Paleolimnology as a Tool to Achieve Environmental Sustainability in the Anthropocene: An Overview
Abstract
:1. Introduction
2. Lakes as Integrators of Environmental Change
3. Marking Out the “Age of Humans” in Time and Space
4. Determining Baseline Conditions Relevant to Environmental Sustainability
5. Past Quantitative Inferences of Environmental Variables
6. Recent Developments in Paleolimnology Pave the Way for Future Sustainability
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gillson, L.; Marchant, R. From myopia to clarity: Sharpening the focus of ecosystem management through the lens of paleoecology. Trends Ecol. Evol. 2014, 29, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.T.; Hobbes, R.J. Ecological restoration in the light of ecological history. Science 2009, 325, 567–568. [Google Scholar] [CrossRef] [PubMed]
- Willis, K.J.; Araujo, M.B.; Bennett, K.D.; Figueroa-Rangel, B.; Froyd, C.A.; Myers, N. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos. Trans. R. Soc. B 2007, 362, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Saulnier-Talbot, É. Overcoming the disconnect: Are paleolimnologists doing enough to make their science accessible to aquatic managers and conservationists? Front. Ecol. Evol. 2015, 3. [Google Scholar] [CrossRef]
- Schindler, D.W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds and landscapes. Limnol. Oceanogr. 2009, 54, 2349–2358. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Verschuren, D.; Laird, K.R.; Cumming, B.F. Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 2000, 403, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.; Jones, M.D.; Benkaddour, A.; Eastwood, W.J.; Filippi, M.L.; Frogley, M.R.; Lamb, H.F.; Leng, M.J.; Reed, J.M.; Stein, M.; et al. Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: The ISOMED synthesis. Quat. Sci. Rev. 2008, 27, 2426–2441. [Google Scholar] [CrossRef]
- Michelutti, N.; Wolfe, A.P.; Vinebrooke, R.D.; Rivard, B.; Briner, J.P. Recent primary production increases in Arctic lakes. Geophys. Res. Lett. 2005, 32, L19715. [Google Scholar] [CrossRef]
- Saulnier-Talbot, É.; Pienitz, R.; Vincent, W.F. Holocene lake succession and palaeo-optics of a subarctic lake, northern Québec (Canada). Holocene 2003, 13, 517–526. [Google Scholar] [CrossRef]
- Hu, F.S.; Finney, B.P.; Brubaker, L.B. Effects of Holocene Alnus expansion on aquatic productivity, nitrogen cycling and soil development in southwestern Alaska. Ecosystems 2001, 4, 358–368. [Google Scholar] [CrossRef]
- McGowan, S.; Anderson, N.J.; Edwards, M.E.; Langdon, P.G.; Jones, V.J.; Turner, S.; van Hardenbroek, M.; Whiteford, E.; Wiik, E. Long-term perspectives on terrestrial and aquatic carbon cycling from paleolimnology. WIREs Water 2015, 3, 211–234. [Google Scholar] [CrossRef]
- Quinlan, R.; Hall, R.I.; Paterson, A.M.; Cumming, B.F.; Smol, J.P. Long-term assessments of ecological effects of anthropogenic stressors on aquatic ecosystems from paleoecological analyses: Challenges to perspectives of lake management. Can. J. Fish. Aquat. Sci. 2008, 65, 933–944. [Google Scholar] [CrossRef]
- Frey, D.G. What is paleolimnology? J. Paleolimnol. 1988, 1, 5–8. [Google Scholar] [CrossRef]
- Smol, J.P. Pollution of Lakes and Rivers A Paeloenvironmental Perspective, 2nd ed.; Blackwell Publishing: Oxford, UK, 2008; pp. 88–119. [Google Scholar]
- Smeltzer, E.; Swain, E.B. Answering lake management questions with paleolimnology. In Lake and Reservoir Management: Practical Applications, Proceedings of the Fourth Annual Conference and International Symposium of the North American Lake Management Society, McAfee, NJ, USA, 16–19 October 1984; pp. 268–274.
- Smol, J.P. Paleolimnology: An important tool for effective ecosystem management. J. Aquat. Ecosyst. Health 1992, 1, 49–58. [Google Scholar] [CrossRef]
- Saulnier-Talbot, É.; Pienitz, R.; Stafford, T.W., Jr. Establishing Holocene sediment core chronologies for northern Ungava lakes, Canada, using humic acids (AMS 14C) and 210Pb. Quat. Geochronol. 2009, 4, 278–287. [Google Scholar] [CrossRef]
- Corlett, R.T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 2015, 30, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, K.A.; Crutzen, P.J.; Lambin, E.F.; Liverman, D.; Mantua, N.J.; McNeill, J.R.; Messerli, B.; Steffen, W. Decadal interactions of humans and the environment. In Integrated History and Future of People on Earth; Costanza, R., Graumlich, L., Steffen, W., Eds.; Dahlem Workshop Report 96; MIT Press: Cambridge, MA, USA, 2006; pp. 341–375. [Google Scholar]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Saulnier-Talbot, É.; Larocque-Tobler, I.; Gregory-Eaves, I.; Pientiz, R. Response of lacustrine biota to Late Holocene climate and environmental conditions in northernmost Ungava (Canada). Arct. Inst. N. Am. 2015, 68, 153–168. [Google Scholar] [CrossRef]
- Hobbes, W.O.; Telford, R.J.; Birks, H.J.B.; Saros, J.E.; Hazewinkel, R.R.O.; Perren, B.B.; Saulnier-Talbot, É.; Wolfe, A.P. Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS ONE 2010, 5, e10026. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Pla-Rabés, S.; Wolfe, A.P.; Smol, J.P.; Rühland, K.M.; Anderson, N.J.; Kopáček, J.; Stuchlík, E.; Schmidt, R.; Koinig, K.A.; et al. Global change revealed by palaeolimnological records from remote lakes: A review. J. Paleolimnol. 2013, 49, 513–539. [Google Scholar] [CrossRef]
- Wolfe, A.P.; Hobbs, W.O.; Birks, H.H.; Briner, J.P.; Holmgren, S.U.; Ingólfsson, Ó.; Kaushal, S.S.; Miller, G.H.; Pagani, M.; Saros, J.E.; et al. Stratigraphic expressions of the Holocene–Anthropocene transition revealed in sediments from remote lakes. Earth Sci. Rev. 2013, 116, 17–34. [Google Scholar] [CrossRef]
- Rose, N. Fly-ash particles. In Tracking Environmental Change Using Lake Sediments, Volume 2, Physical and Chemical Methods; Last, W.M., Smol, J.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 319–349. [Google Scholar]
- Rose, N. Spheroidal carbonaceous fly ash particles provide a globally synchronous stratigraphic marker for the Anthropocene. Environ. Sci. Technol. 2015, 49, 4155–4162. [Google Scholar] [CrossRef] [PubMed]
- World Wildlife Fund. Living Planet Report, 2014. Available online: http://wwf.panda.org/about_our_earth/all_publications/living_planet_report/ (accessed on 27 January 2016).
- Ormerod, S.J.; Dobson, M.; Hildrew, A.G.; Townsend, C.R. Multiple stressors in freshwater ecosystems. Freshw. Biol. 2010, 55, 1–4. [Google Scholar] [CrossRef]
- Foley, S.F.; Gronenborn, D.; Andreae, M.O.; Kadereit, J.W.; Esper, J.; Scholz, D.; Pöschl, U.; Jacob, D.E.; Schöne, B.R.; Schreg, R.; et al. The Palaeoanthropocene—The beginnings of anthropogenic environmental change. Anthropocene 2013, 3, 83–88. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Kershaw, P.; Moss, B.; Bird, M.I.; Fifield, L.K.; Cresswell, R.G.; Santos, G.M.; Di Tada, M.L.; Hausladen, P.A.; Zhou, Y. Redating the onset of burning at Lynch’s crater (North Queensland): Implications for human settlement in Australia. J. Quat. Sci. 2001, 16, 767–771. [Google Scholar] [CrossRef]
- McWethy, D.B.; Wilmshurst, J.M.; Whitlock, C.; Wood, J.R.; McGlone, M.S. A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS ONE 2014, 9, e111328. [Google Scholar] [CrossRef] [PubMed]
- McWethy, D.B.; Whitlock, C.; Wilmshurst, J.M.; McGlone, M.S.; Fromont, M.; Li, X.; Dieffenbacher-Krall, A.; Hobbs, W.O.; Fritz, S.C.; Cook, E.R. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. PNAS 2010, 107, 21343–21348. [Google Scholar] [CrossRef] [PubMed]
- Gell, P.; Mills, K.; Grundell, R. A legacy of climate and catchment change: The real challenge for wetland management. Hydrobiology 2012, 708, 133–144. [Google Scholar] [CrossRef]
- Kates, R.W.; Parris, T.M.; Leiserowitz, A.A. What is sustainable development? Goals, indicators, values and practice. Environ. Sci. Policy Sustain. Dev. 2005, 47, 8–21. [Google Scholar]
- Grumbine, R.E. What is ecosystem management? Conserv. Biol. 1994, 8, 27–38. [Google Scholar] [CrossRef]
- Brenner, M.; Whitmore, T.J.; Flannery, M.S.; Binford, M.W. Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake Reserv. Manag. 1993, 7, 209–217. [Google Scholar] [CrossRef]
- Shepard, R.B. Quantifying environmental impact assessments using fuzzy logic. In Springer Series on Environmental Management; Springer: Berlin, Germany, 2006; p. 264. [Google Scholar]
- Bennion, H.; Battarbee, R.W.; Sayer, C.D.; Simpson, G.L.; Davidson, T.A. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: A synthesis. J. Paleolimnol. 2010, 45, 533–544. [Google Scholar] [CrossRef]
- Dixit, A.S.; Dixit, S.S.; Smol, J.P. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Can. J. Fish. Aquat. Sci. 1992, 49, 17–24. [Google Scholar] [CrossRef]
- Renberg, I.; Korsman, T.; Anderson, N.J. A temporal perspective of lake acidification in Sweden. Ambio 1993, 22, 264–271. [Google Scholar]
- Hodgson, D.A.; Vyverman, W.; Chepstow-Lusty, A.; Tyler, P.A. From rainforest to wasteland in 100 years: The limnological legacy of the Queenston mines, Western Tasmania. Arch. Hydrobiol. 2000, 149, 153–176. [Google Scholar]
- Smol, J.P.; Cumming, B.F.; Dixit, A.S.; Dixit, S.S. Tracking recovery patterns in acidified lakes: A paleolimnological perspective. Restor. Ecol. 1998, 6, 318–326. [Google Scholar] [CrossRef]
- Battarbee, R.W.; Bennion, H. Paleolimnology and its developing role in assessing the history and extent of human impact on lake ecosystems. J. Paleolimnol. 2011, 45, 399–404. [Google Scholar] [CrossRef]
- Wiik, E.; Bennion, H.; Sayer, C.D.; Davidson, T.A.; Clake, S.J.; McGowan, S.; Prentice, S.; Simpson, G.L.; Stone, L. The coming and going of a marl lake: Multi-indicator paleolimnology reveals abrupt ecological change and alternative views of reference conditions. Front. Ecol. Evol. 2015, 3. [Google Scholar] [CrossRef]
- Juggins, S.; Birks, H.J.B. Quantitative environmental reconstructions from biological data. In Tracking Environmental Change Using Lake Sediments, Volume 5, Data Handling and Numerical Techniques; Birks, H.J.B., Lotter, A.F., Juggins, S., Smol, J.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2012; pp. 431–494. [Google Scholar]
- Juggins, S. Quantitative reconstructions in paleolimnology: New paradigm or sick science? Quat. Sci. Rev. 2013, 64, 20–32. [Google Scholar] [CrossRef]
- Eggermont, H.; Heiri, O.; Verschuren, D. Fossil Chironomidae (Diptera) as quantitative indicators of past salinity in African lakes. Quat. Sci. Rev. 2006, 25, 1966–1994. [Google Scholar] [CrossRef]
- Antoniades, D.; Douglas, M.S.V.; Smol, J.P. Benthic diatom autoecology and inference model development from the Canadian High Arctic Archipelago. J. Phycol. 2005, 41, 30–45. [Google Scholar] [CrossRef]
- Guilizzoni, P.; Marchetto, A.; Lami, A.; Gerli, S.; Musazzi, S. Use of sedimentary pigments to infer past phosphorus concentrations in lakes. J. Paleolimnol. 2011, 45, 433–445. [Google Scholar] [CrossRef]
- Rosén, P.; Dåbakk, E.; Renberg, I.; Nilsson, M.; Hall, R. Near-infrared spectrometry (NIRS): A new tool for inferring past climatic changes from lakes sediments. Holocene 2000, 10, 161–166. [Google Scholar] [CrossRef]
- Larocque, I.; Pientiz, R.; Rolland, N. Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can. J. Fish. Aquat. Sci. 2006, 63, 1286–1297. [Google Scholar] [CrossRef]
- Luoto, T.P.; Salonen, V.-P. Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: A calibration model, case studies and potentialities. Boreal Environ. Res. 2010, 15, 1–18. [Google Scholar]
- Korhola, A.; Olander, H.; Blom, T. Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolimnol. 2000, 24, 43–54. [Google Scholar] [CrossRef]
- Greffard, M.-H.; Saulnier-Talbot, É.; Gregory-Eaves, I. Subfossil chironomids are significant indicators of turbidity in shallow lakes of northeastern USA. J. Paleolimnol. 2012, 47, 561–581. [Google Scholar] [CrossRef]
- Sweetman, J.N.; Smol, J.P. Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains —A review. Quat. Sci. Rev. 2006, 25, 2013–2023. [Google Scholar] [CrossRef]
- Wilson, S.E.; Cumming, B.F.; Smol, J.P. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: The development of diatom-based models for paleosalinity reconstructions. J. Paleolimnol. 1994, 12, 197–221. [Google Scholar] [CrossRef]
- Fallu, M.-A.; Pienitz, R. Diatomées lacustres de Jamésie-Hudsonie (Québec) et modèle de reconstitution des concentrations de carbone organique dissous. Ecoscience 1999, 6, 603–620. [Google Scholar]
- Cumming, B.F.; Laird, K.R.; Gregory-Eaves, I.; Simpson, K.G.; Sokal, M.A.; Nordin, R.; Walker, I.R. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: Tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in western North America. Front. Ecol. Evol. 2015, 3, 84. [Google Scholar] [CrossRef]
- Birks, H.H.; Briks, H.J.B. Multiproxy studies in paleolimnology. Veg. Hist. Archeobot. 2006, 15, 235–251. [Google Scholar] [CrossRef]
- Simpson, G.L.; Anderson, N.J. Deciphering the effect of climate change and separating the influence of confounding factors in sediment core records using additive models. Limnol. Oceanogr. 2009, 54, 2529–2541. [Google Scholar] [CrossRef]
- Heathcote, A.; Anderson, N.J.; Prairie, Y.T.; Engstrom, D.R.; del Giorgio, P.A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 2015, 6, 10016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leavitt, P.R. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundances. J. Paleolimnol. 1993, 9, 109–127. [Google Scholar] [CrossRef]
- Leavitt, P.R.; Hodgson, D.A. Sedimentary pigments. In Tracking Environmental Change Using Lake Sediments, Volume 3, Terrestrial, Algal and Siliceous Indicators; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 295–325. [Google Scholar]
- Taranu, Z.E.; Gregory-Eaves, I.; Leavitt, P.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; Guilizzoni, P.; Lami, L.; McGowan, S.; et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 2015, 18, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Saulnier-Talbot, É.; Gregory-Eaves, I.; Efitre, J.; Simpson, K.G.; Nowlan, T.E.; Taranu, Z.E.; Chapman, L.J. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes. PLoS ONE 2014, 9, e86561. [Google Scholar] [CrossRef]
- Leng, M.J.; Lamb, A.L.; Heaton, T.H.E.; Marshall, J.D.; Wolfe, B.B.; Jones, M.D.; Holmes, J.A.; Arrowsmith, C. Isotopes in lake sediments. In Developments in Paleoenvironmental Research, Volume 10, Isotopes in Paleoenvironmental Research; Leng, M.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; pp. 147–184. [Google Scholar]
- Gregory-Eaves, I.; Domaizon, I. Analysis of DNA archived in lake sediments. ASLO E Lect. 2014. [Google Scholar] [CrossRef]
- Pal, S.; Gregory-Eaves, I.; Pick, F.R. Temporal trends in cyanobacteria revealed through DNA and pigments analyses of temperate lake sediment cores. J. Paleolimnol. 2015, 54, 87–101. [Google Scholar] [CrossRef]
- Stager, J.C.; Sporn, L.A.; Johnson, M.; Regalado, S. Of paleo-genes and perch: What if an “alien” is actually a native? PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Gregory-Eaves, I.; Beisner, B. Palaeolimnological insights for biodiversity science: An emerging field. Freshw. Biol. 2011, 56, 2653–2661. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saulnier-Talbot, É. Paleolimnology as a Tool to Achieve Environmental Sustainability in the Anthropocene: An Overview. Geosciences 2016, 6, 26. https://doi.org/10.3390/geosciences6020026
Saulnier-Talbot É. Paleolimnology as a Tool to Achieve Environmental Sustainability in the Anthropocene: An Overview. Geosciences. 2016; 6(2):26. https://doi.org/10.3390/geosciences6020026
Chicago/Turabian StyleSaulnier-Talbot, Émilie. 2016. "Paleolimnology as a Tool to Achieve Environmental Sustainability in the Anthropocene: An Overview" Geosciences 6, no. 2: 26. https://doi.org/10.3390/geosciences6020026
APA StyleSaulnier-Talbot, É. (2016). Paleolimnology as a Tool to Achieve Environmental Sustainability in the Anthropocene: An Overview. Geosciences, 6(2), 26. https://doi.org/10.3390/geosciences6020026