A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies
Abstract
:1. Introduction
2. Background
- Ecosystems dependent on the surface expression of groundwater: This category includes springs, “minerogenous” wetlands (wetlands supported by groundwater that has been in contact with mineral soils or bedrock), river baseflow systems, and some estuarine and near-shore marine ecosystems that depend on the discharge of groundwater.
- Ecosystems dependent on the subsurface expression of groundwater: This type includes terrestrial vegetation that uses shallow groundwater (phreatophytes). These plants access groundwater by extending their roots to the water table or to the capillary fringe right above it. The roots of phreatophytes extend up to 3 m to over 15 m below the land surface depending on the species [13,14].
- Aquifer and cave ecosystems: These include fractured rock, karstic, and alluvial aquifers, hyporheic zones of rivers and floodplains (saturated interstitial area beneath and alongside a stream bed where shallow groundwater and surface water mix), and stygofauna (organisms living in groundwater systems or aquifers).
3. Ecohydrology of GDEs
4. Approaches Used for the Identification of GDEs
4.1. Ground-Based Methods Useful in Identifying Groundwater Dependency
4.2. Remote Sensing as a Tool to Identify Potential GDEs
- For the sustainable management of natural resources, the implementation of effective and cost-efficient techniques (such as remote sensing) to identify and monitor GDEs at levels broader than the field level is critical [87].
- The only practical approach to identify and monitor GDEs at a regional level or larger is to take advantage of remote sensing capabilities.
Limitations of Using Remote Sensing to Detect GDEs
4.3. Integration of Remotely Sensed Data with Ground-Based Observations for Identification of GDEs
5. Review of Case Studies for GDE identification at Different Spatial Extents
5.1. Detection of GDEs at the Local Level
5.2. Assessments of Groundwater Dependency in Different States
5.3. Identification of GDEs at the National and Regional Level
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Lawford, R.; Strauch, A.; Toll, D.; Fekete, B.; Cripe, D. Earth observations for global water security. Curr. Opin. Environ. Sustain. 2013, 5, 633–643. [Google Scholar] [CrossRef]
- Margat, J.; van der Gun, J. Groundwater Around the World: A Geographic Synopsis; CRC Press/Balkema: London, UK, 2013. [Google Scholar]
- Villholth, K.G.; Giordano, M. Groundwater use in a global perspective: Can it be managed? In The Agricultural Groundwater Revolution: Opportunities and Threats to Development; CAB International: Oxfordshire, UK, 2007; pp. 393–402. [Google Scholar]
- Groundwater Facts. Available online: http://www.ngwa.org (accessed on 5 October 2014).
- Moran, T.; Choy, J.; Sanchez, C. The Hidden Costs of Groundwater Overdraft. Available online: http://waterinthewest.stanford.edu/groundwater/overdraft/ (accessed on 10 September 2014).
- Schmoll, O.; Howard, G.; Chilton, J.; Chorus, I. Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources; IWA Publishing: London, UK, 2006; pp. 1–175. [Google Scholar]
- Foster, S.; Koundouri, P.; Tuinhof, A.; Kemper, K.; Nanni, M.; Garduño, H. Groundwater Dependent Ecosystems: The Challenge of Balanced Assessment and Adequate Conservation; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Colvin, C.; Le Maitre, D.; Hughes, S. Assessing Terrestrial Groundwater Dependent Ecosystems in South Africa; Water Research Commission: Pretoria, South Africa, 2003. [Google Scholar]
- Merz, S.K.; Evans, R.; Clifton, C.A. Environmental Water Requirements to Maintain Groundwater Dependent Ecosystems; Commonwealth of Australia: Canberra, Australia, 2001. [Google Scholar]
- Glasser, S.; Gauthier-Warinner, J.; Keely, J.; Gurrieri, J.; Tucci, P.; Summers, P.; Wireman, M.; McCormack, K. Technical Guide to Managing Ground Water Resources; United States Department of Agiculture: Washington, DC, USA, 2007.
- Eamus, D. Identifying Groundwater Dependent Ecosystems: A Guide for Land and Water Managers; Land & Water Australia: Braddon, Australia, 2009.
- Mathie, A.M.; Welborn, T.L.; Susong, D.D.; Tumbusch, M.L. Phreatophytic Land-Cover Map of the Northern and Central Great Basin Ecoregion: California, Idaho, Nevada, Utah, Oregon, and Wyoming; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2011.
- Stone, E.L.; Kalisz, P.J. On the maximum extent of tree roots. For. Ecol. Manage. 1991, 46, 59–102. [Google Scholar] [CrossRef]
- Jyväsjärvi, J.; Marttila, H.; Rossi, P.M.; Ala-Aho, P.; Olofsson, B.; Nisell, J.; Backman, B.; Ilmonen, J.; Virtanen, R.; Paasivirta, L.; et al. Climate-induced warming imposes a threat to north European spring ecosystems. Glob. Chang. Biol. 2015, 21, 4561–4569. [Google Scholar] [CrossRef] [PubMed]
- Dams, J.; Salvadore, E.; Van Daele, T.; Ntegeka, V.; Willems, P.; Batelaan, O. Spatio-temporal impact of climate change on the groundwater system. Hydrol. Earth Syst. Sci. 2012, 16, 1517–1531. [Google Scholar] [CrossRef] [Green Version]
- Harding, C.; Deane, D.; Green, G.; Kretschmer, P. Impacts of Climate Change on Water Resources in South Australia Phase 4, Volume 2 Predicting the Impacts of Climate Change to Groundwater Dependent Ecosystems; Department of Environment, Water and Natural Resources: Adelaide, Australian, 2015.
- Kumar, C.P. Climate Change and Its Impact on Groundwater Resources. Int. J. Eng. Sci. 2012, 1, 2278–4721. [Google Scholar]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2013, 518, 250–266. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Doll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2012, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- MacKay, H. Protection and management of groundwater-dependent ecosystems: Emerging challenges and potential approaches for policy and management. Aust. J. Bot. 2006, 54, 231–237. [Google Scholar] [CrossRef]
- Münch, Z.; Conrad, J. Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeol. J. 2006, 15, 19–28. [Google Scholar] [CrossRef]
- De Smith, M.J.; Goodchild, M.F.; Longley, P.A. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools, 5th ed.; The Winchelsea Press: Winchelsea, UK, 2015. [Google Scholar]
- Batelaan, O.; Witte, J.P.M. Ecohydrology and Groundwater Dependent Terrestrial Ecosystems. In Proceedings of the 28th Annual Conference of the International Association of Hydrogeologists (Irish Group), Tullamore, Ireland, 22–23 April 2008; pp. 1–8.
- Rodriguez-Iturbe, I. Ecohydrology : A hydrologic perspective of climate-soil-vegetation dynamics. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef]
- Froend, R.; Loomes, R.; Horwitz, P.; Bertuch, M.; Storey, A.; Bamford, M. Study of Ecological Water Requirements on the Gnangara and Jandakot Mounds under Section 46 of the Environmental Protection Act. Task 2: Determination of Ecological Water Requirements; Centre for Ecosystem Management: Perth, Australia, 2004. [Google Scholar]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Kupfersberger, H.; Kvoerner, J.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Kløve, B.; Allan, A.; Bertrand, G.; Druzynska, E.; Ertulk, A.; Goldscheider, N.; Henry, S.; Karakay, N.; Karjalainen, T.; Koundouri, P.; et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 2011, 14, 782–793. [Google Scholar] [CrossRef]
- Laio, F.; Tamea, S.; Ridolfi, L.; D’Odorico, P.; Rodriguez-Iturbe, I. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Guswa, A.J.; Celia, M.; Rodriguez-Iturbe, I. Models of soil moisture dynamics in ecohydrology: A comparative study. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Guswa, A.J. Soil-moisture limits on plant uptake: An upscaled relationship for water-limited ecosystems. Adv. Water Resour. 2005, 28, 543–552. [Google Scholar] [CrossRef]
- Laio, F. A vertically extended stochastic model of soil moisture in the root zone. Water Resour. Res. 2006, 42, 1–10. [Google Scholar] [CrossRef]
- Laio, F.; Porporato, A.; Fernandez-Illescas, C.; Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress. Adv. Water Resour. 2001, 24, 745–762. [Google Scholar] [CrossRef]
- Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems. Soil Moisture and Plant Dynamics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Rodriguez-Iturbe, I.; Porporato, A.; Ridolfi, L.; Isham, V.; Coxi, D.R. Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1999, 455, 3789–3805. [Google Scholar] [CrossRef]
- Tamea, S.; Laio, F.; Ridolfi, L.; D’Odorico, P.; Rodriguez-Iturbe, I. Ecohydrology of groundwater-dependent ecosystems: 2. Stochastic soil moisture dynamics. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Salvucci, G.D.; Entekhabi, D. Equivalent steady soil moisture profile and the time compression approximation in water balance modeling. Water Resour. Res. 1994, 30, 2737–2749. [Google Scholar] [CrossRef]
- Ridolfi, L.; D’Odorico, P.; Laio, F.; Tamea, S.; Rodriguez-Iturbe, I. Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resour. Res. 2008, 44, 1–11. [Google Scholar] [CrossRef]
- Eagleson, P.S. Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase. Water Resour. Res. 1978, 14, 722–730. [Google Scholar] [CrossRef]
- D’odorico, P.; Laio, F.; Porporato, A.; Ridolfi, L.; Rinaldo, A.; Rodriguez, I. Ecohydrology of terrestrial ecosystems. Bioscience 2010, 60, 898–907. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Tamea, S. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resour. Res. 2007, 43, 1–5. [Google Scholar] [CrossRef]
- Ahring, T.S.; Steward, D.R. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones. Hydrol. Earth Syst. Sci. 2012, 16, 4133–4142. [Google Scholar] [CrossRef] [Green Version]
- Ala-aho, P.; Rossi, P.M.; Isokangas, E.; Kløve, B. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging. J. Hydrol. 2015, 522, 391–406. [Google Scholar] [CrossRef]
- Brookfield, A.E.; Sudicky, E.A.; Park, Y.J.; Conant, B., Jr. Thermal transport modelling in a fully integrated surface/subsurface framework. Hydrol. Process. 2009, 23, 2150–2164. [Google Scholar] [CrossRef]
- Trigg, M.A.; Cook, P.G.; Brunner, P. Groundwater fluxes in a shallow seasonal wetland pond: The effect of bathymetric uncertainty on predicted water and solute balances. J. Hydrol. 2014, 517, 901–912. [Google Scholar] [CrossRef]
- Kollet, S.J.; Maxwell, R.M. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Puma, M.J.; Cook, B.I. Impacts of soil-aquifer heat and water fluxes on simulated global climate. Hydrol. Earth Syst. Sci. 2013, 17, 1963–1974. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Subin, Z.M.; Milly, P.C.D.; Sulman, B.N.; Malyshev, S.; Shevliakova, E. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 8443–8492. [Google Scholar] [CrossRef]
- Fan, Y.; Krakauer, N.; Li, H. Groundwater flow across spatial scales: Importance for climate modeling. Environ. Res. Lett. 2014, 9, 034003. [Google Scholar]
- Koirala, S.; Yeh, P.J.; Hirabayashi, Y.; Kanae, S.; Oki, T. Global-scale land surface hydrologic modeling with the representation of water table dynamics. 2014, 119, 75–89. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M.; Tang, Q.; Gao, H.; Leung, L.R. Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J. Hydrometeorol. 2014, 15, 957–972. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Grady, A.O.; Eamus, D.; Cook, P.; Lamontagne, S.; Kelly, G.; Hutley, L. Tree Water Use and Sources of Transpired Water in Riparian Vegetation along the Daly River, Northern Territory; Department of the Environment, Water, Heritage and the Arts: Sydney, Australia, 2003.
- Gou, S.; Gonzales, S.; Miller, G.R. Mapping potential groundwater-dependent ecosystems for sustainable management. Groundwater 2014, 53, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, P.J.; Walker, G.R.; Brunel, J.-P. Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: Laboratory and field techniques. Plant Cell Environ. 1993, 16, 269–277. [Google Scholar] [CrossRef]
- Zencich, S.J.; Froend, R.H.; Turner, J.V.; Gailitis, V. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 2002, 131, 8–19. [Google Scholar] [CrossRef]
- Smith, S.D.; Devitt, D.A.; Sala, A.; Cleverly, J.R.; Busch, D.E. Water relations of riparian plants from warm desert regions. Wetlands 1998, 18, 687–696. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Nosetto, M.D.; Villagra, P.E.; Jackson, R.B. Water subsidies from mountains to deserts: Their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 2011, 21, 678–694. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.M.; Marttila, H.; Jyväsjärvi, J.; Ala-aho, P.; Isokangas, E.; Muotka, T.; Kløve, B. Environmental conditions of boreal springs explained by capture zone characteristics. J. Hydrol. 2015, 531, 992–1002. [Google Scholar] [CrossRef]
- Busch, D.E.; Ingraham, N.L.; Smith, S.D. Water uptake in woody riparian phreatophytes of the Southwestern United States: A stable isotope study. Ecol. Appl. 1992, 2, 450–459. [Google Scholar] [CrossRef]
- McCole, A.A.; Stern, L.A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. 2007, 342, 238–248. [Google Scholar] [CrossRef]
- Bertrand, G.; Siergieiev, D.; Ala-Aho, P.; Rossi, P.M. Environmental tracers and indicators bringing together groundwater, surface water and groundwater-dependent ecosystems: Importance of scale in choosing relevant tools. Environ. Earth Sci. 2014, 72, 813–827. [Google Scholar] [CrossRef]
- Miller, G.R.; Chen, X.; Rubin, Y.; Ma, S.; Baldocchi, D.D. Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour. Res. 2010, 46, 1–14. [Google Scholar] [CrossRef]
- Eamus, D.; Zolfaghar, S.; Villalobos-Vega, R.; Cleverly, J.; Huete, A. Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 2015, 19, 4229–4256. [Google Scholar] [CrossRef]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater—Surface water interactions: A review. Environ. Res. 2006, 3, 873–887. [Google Scholar] [CrossRef]
- Stonestrom, D.A.; Constantz, J. Heat as a Tool for Studying the Movement of Ground Water Near Streams—Circular 1260; US Geological Survey: Reston, VA, USA, 2003.
- Becker, M.W.; Georgian, T.; Ambrose, H.; Siniscalchi, J.; Fredrick, K. Estimating flow and flux of ground water discharge using water temperature and velocity. J. Hydrol. 2004, 296, 221–233. [Google Scholar] [CrossRef]
- Silliman, S.E.; Booth, D.F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol. 1993, 146, 131–148. [Google Scholar] [CrossRef]
- Keery, J.; Binley, A.; Crook, N.; Smith, J.W.N. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series. J. Hydrol. 2007, 336, 1–16. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a ground water tracer. Groundwater 2005, 43, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Wyers, A.; Aldous, A.; Bach, L. Groundwater and Biodiversity Conservation: A Methods Guide for Integrating Groundwater Needs of Ecosystems and Species into Conservation Plans in the Pacific Northwest; The Nature Conservancy: Portland, OR, USA, 2007. [Google Scholar]
- MacDonald, A.M.; Maurice, L.; Dobbs, M.R.; Reeves, H.J.; Auton, C.A. Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. J. Hydrol. 2012, 434–435, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Svensson, A. Estimation of Hydraulic Conductivity from Grain Size Analyses; Chalmers University of Technology: Gothenburg, Sweden, 2014. [Google Scholar]
- Eggleston, J.; Rojstaczer, S. The value of grain-size hydraulic conductivity estimates: Comparison with high resolution In-situ field hydraulic conductivity. Geophys. Res. Lett. 2001, 28, 4255–4258. [Google Scholar] [CrossRef]
- Aminifard, M.; Siosemarde, M. Relationship between the saturated hydraulic conductivity and the particle size distribution. Indian J. Fundam. Appl. Life Sci. 2014, 4, 73–80. [Google Scholar]
- Salarashayeri, A.; Siosemarde, M. Prediction of soil hydraulic conductivity from particle-size distribution. World Acad. Sci. Eng. Technol. 2012, 6, 454–458. [Google Scholar]
- Eamus, D.; Froend, R.; Loomes, R.; Hose, G.; Murray, B. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust. J. Bot. 2006, 54, 97–114. [Google Scholar] [CrossRef]
- Dresel, P.E.; Clark, R.; Cheng, X.; Reid, M.; Terry, A.; Fawcett, J.; Cochrane, D. Mapping Terrestrial Groundwater Dependent Ecosystems: Method Development and Example Output; Department of Primary Industries: Melbourne, Australia, 2010.
- Hatton, T.; Evans, R. Dependence of Ecosystems on Groundwater and Its Significance to Australia; Occasional Paper No 12/98; Land and Water Resources Research and Development Corporation (LWRRDC): Canberra, Australia, 1998. [Google Scholar]
- Richardson, S.; Irvine, E.; Froend, R.; Boon, P.; Barber, S.; Bonneville, B. Australian Groundwater Dependent Ecosystems Toolbox Part 1: Assessment Framework; National Water Commission: Canberra, Australia, 2011. [Google Scholar]
- Regan, S. The water balance as an approach to assessing groundwater dependency in raised bog wetlands. In Proceedings of 2014 EGU General Assembly Conference, Vienna, Austria, 27 April–2 May 2014.
- Zhou, Y.; Wenninger, J.; Yang, Z.; Yin, L.; Huang, J.; Hou, L.; Wang, X.; Zhang, D.; Uhlenbrook, S. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China. Hydrol. Earth Syst. Sci. 2013, 17, 2435–2447. [Google Scholar] [CrossRef]
- Coles-Ritchie, M.; Gurrieri, J.; Carlson, C.; Solem, S. Groundwater-Dependent Ecosystems: Level II Inventory Field Guide; Gen. Tech. Report WO-86b; United States Department of Agriculture: Washington, DC, USA, 2012.
- Werstak, C.E.; Housman, I.; Maus, P.; Fisk, H.; Gurrieri, J.; Carlson, C.P.; Johnston, B.C.; Stratton, B.; Hurja, J.C. Groundwater-Dependent Ecosystem Inventory Using Remote Sensing; RSAC-10011-RPT1; Remote Sensing Applications Center: Salt Lake City, UT, USA, 2012. [Google Scholar]
- Resource Information Group. Groundwater Inventory, Monitoring, and Assessment Technical Guide—DRAFT; U.S. Forest Service: Washington, DC, USA, 2015. [Google Scholar]
- Tweed, S.O.; Leblanc, M.; Webb, J.A.; Lubczynski, M.W. Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol. J. 2006, 15, 75–96. [Google Scholar] [CrossRef]
- Perez Hoyos, I.C.; Krakauer, N.; Khanbilvardi, R. Random forest for identification and characterization of groundwater dependent ecosystems. WIT Trans. Ecol. Environ. 2015, 196, 89–100. [Google Scholar]
- Hansen, M.K.; Brown, D.J.; Dennison, P.E.; Graves, S.A.; Bricklemyer, R.S. Inductively mapping expert-derived soil-landscape units within dambo wetland catenae using multispectral and topographic data. Geoderma 2009, 150, 72–84. [Google Scholar] [CrossRef]
- Lang, M.W.; Kasischke, E.S.; Prince, S.D.; Pittman, K.W. Assessment of C-band synthetic aperture radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, U.S.A. Remote Sens. Environ. 2008, 112, 4120–4130. [Google Scholar] [CrossRef]
- Castañeda, C.; Ducrot, D. Land cover mapping of wetland areas in an agricultural landscape using SAR and Landsat imagery. J. Environ. Manag. 2009, 90, 2270–2277. [Google Scholar] [CrossRef] [PubMed]
- Hess, L.L.; Melack, J.M.; Novo, E.M.L.M.; Barbosa, C.C.F.; Gastil, M. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Reschke, J.; Bartsch, A.; Schlaffer, S.; Schepaschenko, D. Capability of C-band SAR for operational wetland monitoring at high latitudes. Remote Sens. 2012, 4, 2923–2943. [Google Scholar] [CrossRef]
- Neale, C.M.U.; Geli, H.; Taghvaeian, S.; Masih, A.; Pack, R.T.; Simms, R.D.; Baker, M.; Milliken, J.A.; O’Meara, S.; Witherall, A.J. Estimating evapotranspiration of riparian vegetation using high resolution multispectral, thermal infrared and lidar data. Proc. SPIE 2011, 8174. [Google Scholar] [CrossRef]
- Moffett, K.B.; Gorelick, S.M. A method to calculate heterogeneous evapotranspiration using submeter thermal infrared imagery coupled to a stomatal resistance submodel. Water Resour. Res. 2012, 48, W01545. [Google Scholar] [CrossRef]
- Southworth, J. An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions. Int. J. Remote Sens. 2004, 25, 689–706. [Google Scholar] [CrossRef]
- Rautio, A. Groundwater—Surface Water Interactions in Snow-Type Catchments: Integrated Resources; University of Helsinki: Helsinki, Finland, 2015. [Google Scholar]
- Heidel, B.; Rodemaker, E. Inventory of Peatland Systems in the Beartooth Mountains, Shoshone National Forest; Wyoming Natural Diversity Database: Laramie, WY, USA, 2008. [Google Scholar]
- Lewis, M.M.; White, D. Evaluation of remote sensing approaches. In Allocating Water and Maintaining Springs in the Great Artesian Basin. Volume IV. Spatial Survey and Remote Sensing of Artesian Springs of the Western Great Artesian Basin; National Water Commission: Kingston, Jamaica, 2013; Volume IV. [Google Scholar]
- Santos-gonzález, C. Suitability of NDVI AVHRR Data for Wetland Detection. A Case Study: Kakadu National Park, Australia; Department of the Environment and Heritage, The University of New South Wales: Sydney, Australia, 2002.
- Fuentes, D.A.; Gamon, J.A.; Qiu, H.; Sims, D.A. Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from the AVIRIS sensor. J. Geophys. Res. 2001, 106, 565–577. [Google Scholar] [CrossRef]
- Pengra, B.W.; Johnston, C.A.; Loveland, T.R. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sens. Environ. 2007, 108, 74–81. [Google Scholar] [CrossRef]
- Keeletsang, M. Assessment of Dry Season Transpiration Using IKONOS Images: Serowe Case Study; International Institute for Geo-Information Science and Earth Observation: Botswana, Africa, 2004. [Google Scholar]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping wetlands and riparian areas using Landsat ETM imagery and decision-tree based models. Wetlands 2006, 26, 465–474. [Google Scholar] [CrossRef]
- Barron, O.V.; Emelyanova, I.; van Niel, T.G.; Pollock, D.; Hodgson, G. Mapping groundwater-dependent ecosystems using remote sensing measures of vegetation and moisture dynamics. Hydrol. Process. 2014, 28, 372–385. [Google Scholar] [CrossRef]
- Gow, L.; Brodie, R.S.; Green, R.; Punthakey, J.; Woolley, D.; Redpath, P.; Bradburn, A. Identification and monitoring GDEs using MODIS time series: Hat Head National Park—A case study. In Groundwater 2010: The Challenge of Sustainable Management; National Convention Centre: Canberra, Australia, 2010. [Google Scholar]
- Kuginis, L.; Byrne, G.; Serov, P.; Williams, J.P. Risk Assessment Guidelines for Groundwater Dependent Ecosystems, Volume 3—Identification of High Probability Groundwater Dependent Ecosystems on the Coastal Plains of NSW and Their Ecological Value; NSW Department of Primary Industries: Orange, Australia, 2012.
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J. Regional patterns of plant community response to changes in water: Owens Valley, California. Ecol. Appl. 2003, 13, 443–460. [Google Scholar] [CrossRef]
- Contreras, S.; Jobbágy, E.G.; Villagra, P.E.; Nosetto, M.D.; Puigdefábregas, J. Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. J. Hydrol. 2011, 397, 10–22. [Google Scholar] [CrossRef]
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 1–13. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Valeo, C.; van der Wal, W.; Marshall, S. Validating gravimetry measurements in Canada with a continental-scale hydrological database. In Remote Sensing for Environmental Monitoring and Change Detection 2007; IAHS: Perugia, Italy, 2007; pp. 169–178. [Google Scholar]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E.; Milewski, A.; Sauck, W.; Becker, R.; Welton, B. Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the timedependent water partitioning in African watersheds. Geology 2011, 39, 479–482. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Temimi, M. Stream recession curves and storage variability in small watersheds. Hydrol. Earth Syst. Sci. 2011, 15, 2377–2389. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.R.; Rodell, M. Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Longuevergne, L.; Scanlon, B.R.; Wilson, C.R. GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains aquifer, USA. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; De Linage, C.R.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, 2–5. [Google Scholar] [CrossRef]
- Sultan, M.; Ahmed, M.; Wahr, J.; Yan, E.; Emil, M.K. Monitoring Aquifer Depletion from Space. In Remote Sensing of the Terrestrial Water Cycle; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 347–366. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Rogan, J. Using GIS and Remote Sensing for Ecological Mapping and Monitoring; John Wiley Sons: Hoboken, NJ, USA, 2007; pp. 233–268. [Google Scholar]
- Howard, J.; Merrifield, M. Mapping groundwater dependent ecosystems in California. PLoS ONE 2010, 5, e11249. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Bach, L.; Aldous, A.; Wyers, A.; DeGagné, J. Groundwater-dependent ecosystems in Oregon: An assessment of their distribution and associated threats. Front. Ecol. Environ. 2011, 9, 97–102. [Google Scholar] [CrossRef]
- Swanson, F.J.; Kratz, T.K.; Caine, N.; Woodmansee, R.G. Landform Effects on Ecosvstem Paterns and Processes. Bioscience 1998, 38, 92–98. [Google Scholar] [CrossRef]
- Bailey, R.G. Role of Landform in Differentiation of Ecosystems at the Mesoscale (Landscape Mosaics). Available online: https://www.researchgate.net/publication/241002868_Mesoscale_Landform_Differentiation_Landscape_Mosaics (accessed on 21 January 2016).
- Li, Z.; Zhu, Q.; Gold, C. Digital Terrain Modeling: Principles and Methodology; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Tóth, J. Groundwater Discharge: A Common Generator of Diverse Geologic and Morphologic Phenomena. Int. Assoc. Sci. Hydrol. Bull. 1971, 16, 7–24. [Google Scholar] [CrossRef]
- Soil Survey Staff Description of STATSGO Database. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053629 (accessed on 21 January 2016).
- Brown, J.; Wyers, A.; Bach, L.; Aldous, A. Groundwater-Dependent Biodiversity and Associated Threats: A Statewide Screening Methodology and Spatial Assessment of Oregon; The Nature Conservancy: Arlington, VA, USA, 2009. [Google Scholar]
- Sinclair Knight Merz. Atlas of Groundwater Dependent Ecosystems (GDE Atlas); Bureau of Meteorology, Australia Government: Melbourne, Australia, 2012.
- Münch, Z.; Conrad, J. Surveying Remote Sensing for Groundwater Dependent Ecosystems. Available online: http://www.ee.co.za/wp-content/uploads/legacy/Remote%20sensing%20for%20groundwater%20dependant%20ecosystems.pdf (accessed on 21 January 2016).
- Faghmous, J.H.; Kumar, V. A big data guide to understanding climate change: The case for theory-guided data science. Big Data 2014, 2, 155–163. [Google Scholar] [CrossRef] [PubMed]
Satellite Sensor | Characteristics | Mapping Scale | Applications | Studies That Identify GDEs Using These Sensors |
---|---|---|---|---|
ASTER | Low to medium spatial resolution. VNIR bands (15 m), SWIR bands (30 m), TIR bands (90 m) | 1:24,000–1:100,000 | Ecosystem dynamics, geology and soils, land cover change, digital elevation models (DEMs), and vegetation mapping at species or community level | [100,101] |
AVHRR | Low spatial resolution (1 km) | 1:100,000–1:1,000,000 | Global terrestrial ecosystem monitoring; mapping of land cover types | [102] |
AVIRIS | Airborne optical sensor that delivers images in 224 contiguous spectral channels at varying spatial resolution (4 m to 30 m) | 1:24,000–1:100,000 | Vegetation leaf water, biomass assessment, vegetation mapping at species or community level | [103] |
Hyperion | Low spatial resolution (30 m). | 1:24,000–1:100,000 | Biomass, LAI, vegetation mapping at species or community level | [104] |
IKONOS | High to medium spatial resolution. 1 m (panchromatic imagery) and 4 m (multispectral bands including VIS and NIR). | 1:4,000–1:24,000 | Vegetation mapping at species or community level, urban and rural mapping of natural resources, and change detection. | [105] |
LANDSAT ETM+ | Medium to coarse spatial resolution with multispectral data. 15 m (panchromatic band), 30 m (multispectral bands), 60 m (TIR band). | 1:24,000–1:100,000 | Photosynthetic activity assessment, vegetation mapping at community level, land cover and change detection. | [57,106] |
LANDSAT TM | Medium to coarse spatial resolution with multispectral data. 30 m (multispectral bands), 120 m (TIR band). | 1:24,000–1:100,000 | Photosynthetic activity assessment, vegetation mapping at community level, land cover and change detection. | [23,81,87,107] |
MODIS | Low spatial resolution (250—1000 m) and multispectral data | 1:100,000–1:1,000,000 | Photosynthetic Activity trends, land cover/vegetation mapping and monitoring, evapotranspiration estimation, | [57,81,101,108] |
Quickbird | High spatial resolution (0.65—2.4 m). Panchromatic and multispectral bands | 1:4,000–1:24,000 | Land-cover and land-use monitoring, vegetation mapping at species or community level | [101] |
SPOT | Medium spatial resolution (1.5 m to 20 m) | 1:24,000–1:100,000 | Land-cover and land-use monitoring, vegetation mapping at species or community level | [109] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Hoyos, I.C.; Krakauer, N.Y.; Khanbilvardi, R.; Armstrong, R.A. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies. Geosciences 2016, 6, 17. https://doi.org/10.3390/geosciences6020017
Pérez Hoyos IC, Krakauer NY, Khanbilvardi R, Armstrong RA. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies. Geosciences. 2016; 6(2):17. https://doi.org/10.3390/geosciences6020017
Chicago/Turabian StylePérez Hoyos, Isabel C., Nir Y. Krakauer, Reza Khanbilvardi, and Roy A. Armstrong. 2016. "A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies" Geosciences 6, no. 2: 17. https://doi.org/10.3390/geosciences6020017
APA StylePérez Hoyos, I. C., Krakauer, N. Y., Khanbilvardi, R., & Armstrong, R. A. (2016). A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies. Geosciences, 6(2), 17. https://doi.org/10.3390/geosciences6020017