Late Pleistocene Post-Glacial Sea Level Rise and Differential Preservation of Transgressive “Sand Ridge” Deposits in the Adriatic Sea
Abstract
:1. Introduction
2. Geological Setting and Stratigraphic Background
3. Materials and Methods
4. Results
4.1. Depocenter Distribution of the Early Transgressive (TST) and Transgressive Sand Ridges (TSR)
4.2. Seismic Stratigraphy of the Early TST and TSR Deposits
4.3. Lithology of TSR
5. Discussion
5.1. Factors Controlling Deposition and Preservation of TSR
5.2. Sequence-Stratigraphic Implications
6. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Emery, K.O. Relict sediments on continental shelves of the world. AAPG Bull. 1968, 52, 445–464. [Google Scholar]
- Swift, D.J.P.; Holliday, B.; Avignone, N.; Shideler, G. Anatomy of a shore face ridge system, False Cape, Virginia. Mar. Geol. 1972, 12, 59–84. [Google Scholar] [CrossRef]
- Field, M.E. Sand bodies on coastal plain shelves: Holocene record of the U.S. Atlantic inner shelf off Maryland. J. Sediment. Petrol. 1980, 50, 505–528. [Google Scholar]
- Swift, D.J.P.; Field, M.E. Evolution of a classic sand ridge field: Maryland sector, North American inner shelf. Sedimentology 1981, 28, 461–482. [Google Scholar] [CrossRef]
- Belknap, D.F.; Kraft, J.C. Preservation Potential of Transgressive Coastal Lithosomes on the U.S. Atlantic Shelf. Mar. Geol. 1981, 42, 429–442. [Google Scholar] [CrossRef]
- Stride, A.H.; Belderson, R.H.; Kenyon, N.H.; Johnson, M.A. Offshore tidal deposits: Sand sheet and sand bank facies. In Offshore Tidal Sands: Processes and Deposits; Stride, A.H., Ed.; Chapman & Hall: New York, NY, USA, 1982; pp. 95–125. [Google Scholar]
- Boyd, R.; Penland, S. Shoreface translation and the Holocene stratigraphic record: Examples from Nova Scotia, the Mississippi Delta and eastern Australia. Mar. Geol. 1984, 60, 391–412. [Google Scholar] [CrossRef]
- Diaz, J.I.; Maldonado, A. Transgressive sand bodies on the Maresme continental shelf, Western Mediterranean Sea. Mar. Geol. 1990, 91, 53–72. [Google Scholar] [CrossRef]
- McBride, R.A.; Moslow, T.F. Origin, evolution and distribution of shoreface sand ridges, Atlantic inner shelf, U.S.A. Mar. Geol. 1991, 97, 57–85. [Google Scholar] [CrossRef]
- Field, M.E.; Trincardi, F. Regressive coastal deposits on Quaternary continental shelves: Preservation and legacy. In From Shoreline to Abyss: Contributions in Marine Geology in Honour of Francis Parker Shepard; Osborne, R.H., Ed.; SEPM, Spec. Publ.: Tulsa, OK, USA, 1991; Volume 46, pp. 107–122. [Google Scholar]
- Wagle, B.G.; Veerayya, M. Submerged sand ridges on the western continental shelf off Bombay, India: Evidence for Late Pleistocene-Holocene sea-level changes. Mar. Geol. 1996, 136, 79–95. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Ercilla, G.; Torres, J. Stratal architecture of Western Mediterranean Margins as the result of the stacking of Quaternary lowstand deposits below glacio-eustatic fluctuation base-level. Sediment. Geol. 1997, 112, 195–217. [Google Scholar] [CrossRef]
- Goff, J.A.; Austin, J.A.; Gulick, S.; Nordfjord, S.; Christensen, B.; Sommerfield, C.; Olson, H.; Alexander, C. Recent and modern marine erosion on the New Jersey outer shelf. Mar. Geol. 2005, 216, 275–296. [Google Scholar] [CrossRef]
- Lee, S.H.; Shinn, Y.J.; Lee, K.E.; Yoo, H.S. Depositional development of an isolated mound and adjacent area in the southern Yellow Sea during the last postglacial sea-level rise. Mar. Geol. 2009, 265, 19–30. [Google Scholar] [CrossRef]
- Wu, Z.; Jin, X.; Zhou, J.; Zhao, D.; Shang, J.; Li, S.; Cao, Z.; Liang, Y. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea. Mar. Geophys. Res. 2017, 38, 187–198. [Google Scholar] [CrossRef]
- Berné, S.; Lericolais, G.; Marsset, T.; Bourillet, J.F.; De Batist, M. Erosional offshore sand ridges and lowstand shorefaces: Examples from tide- and wave-dominated environments of France. J. Sediment. Res. 1998, 68, 540–555. [Google Scholar] [CrossRef]
- Ridente, D.; Petrungaro, R.; Falese, F.; Chiocci, F.L. Middle–Upper Pleistocene record of 100-ka depositional cycles on the Southern Tuscany continental margin (Tyrrhenian Sea, Italy): Sequence architecture and margin growth pattern. Mar. Geol. 2012, 326–328, 1–13. [Google Scholar] [CrossRef]
- Durán, R.; Guillén, J.; Rivera, J.; Lobo, F.J.; Muñoz, A.; Fernández-Salas, L.M.; Acosta, J. Formation, evolution and present-day activity of offshore sand ridges on a narrow, tideless continental shelf with limited sediment supply. Mar. Geol. 2017. [Google Scholar] [CrossRef]
- Swift, D.J.P.; Parker, G.; Lanfredi, N.W.; Perillo, G.; Figge, K. Shoreface connected sand ridges on American and European shelves: A comparison. Estuar. Coast. Mar. Sci. 1978, 7, 257–273. [Google Scholar] [CrossRef]
- Busch, D.A. Prospecting for stratigraphic traps. AAPG Bull. 1959, 43, 2829–2843. [Google Scholar]
- Sabins, F.F. Anatomy of a stratigraphic trap, Bisti field, New Mexico. AAPG Bull. 1963, 47, 193–228. [Google Scholar]
- McCubbin, D.G. Cretaceous strike-valley sandstone reservoirs, northwestern New Mexico. AAPG Bull. 1969, 53, 2114–2140. [Google Scholar]
- Lamb, G.M. Stratigraphy of the Lower Mancos Shale in the San Juan Basin. GSA Bull. 1968, 79, 827–854. [Google Scholar] [CrossRef]
- Campbell, C.V. Depositional model-Upper Cretaceous Gallup beach shoreline, Ship Rock area, northwestern New Mexico. J. Sediment. Petrol. 1971, 41, 395–409. [Google Scholar]
- Plint, A.G. Sharp-based shoreface parasequences and offshore bars in the Cardium formation of Alberta; their relationship to relative changes in sea-level. In Sea Level Changes—An Integrated Approach; Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C., Eds.; SEPM, Spec. Publ.: Tulsa, OK, USA, 1988; Volume 42, pp. 357–370. [Google Scholar]
- Posamentier, H.W.; James, D.P.; Allen, G.P.; Tesson, M. Forced Regressions in a sequence stratigraphic framework: Concepts, examples, and exploration significance. AAPG Bull. 1992, 76, 1687–1709. [Google Scholar]
- Walker, R.G.; Plint, A.G. Wave- and storm-dominated shallow marine systems. In Facies Models—Response to Sea Level Changes; Walker, R.G., James, N.P., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1992; pp. 219–238. [Google Scholar]
- Walker, R.G.; Bergman, K.M. Shannon Sandstone in Wyoming: A shelf ridge complex reinterpreted as lowstand shoreface deposits. J. Sediment. Petrol. 1993, 63, 839–851. [Google Scholar]
- Walker, R.G.; Eyles, C.H. Topography and significance of a basin wide sequence bounding erosion surface in the Cretaceous Cardium Formation, Alberta, Canada. J. Sediment. Petrol. 1991, 61, 473–496. [Google Scholar]
- Pattison, S.A.J.; Walker, R.G. Deposition and interpretation of long, narrow sand bodies underlain by a basin-wide erosion surface; Cardium Formation, Cretaceous Western Interior Seaway, Alberta, Canada. J. Sediment. Res. 1992, 62, 292–309. [Google Scholar]
- Walker, R.G.; Wiseman, T.R. Lowstand shorefaces, transgressive incised shorefaces, and forced regressions; examples from the Viking Formation, Joarcam area, Alberta. J. Sediment. Res. 1995, 65, 132–141. [Google Scholar]
- Berné, S.; Vagner, P.; Guichard, F.; Lericolais, G.; Liu, Z.; Trentesaux, A.; Yin, P.; Yi, H.I. Pleistocene forced regressions and tidal sand ridges in the East China Sea. Mar. Geol. 2002, 188, 293–315. [Google Scholar] [CrossRef]
- Berné, S.; Jouet, G.; Bassetti, M.A.; Dennielou, B.; Taviani, M. Late Glacial to Preboreal sea-level rise recorded by the Rhône deltaic system (NW Mediterranean). Mar. Geol. 2007, 245, 65–88. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.E.; Locker, S.D.; Hine, A.C.; Edwards, J.H.; Naar, D.F.; Twichell, D.C.; Mallinson, D.J. Sediment-starved sand ridges on a mixed carbonate/siliciclastic inner shelf off west-central Florida. Mar. Geol. 2003, 200, 171–194. [Google Scholar] [CrossRef]
- Shinn, Y.J.; Chough, S.K.; Kim, J.W.; Woo, J. Development of depositional systems in the southeastern Yellow Sea during the postglacial transgression. Mar. Geol. 2007, 239, 59–82. [Google Scholar] [CrossRef]
- Snedden, J.W.; Tillman, R.W.; Culver, S.J. Genesis and Evolution of a Mid- Shelf, Storm Built Sand Ridge, New Jersey Continental Shelf, U.S.A. J. Sediment. Res. 2011, 81, 534–552. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, L.; Du, J.; Liu, D.; Liu, H. Sedimentary characteristics and controlling factors of shelf sand ridges in the Pearl River Mouth Basin, northeast of South China Sea. J. Nat. Gas Geosci. 2017, 2, 141–155. [Google Scholar] [CrossRef]
- Jin, J.H.; Chough, S.K. Partitioning of transgressive deposits in the southeastern Yellow Sea: A sequence stratigraphic interpretation. Mar. Geol. 1998, 149, 79–92. [Google Scholar] [CrossRef]
- Park, S.C.; Han, H.S.; Yoo, D.G. Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): Formation and development in high-energy environments. Mar. Geol. 2003, 193, 1–18. [Google Scholar] [CrossRef]
- Posamentier, H.W.; Allen, G.P. Variability of the sequence stratigraphic model: Effects of local basin factors. Sediment. Geol. 1993, 86, 91–109. [Google Scholar] [CrossRef]
- Frignani, M.; Langone, L.; Ravaioli, M.; Sorgente, D.; Alvisi, F.; Albertazzi, S. Fine-sediment mass balance in the western Adriatic continental shelf over a century time scale. Mar. Geol. 2005, 222–223, 113–133. [Google Scholar] [CrossRef]
- Brommer, M.B.; Weltje, G.J.; Trincardi, F. Reconstruction of sediment supply from mass accumulation rates in the Northern Adriatic Basin (Italy) over the past 19,000 years. J. Geophys. Res. 2009, 114, F02008. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F. Eustatic and tectonic control on deposition and lateral variability of Quaternary regressive sequences in the Adriatic basin. Mar. Geol. 2002, 184, 273–293. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F. Active foreland deformation evidenced by shallow folds and faults affecting late Quaternary shelf-slope deposits (Adriatic Sea, Italy). Basin Res. 2006, 18, 171–188. [Google Scholar] [CrossRef]
- Maselli, V.; Hutton, E.W.; Kettner, A.J.; Syvitski, J.P.M.; Trincardi, F. High-frequency sea level and sediment supply fluctuations during Termination I: An integrated sequence-stratigraphy and modeling approach from the Adriatic Sea (Central Mediterranean). Mar. Geol. 2011, 287, 54–70. [Google Scholar] [CrossRef]
- Royden, L.E.; Patacca, E.; Scandone, P. Segmentation and configuration of subducted lithosphere in Italy: An important control on thrust-belt and foredeep-basin evolution. Geology 1987, 15, 714–717. [Google Scholar] [CrossRef]
- Argnani, A.; Favali, P.; Frugoni, F.; Gasperini, M.; Ligi, M.; Marani, M.; Mattietti, G.; Mele, G. Foreland deformational pattern in the Southern Adriatic Sea. Ann. Geophys. 1993, 36, 229–247. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE Italy): An anomaly in the foreland of the Apennine subduction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Argnani, A.; Frugoni, F. Foreland deformation in the Central Adriatic and its bearing on the evolution of the Northern Apennines. Ann. Geophys. 1997, 40, 771–780. [Google Scholar]
- Bertotti, G.; Casolari, E.; Picotti, V. The Gargano Promontory, a contractional belt in the Adriatic plate. Terra Nova 1999, 11, 168–173. [Google Scholar] [CrossRef]
- Ridente, D.; Fracassi, U.; Di Bucci, D.; Trincardi, F.; Valensise, G. Middle Pleistocene to Holocene activity of the Gondola fault zone (southern Adriatic foreland): Deformation of a regional shear zone and seismotectonic implications. Tectonophysics 2008, 453, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Argnani, A.; Rovere, M.; Bonazzi, C. Tectonics of the Mattinata fault, offshore south Gargano (southern Adriatic Sea, Italy): Implications for active deformation and seismotectonics in the foreland of the Southern Apennines. GSA Bull. 2009, 121, 1421–1440. [Google Scholar] [CrossRef]
- Di Bucci, D.; Ridente, D.; Fracassi, U.; Trincardi, F.; Valensise, G. Marine paleoseismology from very high resolution seismic imaging: The Gondola fault zone (Adriatic foreland). Terra Nova 2009, 21, 393–400. [Google Scholar] [CrossRef]
- Maselli, V.; Trincardi, F.; Cattaneo, A.; Ridente, D.; Asioli, A. Subsidence pattern in the central Adriatic and its influence on sediment architecture during the last 400 kyr. J. Geophys. Res. 2010, 115, B12106. [Google Scholar] [CrossRef]
- Cattaneo, A.; Correggiari, A.; Langone, L.; Trincardi, F. The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Mar. Geol. 2003, 193, 61–91. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F. Pleistocene “muddy” forced-regression deposits on the Adriatic shelf: A comparison with prodelta deposits of the late Holocene highstand mud wedge. Mar. Geol. 2005, 222–223, 213–233. [Google Scholar] [CrossRef]
- Steckler, M.S.; Ridente, D.; Trincardi, F. Modeling of sequence geometry north of Gargano Peninsula by changing sediment pathways in the Adriatic Sea. Cont. Shelf Res. 2007, 27, 526–541. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F.; Piva, A.; Asioli, A.; Cattaneo, A. Sedimentary response to climate and sea level changes during the past ~400 ka from borehole PRAD1-2 (Adriatic margin). Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F.; Piva, A.; Asioli, A. The combined effect of sea level and supply during Milankovitch cyclicity: Evidence from shallow-marine δ18O records and sequence architecture (Adriatic margin). Geology 2009, 37, 1003–1006. [Google Scholar] [CrossRef]
- Piva, A.; Asioli, A.; Schneider, R.R.; Trincardi, F.; Andersen, N.; Colmenero-Hidalgo, E.; Dennielou, B.; Flores, J.-A.; Vigliotti, L. Climatic cycles as expressed in sediments of the PROMESS1 borehole PRAD1–2, central Adriatic, for the last 370 ka: 1. Integrated stratigraphy, Geochem. Geophys. Geosyst. 2008, 9, Q01R01. [Google Scholar] [CrossRef]
- Chappell, J.; Shackleton, N.J. Oxygen isotopes and sea level. Nature 1986, 324, 137–140. [Google Scholar] [CrossRef]
- Shackleton, N.J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 1987, 6, 183–190. [Google Scholar] [CrossRef]
- Bard, E.; Hamelin, B.; Fairbanks, R.G. U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years. Nature 1990, 346, 456–458. [Google Scholar] [CrossRef]
- Rohling, E.J.; Fenton, M.; Jorissen, F.J.; Bertrand, P.; Ganssen, G.; Caulet, J.P. Magnitudes of sea level lowstands of past 500,000 years. Nature 1998, 394, 162–165. [Google Scholar] [CrossRef]
- Lea, D.W.; Martin, P.A.; Pak, D.K.; Spero, H.J. Reconstructing a 350 kyr history of sea level using planktonic Mg/Ca and oxygen isotopic records from a Cocos Ridge core. Quat. Sci. Rev. 2002, 21, 283–293. [Google Scholar] [CrossRef]
- Pellegrini, C.; Maselli, V.; Cattaneo, A.; Piva, A.; Ceregato, A.; Trincardi, F. Anatomy of a compound delta from the post-glacial transgressive record in the Adriatic Sea. Mar. Geol. 2015, 362, 43–59. [Google Scholar] [CrossRef]
- Trincardi, F.; Asioli, A.; Cattaneo, A.; Correggiari, A.; Langone, L. Stratigraphy of the late-Quaternary deposits in the Central Adriatic basin and the record of short-term climatic events. In Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic Sediments (PALICLAS Project); Guilizzoni, P., Oldfield, F.L., Eds.; Memorie Dell’Istituto Italiano Di Idrobiologia; Istituto Italiano di Idrobiologia: Verbania Pallanza, Italy, 1996; Volume 55, pp. 39–64. [Google Scholar]
- Pellegrini, C.; Maselli, V.; Cattaneo, A.; Gamberi, F.; Asioli, A.; Bohacs, K.M.; Drexler, T.M.; Trincardi, F. How to make a 350-m-thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology 2017, 45, 327–330. [Google Scholar] [CrossRef]
- Correggiari, A.; Trincardi, F.; Langone, L.; Roveri, M. Styles of failure in late Holocene highstand prodelta wedges on the Adriatic shelf. J. Sediment. Res. 2001, 71, 218–236. [Google Scholar] [CrossRef]
- Trincardi, F.; Correggiari, A.; Roveri, M. Late Quaternary transgressive erosion and deposition in a modern epicontinental shelf: The Adriatic semi-enclosed basin. Geo-Mar. Lett. 1994, 14, 41–51. [Google Scholar] [CrossRef]
- Correggiari, A.; Roveri, M.; Trincardi, F. Late Pleistocene and Holocene evolution on the North Adriatic Sea. Quat. Ital. J. Quat. Sci. 1996, 9, 697–704. [Google Scholar]
- Storms, J.E.A.; Weltje, G.J.; Terra, G.J.; Cattaneo, A.; Trincardi, F. Coastal dynamics under conditions of rapid sea-level rise: Late Pleistocene to Early Holocene evolution of barrier-lagoon systems on the northern Adriatic shelf (Italy). Quat. Sci. Rev. 2008, 27, 1107–1123. [Google Scholar] [CrossRef]
- Cattaneo, A.; Trincardi, F. The Late Quaternary Transgressive Record in the Adriatic Epicontinental Sea: Basin Widening and Facies Partitioning. In Isolated Shallow Marine Sand Bodies; Bergman, K.M., Snedden, J.W., Eds.; SEPM Spec. Publ.: Tulsa, OK, USA, 1999; Volume 64, pp. 127–146. [Google Scholar]
- Moscon, G.; Correggiari, A.; Stefani, C.; Fontana, A.; Remia, A. Very-high resolution analysis of a transgressive deposit in the Northern Adriatic Sea (Italy). Alp. Mediterr. Quat. 2015, 28, 121–129. [Google Scholar]
- Maselli, V.; Trincardi, F. Large-scale single incised valley from a small catchment basin on the western Adriatic margin (central Mediterranean Sea). Glob. Planet. Chang. 2013, 100, 245–262. [Google Scholar] [CrossRef]
- Asioli, A. High resolution foraminifera biostratigraphy in the Central Adriatic basin during the last deglaciation: A contribution to the PALICLAS Project. In Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic Sediments (PALICLAS Project); Guilizzoni, P., Oldfield, F.L., Eds.; Memorie Dell’Istituto Italiano Di Idrobiologia; Istituto Italiano di Idrobiologia: Verbania Pallanza, Italy, 1996; Volume 55, pp. 197–218. [Google Scholar]
- Asioli, A.; Trincardi, F.; Lowe, J.J.; Oldfield, F. Short-term climate changes during the last Glacial–Holocene transition: Comparison between the Mediterranean and North Atlantic records. J. Quat. Sci. 1999, 4, 3732–3781. [Google Scholar]
- Asioli, A.; Trincardi, F.; Lowe, J.J.; Ariztegui, D.; Langone, L.; Oldfield, F. Submillennial scale climatic oscillations in the central Adriatic during the late glacial: Palaeoceanographic implications. Quat. Sci. Rev. 2001, 20, 1201–1221. [Google Scholar] [CrossRef]
- Maselli, V.; Trincardi, F.; Asioli, A.; Ceregato, A.; Rizzetto, F.; Taviani, M. Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea). Quat. Sci. Rev. 2014, 99, 146–163. [Google Scholar] [CrossRef]
- Trincardi, F.; Correggiari, A. Quaternary forced regression deposits in the Adriatic basin and the record of composite sea-level cycles. Geol. Soc. Spec. Publ. 2000, 172, 245–269. [Google Scholar] [CrossRef]
- Zecchin, M.; Ceramicola, S.; Gordini, E.; Deponte, M.; Critelli, S. Cliff overstep model and variability in the geometry of transgressive erosional surfaces in high-gradient shelves: The case of the Ionian Calabrian margin (southern Italy). Mar. Geol. 2011, 281, 43–58. [Google Scholar] [CrossRef]
- Plint, A.G. High-frequency relative sea-level oscillations in the Upper Cretaceous shelf clastics of the Alberta foreland basin: Possible evidence for glacio-eustatic control? In Sedimentation, Tectonics and Eustasy; Macdonald, D.I.M., Ed.; IAS Spec. Publ.: Gent, Belgium, 1991; Volume 12, pp. 409–428. [Google Scholar]
- Ridente, D.; Foglini, F.; Minisini, D.; Trincardi, F.; Verdicchio, G. Shelf-edge erosion, sediment failure and inception of the Bari Canyon on the Southwestern Adriatic Margin (Central Mediterranean). Mar. Geol. 2007, 246, 183–207. [Google Scholar] [CrossRef]
- Burgess, P.M.; Hovius, N. Rates of delta progradation during highstands: Consequences for timing of deposition in deep-marine systems. J. Geol. Soc. 1998, 155, 217–222. [Google Scholar] [CrossRef]
- Burgess, P.M.; Lammers, H.; van Oosterhout, C.; Granjeon, D. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bull. 2006, 90, 1883–1901. [Google Scholar] [CrossRef]
- Burgess, P.M.; Prince, G.D. Non-unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Res. 2015, 27, 351–365. [Google Scholar] [CrossRef]
- Lobo, F.J.; Ridente, D. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Mar. Geol. 2014, 352, 215–247. [Google Scholar] [CrossRef]
- Ridente, D. Releasing the sequence stratigraphy paradigm. Overview and perspectives. J. Geol. Soc. 2016, 173, 845–853. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridente, D. Late Pleistocene Post-Glacial Sea Level Rise and Differential Preservation of Transgressive “Sand Ridge” Deposits in the Adriatic Sea. Geosciences 2018, 8, 61. https://doi.org/10.3390/geosciences8020061
Ridente D. Late Pleistocene Post-Glacial Sea Level Rise and Differential Preservation of Transgressive “Sand Ridge” Deposits in the Adriatic Sea. Geosciences. 2018; 8(2):61. https://doi.org/10.3390/geosciences8020061
Chicago/Turabian StyleRidente, Domenico. 2018. "Late Pleistocene Post-Glacial Sea Level Rise and Differential Preservation of Transgressive “Sand Ridge” Deposits in the Adriatic Sea" Geosciences 8, no. 2: 61. https://doi.org/10.3390/geosciences8020061
APA StyleRidente, D. (2018). Late Pleistocene Post-Glacial Sea Level Rise and Differential Preservation of Transgressive “Sand Ridge” Deposits in the Adriatic Sea. Geosciences, 8(2), 61. https://doi.org/10.3390/geosciences8020061