Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK
Abstract
:1. Introduction
2. Northumberland and Durham Case Study
2.1. Land Cover
2.2. Geological Setting
2.3. Northumberland and Durham Coalfield
3. SAR Processing
3.1. ERS and ENVISAT
3.2. Sentinel-1
4. Ground Motion in North East England
4.1. ISBAS Processing Coverage
4.2. Linear Velocities
5. Discussion
5.1. Relationships between Ground Motion and Geology
5.1.1. Bedrock Geology
5.1.2. Superficial Deposits
5.1.3. Geological Structure
5.2. Relationships between Ground Motion and Coal Mining
5.3. Relationships between Ground Motion and Ground Water Levels
5.4. Case Studies
5.4.1. Sunderland
5.4.2. Ashington
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Image Date | B⊥ (m) | Image Date | B⊥ (m) |
20 November 1997 | 0 | 29 January 1998 | −431 |
24 May 1995 | −610 | 5 March 1998 | −943 |
7 September 1995 | −1361 | 9 April 1998 | −674 |
3 April 1996 | −634 | 18 June 1998 | 302 |
4 April 1996 | −689 | 23 July 1998 | −852 |
8 May 1996 | 133 | 5 November 1998 | 449 |
9 May 1996 | 58 | 18 February 1999 | 606 |
9 January 1997 | −483 | 25 March 1999 | −790 |
13 February 1997 | −821 | 16 September 1999 | −727 |
20 March 1997 | −470 | 21 October 1999 | −639 |
24 April 1997 | −870 | 25 November 1999 | −240 |
29 May 1997 | −649 | 30 December 1999 | −172 |
25 December 1997 | −499 |
Appendix B
Image Date | B⊥ (m) | Image Date | B⊥ (m) |
11 January 2005 | 0 | 9 August 2005 | 627 |
3 December 2002 | 1050 | 13 September 2005 | 437 |
11 February 2003 | 500 | 22 November 2005 | 991 |
14 October 2003 | 1336 | 27 December 2005 | 1023 |
18 November 2003 | −179 | 7 March 2006 | 850 |
23 December 2003 | 762 | 20 June 2006 | 744 |
6 April 2004 | 1446 | 3 October 2006 | −33 |
11 May 2004 | 179 | 16 January 2007 | 1284 |
20 July 2004 | 857 | 20 February 2007 | 741 |
24 August 2004 | 759 | 7 October 2008 | 629 |
2 November 2004 | 794 |
Appendix C
Image Date | B⊥ (m) | Image Date | B⊥ (m) |
25 January 2016 | 0 | 13 January 2016 | −58 |
7 March 2015 | −101 | 6 February 2016 | −6 |
19 March 2015 | −35 | 18 February 2016 | −73 |
31 March 2015 | −41 | 1 March 2016 | −182 |
12 April 2015 | −81 | 13 March 2016 | −153 |
24 April 2015 | −103 | 25 March 2016 | −97 |
6 May 2015 | −62 | 6 April 2016 | −40 |
18 May 2015 | −55 | 18 April 2016 | −96 |
30 May 2015 | −127 | 30 April 2016 | −136 |
11 June 2015 | −138 | 12 May 2016 | −193 |
23 June 2015 | −178 | 5 June 2016 | −43 |
5 July 2015 | −104 | 29 June 2016 | −143 |
17 July 2015 | −27 | 11 July 2016 | −152 |
14 November 2015 | −62 | 23 July 2016 | −69 |
26 November 2015 | 37 | 16 August 2016 | −74 |
8 December 2015 | −21 | 9 September 2016 | −158 |
20 December 2015 | −77 | 21 September 2016 | −166 |
1 January 2016 | −139 | 15 October 2016 | −6 |
References
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–3. [Google Scholar] [CrossRef]
- Colesanti, C.; Mouelic, S.L.; Bennani, M.; Raucoules, D.; Carnec, C.; Ferretti, A. Detection of mining related ground instabilities using the Permanent Scatterers technique—A case study in the east of France. Int. J. Remote Sens. 2005, 26, 201–207. [Google Scholar] [CrossRef]
- Herrera, G.; Tomás, R.; López-Sánchez, J.M.; Delgado, J.; Mallorqui, J.J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng. Geol. 2007, 90, 148–159. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Li, X.; Ng, A.H. Subsidence monitoring over the Southern Coalfield, Australia using both L-Band and C-Band SAR time series analysis. Remote Sens. 2016, 8, 543. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Yi, H.; Hu, J.; Feng, G. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model. Remote Sens. 2017, 9, 125. [Google Scholar] [CrossRef]
- Kratzsch, H. Mining Subsidence Engineering; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Peng, S.S.; Ma, W.; Zhong, W. Surface Subsidence Engineering; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 1992. [Google Scholar]
- Sowter, A.; Bateson, L.; Strange, P.; Ambrose, K.; Syafiudin, M.F. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields. Remote Sens. Lett. 2013, 4, 979–987. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Ferretti, A.; Colesanti, C.; Perissin, D.; Prati, C.; Rocca, F. Evaluating the effect of the observation time on the distribution of SAR permanent scatterers. In Proceedings of the FRINGE 2003 Workshop, Frascati, Italy, 1–5 December 2003; pp. 1–5. [Google Scholar]
- Cigna, F.; Sowter, A. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Sowter, A.; Amat, M.B.; Cigna, F.; Marsh, S.; Athab, A.; Alshammari, L. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230–242. [Google Scholar] [CrossRef]
- Gee, D.; Sowter, A.; Novellino, A.; Marsh, S.; Gluyas, J. Monitoring land motion due to natural gas extraction: Validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, the Netherlands. Mar. Pet. Geol. 2016, 77, 1338–1354. [Google Scholar] [CrossRef]
- Novellino, A.; Athab, A.D.; bin Che Amat, M.A.; Syafiudin, M.F.; Sowter, A.; Marsh, S.; Cigna, F.; Bateson, L. Intermittent SBAS Ground Motion Analysis in Low Seismicity Areas: Case Studies in the Lancashire and Staffordshire Coalfields, UK, Seismology from SPACE: Geodetic Observations and Early Warning of Earthquakes; Royal Astronomical Society, Burlington House: London, UK, 2014. [Google Scholar]
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, L.J. A review of coal mining induced fault reactivation in Great Britain. Q. J. Eng. Geol. Hydrogeol. 2006, 39, 5–50. [Google Scholar] [CrossRef]
- Culshaw, M.G.; Tragheim, D.; Bateson, L.; Donnelly, L.J. Measurement of ground movements in Stoke-on-Trent (UK) using radar interferometry. In Proceedings of the 10th Congress of the International Association for Engineering Geology and the Environment, IAEG2006, Nottingham, UK, 6–10 September 2006; Geological Society: London, UK, 2006; pp. 1–10. [Google Scholar]
- Banton, C.; Bateson, L.; Mccormack, H.; Holley, R.; Watson, I.; Burren, R.; Lawrence, D.; Cigna, F. Monitoring post-closure large scale surface deformation in mining areas. In Proceedings of the Mine Closure 2013, Eighth International Conference on Mine Closure 2013, Australian Centre for Geomechanics, Perth Eden Project, Cornwall, UK, 18–20 September 2013. [Google Scholar]
- Bateson, L.; Lawrence, D. Terrafirma Product: Interpretation Report. V1. 1: Northumberland. Available online: http://nora.nerc.ac.uk/21035/1/OR12054.pdf (accessed on 8 September 2017).
- Copernicus Land Monitoring Service. Available online: http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view (accessed on 15 May 2017).
- Clarke, S.M. The Geology of NY76NW (S), Cawfields, Northumberland; British Geological Survey Open Report, OR/07/034; British Geological Survey: Nottingham, UK, 2007; p. 28. [Google Scholar]
- Stone, P.; Millward, D.; Young, B.; Merritt, J.W.; Clarke, S.M.; McCormac, M.; Lawrence, D.J.D. British Regional Geology: Northern England, 5th ed.; British Geological Survey: Nottingham, UK, 2010. [Google Scholar]
- Lawley, R; Garcia-Bajo, M. The National Superficial Deposit Thickness Model (Version 5); British Geological Survey Internal Report, OR/09/049; British Geological Survey: Nottingham, UK, 2009; p. 18. [Google Scholar]
- Smailes, A.E. The development of the Northumberland and Durham coalfield. Scott. Geogr. Mag. 1935, 51, 201–214. [Google Scholar] [CrossRef]
- Clarke, B.G.; Welford, M.; Hughes, D.B. The threat of abandoned mines on the stability of urban areas. In Proceedings of the 10th Congress of the International Association for Engineering Geology and the Environment, IAEG2006, Nottingham, UK, 6–10 September 2006; Geological Society: London, UK, 2006. [Google Scholar]
- European Space Agency: SAR Image Mode. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar/design (accessed on 15 May 2017).
- Cigna, F.; Rawlins, B.G.; Jordan, C.J.; Sowter, A.; Evans, C. Intermittent Small Baseline Subset (ISBAS) InSAR of rural and vegetated terrain: A new method to monitor land motion applied to peatlands in Wales, UK. In Proceedings of the EGU General Assembly, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency: Interferometric Wide Swath. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath (accessed on 15 May 2017).
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the feasibility of a national InSAR ground deformation map of Great Britain with Sentinel-1. Geosciences 2017, 7, 19. [Google Scholar] [CrossRef]
- Davidson, G.; Mantle, V.; Rabus, B.; Williams, D.; Geudtner, D. Implementation of TOPS mode on RADARSAT-2 in support of the Sentinel-1 mission. In Proceedings of the Living Planet Symposium, Edinburgh, UK, 9–13 Septmber 2013; pp. 1–22. [Google Scholar]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- González, P.J.; Fernandez, J. Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Mills, D.A.; Holliday, D.W. Geology of the District around Newcastle upon Tyne, Gateshead and Consett: Memoir for 1:50,000 Geological Sheet 20 (England and Wales); British Geological Survey: Nottingham, UK, 1998; p. 20. [Google Scholar]
- Norton, P.J. Mine closure and associated hydrological effects on the environment: Some case studies. In Minerals, Metals and the Environment II. Institute of Mining and Metallurgy; Elsevier Applied Science: London, UK, 1996; pp. 263–270. [Google Scholar]
- Durham Mining Museum: Collieries. Available online: http://www.dmm.org.uk/colliery/ (accessed on 15 May 2017).
- Bell, F.G.; Genske, D.D. The influence of subsidence attributable to coal mining on the environment, development and restoration; some examples from Western Europe and South Africa. Environ. Eng. Geosci. 2001, 7, 81–99. [Google Scholar] [CrossRef]
- Pôttgens, J.J. Uplift as a result of rising mine waters (in German). The Development Science and Art of Minerals Surveying. In Proceedings of the 6th International Congress of the International Society for Mine Surveying, Harrogate, UK, 9–13 September 1985; Volume 2, pp. 928–938. [Google Scholar]
- Donnelly, L.J. A review of international cases of fault reactivation during mining subsidence and fluid abstraction. Q. J. Eng. Geol. Hydrogeol. 2009, 42, 73–94. [Google Scholar] [CrossRef]
- Bekendam, R.F.; Pottgens, J.J. Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters. IAHS Publ.-Ser. Proc. Rep.-Int. Assoc. Hydrol. Sci. 1995, 234, 3–12. [Google Scholar]
- Chen, C.T.; Hu, J.C.; Lu, C.Y.; Lee, J.C.; Chan, Y.C. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol. 2007, 95, 30–47. [Google Scholar] [CrossRef]
- Devleeschouwer, X.; Declercq, P.Y.; Flamion, B.; Brixko, J.; Timmermans, A.; Vanneste, J. Uplift revealed by radar interferometry around Liège (Belgium): A relation with rising mining groundwater. In Proceedings of the Post-Mining Symposium, Nancy, France, 6–8 February 2008; pp. 6–8. [Google Scholar]
- Cuenca, M.C.; Hooper, A.J.; Hanssen, R.F. Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J. Appl. Geophy. 2013, 88, 1–11. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N.; Smets, B. Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Graniczny, M.; Colombo, D.; Kowalski, Z.; Przyłucka, M.; Zdanowski, A. New results on ground deformation in the Upper Silesian Coal Basin (southern Poland) obtained during the DORIS Project (EU-FP 7). Pure Appl. Geophys. 2015, 172, 3029–3042. [Google Scholar] [CrossRef]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef]
- Vervoort, A.; Declercq, P.Y. Surface movement above old coal longwalls after mine closure. Int. J. Min. Sci. Technol. 2017, in press. [Google Scholar] [CrossRef]
- Younger, P.L. Coalfield closure and the water environment in Europe. Min. Technol. 2002, 111, 201–209. [Google Scholar] [CrossRef]
- Wojtkowiak, F.; Couillet, J.C.; Daupley, X.; Tauziede, C. Geotechnical and environmental impacts on the surface of the water rising in French underground coal mines after closure. In Proceedings of the 7th International Mine Water Association Symposium (IMWA 2000), Ustron, Poland, 11–15 September 2000; pp. 180–194. [Google Scholar]
- Smith, F.W.; Underwood, B. Mine closure: The environmental challenge. Min. Technol. 2000, 109, 202–209. [Google Scholar] [CrossRef]
- Donnelly, L. Investigation of Geological Hazards & Mining Risks, Gallowgate, Newcastle-upon-Tyne. In Proceedings of the 10th IAEG International Congress, (IAEG 2006), Nottingham, UK, 6–10 September 2006. [Google Scholar]
- Poulsen, B.A.; Shen, B.; Williams, D.J.; Huddlestone-Holmes, C.; Erarslan, N.; Qin, J. Strength reduction on saturation of coal and coal measures rocks with implications for coal pillar strength. Int. J. Rock Mech. Min. Sci. 2014, 71, 41–52. [Google Scholar] [CrossRef]
- Knott, D.L. Assessment of potential subsidence impacts from coal mining using test borings, mine maps and empirical methods. In Proceedings of the 2006 Interstate Technical Group on Abandoned Underground Mines Meeting, Rochester, NY, USA, 14–16 June 2006; pp. 1–40. [Google Scholar]
- Castellanza, R.; Gerolymatou, E.; Nova, R. An attempt to predict the failure time of abandoned mine pillars. Rock Mech. Rock Eng. 2008, 41, 377. [Google Scholar] [CrossRef]
- Smith, J.; Colls, J.J. Groundwater rebound in the Leicestershire Coalfield. Water Environ. J. 1996, 10, 280–289. [Google Scholar] [CrossRef]
- Raleigh, C.B.; Healy, J.H.; Bredehoeft, J.D. An experiment in earthquake control at Rangely, Colorado. Science 1976, 191, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Ingebritsen, S.E.; Sanford, W.E. Groundwater in Geologic Processes; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Donnelly, L.J. Reactivation of geological faults during mining subsidence from 1859 to 2000 and beyond. Min. Technol. 2000, 109, 179–190. [Google Scholar] [CrossRef]
- Younger, P.L. Hydrogeochemistry of minewaters flowing from abandoned coal workings in County Durham. Q. J. Eng. Geol. Hydrogeol. 1995, 28 (Suppl. 2), S101–S113. [Google Scholar] [CrossRef]
- Yu, M.H.; Jefferson, I.F.; Culshaw, M.G. Fault reactivation, an example of environmental impacts of groundwater rising on urban area due to previous mining activities. In Proceedings of the 11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal, 9–13 July 2007. [Google Scholar]
- Environment Agency. Personal Communication; Environment Agency: Bristol, UK, 2012.
- Sherwood, J.M.; Younger, P.L. Modelling groundwater rebound after coalfield closure: An example from County Durham, UK. In Proceedings of the 5th International Mine Water Congress, University of Nottingham and IMWA, Nottingham, UK, 18–23 September 1994; pp. 767–777. [Google Scholar]
- Younger, P.L.; Adams, R. Predicting Mine Water Rebound: Research & Development Technical Report W179; Environment Agency: Bristol, UK, 1999. [CrossRef]
- Adams, R.; Younger, P.L. A strategy for modeling ground water rebound in abandoned deep mine systems. Ground Water 2001, 39, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Kortas, L.; Younger, P.L. Using the GRAM model to reconstruct the important factors in historic groundwater rebound in part of the Durham Coalfield, UK. Mine Water Environ. 2007, 26, 60–69. [Google Scholar] [CrossRef]
- Adams, R. A Review of mine water rebound predictions from the VSS–NET model. Mine Water Environ. 2014, 33, 384–388. [Google Scholar] [CrossRef]
- Victoria County History: Coal-mining. Available online: https://www.victoriacountyhistory.ac.uk/sites/default/files/work-in-progress/coal-mining.pdf (accessed on 15 May 2017).
- Harrison, R.; Scott, W.B.; Smith, T. A note on the distribution, levels and temperatures of minewaters in the Northumberland and Durham coalfield. Q. J. Eng. Geol. Hydrogeol. 1989, 22, 355–358. [Google Scholar] [CrossRef]
- IMC Consulting Engineers Ltd. Report on Earth Tremors at Ryhope; The Coal Authority: Mansfield, UK, 1999.
- Sizer, K.E.; Gill, M. Pillar failure in shallow coal mines—A recent case history. Min. Technol. 2000, 109, 146–152. [Google Scholar] [CrossRef]
- Coal Authority. Personal Communication; Coal Authority: Mansfield, UK, 2017.
Statistic | ERS SAR | ENVISAT ASAR | Sentinel-1 SAR |
---|---|---|---|
Velocity (Millmetres/Year) | |||
Mean | 0.9 | 0.7 | 3.5 |
Minimum | −14.0 | −14.5 | −16.0 |
Maximum | 10.6 | 14.6 | 19.0 |
Standard Deviation | 1.9 | 2.5 | 3.4 |
Standard Error (Millimetres) | |||
Mean | 1.6 | 2.4 | 2.2 |
Minimum | 0.5 | 0.6 | 0.8 |
Maximum | 4.0 | 8.0 | 4.9 |
Standard Deviation | 0.4 | 0.8 | 0.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gee, D.; Bateson, L.; Sowter, A.; Grebby, S.; Novellino, A.; Cigna, F.; Marsh, S.; Banton, C.; Wyatt, L. Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences 2017, 7, 85. https://doi.org/10.3390/geosciences7030085
Gee D, Bateson L, Sowter A, Grebby S, Novellino A, Cigna F, Marsh S, Banton C, Wyatt L. Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences. 2017; 7(3):85. https://doi.org/10.3390/geosciences7030085
Chicago/Turabian StyleGee, David, Luke Bateson, Andrew Sowter, Stephen Grebby, Alessandro Novellino, Francesca Cigna, Stuart Marsh, Carl Banton, and Lee Wyatt. 2017. "Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK" Geosciences 7, no. 3: 85. https://doi.org/10.3390/geosciences7030085
APA StyleGee, D., Bateson, L., Sowter, A., Grebby, S., Novellino, A., Cigna, F., Marsh, S., Banton, C., & Wyatt, L. (2017). Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences, 7(3), 85. https://doi.org/10.3390/geosciences7030085