M.B.; Stamatakos, J.A.; Ferrill, D.A.; Evans, M.A. Fault-Zone Deformation in Welded Tuffs at Yucca Mountain, Nevada, USA. J. Struct. Geol. 2005, 27, 1873–1891. [Google Scholar] [CrossRef]
- Lohmann, K.C.; (University of Michigan, Ann Arbor, MI, USA). Personal communication, 2012.
- Craddock, J.P.; Konstantinou, A.; Vervoort, J.D.; Wirth, K.R.; Davidson, C.; Finley-Blasi, L.; Juda, N.A.; Walker, E. Detrital Zircon Provenance of the Proterozoic Midcontinent Rift, Lake Superior region, USA. J. Geol. 2013, 121, 57–73. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; ISBN 978-3-540-64003-5. Springer: Berlin, Germany, 2005. [Google Scholar]
- Craddock, J.P. Transpression during tectonic evolution of the Idaho-Wyoming fold-and-thrust belt. In Regional Geology of Eastern Idaho and Western Wyoming, Edition: Memoir 179, Chapter: 6; Link, P.K., Ed.; Geologic Society of America: Boulder, CO, USA, 1992; pp. 125–139. [Google Scholar]
- Van Staal, C.; Dewey, J.F.; Mac Niocaill, C.; McKerrow, W.S. The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides: History of a complex, west and southwest Pacific-type segment of Iapetus: Geological Society, London. Spec. Publ. 1998, 143, 197–242. [Google Scholar] [CrossRef]
- Freedman, J.; Bentley, R.; Wise, D. Pattern of folded folds in the Appalachian Piedmont along Susquehanna River. Geol. Soc. Am. Bull. 1964, 75, 621–638. [Google Scholar] [CrossRef]
- Faill, R.T. The geologic history of the north-central Appalachians; Part 3, The Alleghany Orogeny. Am. J. Sci. 1998, 298, 131–179. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Strain, fractures, and pressure solution in natural single-layer. Bull. Geol. Soc. Am. 1975, 86, 1363–1376. [Google Scholar] [CrossRef]
- Wise, D.U.; Werner, M.L. Pennsylvania salient of the Appalachians: New Piedmont data suggest origin by two movement directions on a regional decollement. In Orogenic Curvature: Geological Society of America Special Paper 383; Sussman, A.J., Weil, A.B., Eds.; Geological Society of America: Boulder, CO, USA, 2004; pp. 109–120. [Google Scholar]
- Miller, J.A.; Kent, D.V. Regional trends in the timing of Alleghenian remagnetization in the Appalachians. Geology 1988, 16, 195–198. [Google Scholar] [CrossRef]
- Schwartz, S.Y.; van der Voo, R. Paleomagnetic evaluation of the orocline hypothesis in the central and southern Appalachians. Geophys. Res. Lett. 1983, 10, 505–508. [Google Scholar] [CrossRef]
- Stamatakos, J.; Hirt, A.M. Paleomagnetic considerations of the development of the Pennsylvania salient in the central Appalachians. Tectonophysics 1994, 231, 237–255. [Google Scholar] [CrossRef]
- Stamatakos, J.; Hirt, A.M.; Lowrie, W. The age and timing of folding in the central Appalachians from paleomagnetic results. Geol. Soc. Am. Bull. 1996, 108, 815–829. [Google Scholar] [CrossRef]
- Gray, M.B.; Stamatakos, J. New model for evolution of fold and thrust belt curvature based on integrated structural and paleomagnetic results from the Pennsylvania salient. Geology 1997, 25, 1067–1070. [Google Scholar] [CrossRef]
- Elmore, R.D.; Kelley, J.; Evans, M.; Lewchuk, M.T. Remagnetization and orogenic fluids: Testing the hypothesis in the central Appalachians. Geophys. J. Int. 2001, 144, 568–576. [Google Scholar] [CrossRef]
- Evans, M.A.; Elmore, R.D.; Lewchuk, M.T. Examining the relationship between remagnetization and orogenic fluids: Central Appalachians. J. Geochem. Explor. 2001, 69, 139–142. [Google Scholar] [CrossRef]
- Hnat, J.S.; van der Pluijm, B.A.; van der Voo, R.; Thomas, W.A. Differential displacement and rotation in thrust fronts: A magnetic, calcite twinning and palinspastic study of the Jones Valley thrust, Alabama, US Appalachians. J. Struct. Geol. 2008, 30, 725–738. [Google Scholar] [CrossRef]
- Hnat, J.S.; van der Pluijm, B.A.; van der Voo, R. Remagnetization in the Tennessee salient, Southern Appalachians, USA: Constraints on the timing of deformation. Tectonophysics 2009, 474, 709–722. [Google Scholar] [CrossRef]
- Geiser, P.A. Slaty cleavage and the dewatering hypothesis—An examination of some critical evidence. Geology 1975, 3, 717–721. [Google Scholar] [CrossRef]
- Valentino, D.W.; Gates, A.E. The Mid-Atlantic Piedmont: Tectonic Missing Link of the Appalachians; Geological Society of America Special Paper 330; Geological Society of America: Boulder, CO, USA, 1999; p. 139. [Google Scholar]
- Lomando, A.J.; Engelder, T. Strain indicated by calcite twinning: Implications for deformation of the early Mesozoic northern Newark Basin, New York. Northeast Geol. 1984, 6, 192–195. [Google Scholar]
- Anderson, E.M. The Dynamics of Faulting, 2nd ed.; Oliver & Boyd: Edinburgh, UK, 1951; p. 208. [Google Scholar]
- Craddock, J.P.; Klein, T.; Kowalczyk, G.; Zulauf, G. Calcite twinning strains in Alpine orogen flysch: Implications for thrust-nappe mechanics and the geodynamics of Crete. Lithosphere 2009, 1, 174–191. [Google Scholar] [CrossRef]
Sample | δ13C (VPDB) | δ18O (VPDB) | Type |
---|---|---|---|
1 | −0.98 | −6.60 | Kittatiny Limestone |
2 | −1.63 | −11.35 | Martinsburg Fm. vein |
4 | −1.27 | −13.31 | Martinsburg Fm. vein |
5 | −1.88 | −13.20 | Martinsburg Fm. vein |
6 | −2.29 | −13.68 | Martinsburg Fm. vein |
9 | −1.69 | −13.37 | Martinsburg Fm. vein |
10 | −1.82 | −13.58 | Martinsburg Fm. vein |
11 | −1.81 | −13.05 | Martinsburg Fm. vein |
12(A) | −1.59 | −13.20 | Martinsburg Fm. vein |
13 | −1.72 | −13.10 | Martinsburg Fm. vein |
14 | −1.75 | −13.11 | Martinsburg Fm. vein |
15 | −2.06 | −13.24 | Martinsburg Fm. vein |
16 | −2.00 | −13.70 | Martinsburg Fm. vein |
17(B) | −2.11 | −12.80 | Martinsburg Fm. vein |
18 | −0.56 | −6.54 | Kittatiny Limestone |
Sample | Rock Unit | Orientation (Bedding) | Orientation (Cleavage) | Orientation (vein) | Grains (n = ) | e1 | e2 | e3 | e1 (%) | NEV (%) | −Δσ (bars) | Fabric Interp. (vein) | Fabric Interp. (Bedding) | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Southeast | ||||||||||||||
1 | Kittatiny LS | N45°E, 38°SE | None | None | 36 | 171°, 40° | 345°, 62° | 88°, 6° | −3.8 | 19 | 377.76021 | -- | LPS | -- |
2 | Om, qtz vein | N45°E, 84°SE | N45°E, 42°SE | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | Fold, no twins |
3-1A | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 30 | 341°, 7° | 163°, 87° | 53°, 12° | −2.9 | 10 | 373.300662 | VPS | LNS | Fold (Calcareous siltstone) |
3-1B | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 23 | 101°, 3° | 281°, 87° | 42°, 6° | −1.4 | 21 | 366.464023 | VPS | LNS | Fold (Calcareous siltstone) |
3-2A | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 8 | 322°, 4° | 143°, 88° | 253°, 6° | −1.3 | 0 | 370.339565 | VPS | LNS | Fold (Calcareous siltstone) |
3-3A | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 28 | 155°, 4° | 318°, 88° | 48°, 7° | −1.7 | 10 | 373.7829 | VPS | LNS | Fold (Calcareous siltstone) |
3-4A | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 42 | 138°, 6° | 317°, 86° | 47°, 16° | −1.8 | 21 | 360.67426 | VPS | LNS | Fold (Calcareous siltstone) |
3-4B | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 42 | 148°, 5° | 321°, 88° | 54°, 6° | −1.5 | 12 | 373.7829 | VPS | LNS | Fold (Calcareous siltstone) |
3-5A | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 34 | 318°, 11° | 141°, 87° | 35°, 9° | −1.1 | 29 | 367.25548 | VPS | LNS | Fold (Calcareous siltstone) |
3-5B | Om, vein | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 16 | 99°, 8° | 33°, 4° | 272°, 88° | −1.1 | 0 | 402.519949 | VPS | LNS | Fold (Calcareous siltstone) |
3: All-PEV | Om, veins | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 223 | 158°, 4° | 221°, 12° | 342°, 87° | −7.2 | 0 | 383.247517 | VPS | LNS | Fold (Calcareous siltstone) |
3: All-NEV | Om, veins | N45°E, 84°SE | N45°E, 45°SE | Horizontal | 26 | 36°, 6° | 326°, 2° | 147°, 88° | −3.6 | 100 | 358.639492 | VPS | LPS | Fold (Calcareous siltstone) |
4 | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 29 | 330°, 12° | 225°, 32° | 62°, 3° | −3.7 | 17 | 405.4012551 | VPS | LPS | Bedding-parallel normal fault |
5 | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 33 | 155°, 30° | 326°, 47° | 65°, 4° | −1.4 | 18 | 259.142013 | VPS | LPS | Bedding-parallel normal fault |
6 | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 36 | 162°, 21° | 252°, 12° | 6°, 83° | −1.7 | 5 | 276.1623538 | VPS | LPS | Bedding-parallel normal fault |
7 | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 36 | 349°, 5° | 249°, 83° | 71°, 6° | −2.1 | 1 | 302.2918232 | VPS | LPS | Bedding-parallel normal fault |
8 | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 29 | 342°, 22° | 223°, 61° | 68°, 5° | −1.1 | 10 | 297.7502294 | VPS | LPS | Bedding-parallel normal fault |
ALL-PEV | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 163 | 163°, 2° | 253°, 43° | 43°, 5° | −2.7 | 0 | 304.256842 | VPS | LPS | Bedding-parallel normal fault |
ALL-NEV | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 20°SE | 27 | 168°, 52° | 31°, 17° | 311°, 18° | −9.9 | 100 | 343.852106 | VNS | LNS | Bedding-parallel normal fault |
9 | Om, vein | N45°E, 20°SE | N45°E, 40°SE | N45°E, 80°SE | 28 | 152°, 32° | 338°, 28° | 71°, 3° | −1.3 | 0 | 283.807718 | VNS | LPS | S1-normal vein |
10a | Om, vein | N45°E, 18°SE | N45°E, 41°SE | N45°E, 18°SE | 36 | 331°, 28° | 149°, 82° | 73°, 2° | −5.1 | 16 | 279.657792 | VPS | LPS | S1-parallel vein |
10b | Om, vein | N45°E, 18°SE | N45°E, 41°SE | N45°E, 18°SE | 36 | 324°, 11° | 128°, 82° | 72°, 6° | −1.9 | 16 | 282.175469 | VPS | LPS | S1-parallel vein |
11 | Om, vein | N45°E, 18°SE | N45°E, 41°SE | N45°E, 61°SE | 36 | 162°, 55° | 26°, 5° | 338°, 12° | −1.8 | 11 | 319.114753 | VPS | LNS | S1-normal vein |
12a | Om, vein | N45°E, 15°SE | N45°E, 38°SE | N45°E, 15°SE | 34 | 155°, 28° | 252°, 78° | 68°, 3° | −3.3 | 5 | 282.996078 | VPS | LPS | S1-parallel vein |
12b | Om, vein | N45°E, 15°SE | N45°E, 38°SE | N45°E, 15°SE | 29 | 152°, 12° | 302°, 82° | 193°, 6° | −1.2 | 3 | 276.162354 | VPS | LPS | S1-parallel vein |
13a | Om, vein | N45°E, 15°SE | N45°E, 38°SE | N45°E, 15°SE | 34 | 161°, 13° | 342°, 52° | 76°, 2° | −1.3 | 3 | 299.73073 | VPS | LPS | S1-parallel vein |
13b | Om, vein | N45°E, 15°SE | N45°E, 42°SE | N45°E, 42°SE | 34 | 168°, 8° | 311°, 68° | 75°, 4° | −1.3 | 19 | 319.114753 | VPS | LPS | S1-normal vein |
14 | Om, vein | N45°E, 36°SE | N45°E, 58°SE | N45°E, 36°SE | 35 | 323°, 12° | 171°, 62° | 63°, 8° | −4.8 | 2 | 292.195165 | VPS | LPS | S1-parallel vein |
15 | Om, vein | N45°E, 36°SE | N45°E, 58°SE | N45°E, 36°SE | 36 | 331°, 27° | 133°, 71° | 51°, 11° | −6.1 | 22 | 302.291823 | VPS | LPS | S1-parallel vein |
16a | Om, vein | N45°E, 36°SE | N45°E, 58°SE | N45°E, 36°SE | 37 | 160°, 8° | 321°, 62° | 70°, 3° | −1.5 | 16 | 305.975108 | VPS | LPS | S1-parallel vein |
16b | Om, vein | N45°E, 36°SE | N45°E, 58°SE | N45°E, 36°SE | 35 | 326°, 11° | 168°, 82° | 61°, 5° | −4.9 | 0 | 281.345691 | VPS | LPS | S1-parallel vein |
17a | Om, vein | N45°E, 21°SE | N45°E, 65°SE | N45°E, 21°SE | 28 | 318°, 28° | 147°, 56° | 69°, 8° | −5.3 | 17 | 277.930636 | VPS | LPS | S1-parallel vein |
17b | Om, vein | N45°E, 21°SE | N45°E, 65°SE | N45°E, 21°SE | 36 | 141°, 22° | 251°, 72° | 72°, 5° | −4.9 | 8 | 269.619124 | VPS | LPS | S1-parallel vein |
17c | Om, vein | N45°E, 21°SE | N45°E, 65°SE | N45°E, 21°SE | 28 | 157°, 22° | 328°, 51° | 66°, 8° | −3.3 | 13 | 293.62337 | VPS | LPS | S1-parallel vein |
18 | Kittatiny LS | N45°E, 14°SE | None | None | 31 | 160°, 42° | 352°, 8° | 282°, 28° | −1.8 | 25 | 339.5959185 | -- | LPS | -- |
Northwest | ||||||||||||||
-- | -- | -- | -- | -- | n = 1341 | -- | -- | -- | Avg.: −2.9% | -- | Avg: −323 bars | .-- | -- | -- |
-- | Samples | ||
---|---|---|---|
Martinsburg Fm. (Calc. siltstone) | Martinsburg Fm. | Detection Limits (ppm) | |
Major Elements | |||
SiO2 | 18.32 | 56.64 | 60 |
TiO2 | 0.2989 | 0.8694 | 25 |
Al2O3 | 6.2 | 18.16 | 120 |
Fe2O3 | 9.359 | 7.2402 | 25 |
MnO | 0.3959 | 0.0494 | 25 |
MgO | 11.3 | 3.26 | 95 |
CaO | 20.61 | 2.14 | 15 |
Na2O | 0.2208 | 0.9132 | 35 |
K2O | 1.29 | 4.45 | 25 |
P2O5 | 0.376 | 0.158 | 35 |
BaO | 1113.2 | 750.3 | 12 |
Ce | 42 | 104 | 15 |
Co | <d/l | 15 | 10 |
Cr2O3 | 51.3 | 138.3 | 10 |
Cu | 31 | 50 | 2 |
Ni | 12 | 45 | 3 |
Sc | 15 | 13 | 7 |
V | 71.4 | 129.9 | 7 |
Zn | 43 | 81 | 2 |
LOI | 31.34 | 5.84 | 100 |
Total | 99.85 | 99.85 | -- |
Trace Elements | |||
Ga | 7.1 | 23.9 | 1 |
Nb | 5.8 | 16.6 | 0.3 |
Pb | 2.8 | 19 | 1 |
Rb | 53.3 | 171.8 | 1 |
Sr | 723.6 | 100 | 1 |
Th | 3.7 | 8.5 | 1 |
U | 1.9 | 3.6 | 1 |
Y | 24.6 | 19.9 | 1 |
Zr | 60.7 | 161 | 1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craddock, J.P.; Princen, M.; Wartman, J.; Xia, H.; Liu, J. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province. Geosciences 2016, 6, 10. https://doi.org/10.3390/geosciences6010010
Craddock JP, Princen M, Wartman J, Xia H, Liu J. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province. Geosciences. 2016; 6(1):10. https://doi.org/10.3390/geosciences6010010
Chicago/Turabian StyleCraddock, John P., Maria Princen, Jakob Wartman, Haoran Xia, and Junlai Liu. 2016. "Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province" Geosciences 6, no. 1: 10. https://doi.org/10.3390/geosciences6010010
APA StyleCraddock, J. P., Princen, M., Wartman, J., Xia, H., & Liu, J. (2016). Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province. Geosciences, 6(1), 10. https://doi.org/10.3390/geosciences6010010