Implications of Landslide Typology and Predisposing Factor Combinations for Probabilistic Landslide Susceptibility Models: A Case Study in Lajedo Parish (Flores Island, Azores—Portugal)
Abstract
:1. Introduction
2. Study Area General Setting
3. Data and Methods
3.1. The Landslide Inventory
3.2. Predisposing Factors
3.3. Information Value
3.4. Evaluation of the Importance of Landslide Typology Discrimination
3.5. Selection of the Best Combination of Predisposing Factors
3.6. Predictive Capacity Assessment of the Landslide Susceptibility Maps
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuster, R.L. Socio-economic significance of landslides. In Landslides Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National Academy Press: Washington, DC, USA, 1996; pp. 12–35. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A.; Abu Abdullah, M.M. Use of geological and geomorphological parameters in potential suitability assessment for urban planning development at Wadi Al-Asla basin, Jeddah, Kingdom of Saudi Arabia. Arab. J. Geosci. 2015, 8, 5617–5630. [Google Scholar] [CrossRef]
- Soeters, R.; Van Westen, C.J. Slope Instability, recognition, analysis and zonation. In Landslides Investigation and Mitigation; Turner, A., Schuster, R., Eds.; Transportation and Research Board, National Research Council, National Academy Press: Washington, DC, USA, 1996; pp. 129–177. [Google Scholar]
- Zêzere, J.L.; Reis, E.; Garcia, R.; Oliveira, S.; Rodrigues, M.L.; Vieira, G.; Ferreira, A.B. Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. 2004, 4, 133–146. [Google Scholar] [CrossRef]
- Crozier, M.J.; Glade, T. Landslide hazard and risk: Issues, concepts and approach. In Landslide Risk Assessment; Glade, T., Anderson, M.G., Crozier, M.J., Eds.; John Wiley: Chichester, UK, 2005; pp. 1–40. [Google Scholar]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Thiery, Y.; Malet, J.-P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007, 92, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Felicísimo, A.; Cuatero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with MLR, MARS, CART and MAXENT methods: A comparative study. Landslides 2013, 10, 175–189. [Google Scholar] [CrossRef]
- Steger, S.; Brenning, A.; Bell, R.; Glade, T. The impact of systematically incomplete and positionally inaccurate landslide inventories on statistical landslide susceptibility models. Nat. Hazards Earth Syst. 2016, 16, 2729–2745. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A.C. Mapping landslide susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Steger, S.; Glade, T. The Challenge of “Trivial Areas” in Statistical Landslide Susceptibility Modelling. In Advancing Culture of Living with Landslides; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 803–808. [Google Scholar]
- INE. Regional Government of the Azores. Census 2011: Definitive Results: XV General Population Census: V General Housing Census; INE: Lisbon, Portugal, 2012; p. 98. [Google Scholar]
- Camões, J.A. Works—Memory of Flores Island; Lajes das Flores, Portugal, Municipality of Lajes das Flores: Lajes das Flores, Portugal, 2006; p. 57. First published 1822. (In Portuguese) [Google Scholar]
- Silveira, J.A. Annals of the Municipality of Lajes das Flores; Municipality of Lajes das Flores: Lajes das Flores, Portugal, 1970; p. 58. (In Portuguese) [Google Scholar]
- Macedo, A.L.S. History of the Four Islands that Form the Horta District; Regional Government of the Azores: Azores, Portugal, 1981. (In Portuguese)
- Borges, P.; Andrade, C.; Freitas, M.C. Historical Tsunamis on the Faial Island (Azores–Portugal). In Earthquake 1998—Azores, A Decade Later; Oliveira, C.S., Costa, A., Nunes, J.C., Eds.; Regional Government of the Azores/SPRHI: Azores, Portugal, 2008; pp. 707–716. (In Portuguese) [Google Scholar]
- Azevedo, J.M. Geology and Hydrogeology of the Flores Island, Azores. Ph.D. Thesis, Coimbra University, Coimbra, Portugal, 1999. (In Portuguese). [Google Scholar]
- Azevedo, J.M.; Portugal Ferreira, M.R. The volcanotectonic evolution of Flores Island, Azores (Portugal). J. Volcanol. Geotherm. Res. 2006, 156, 90–102. [Google Scholar] [CrossRef]
- Instituto Geográfico do Exército (IGeoE). Cartography of the Flores Island (Azores). 1:25,000 Scale; IGeoE: Lisbon, Portugal, 2000. (In Portuguese) [Google Scholar]
- Tarboton, D.G.; Sazib, N.; Dash, P. TauDEM 5.3: Quick Start Guide to Using the Taudem Arcgis Tool Box. Available online: http://hydrology.usu.edu/taudem/taudem5/TauDEM53GettingStartedGuide.pdf (accessed on 10 March 2018).
- SRAM. Occupation Map of the Soil of the Autonomous Region of the Azores No.8—Flores Island. Scale 1:50,000; Regional Secretariat for the Environment and the Sea of the Regional Government of the Azores: Azores, Portugal, 2007. (In Portuguese)
- Yin, K.; Yan, T. Statistical prediction models for slope instability of metamorphosed rocks. In Proceedings of the Fifth International Symposium on Landslides, Rotterdam, The Netherlands, 10–15 July 1988; pp. 1269–1272. [Google Scholar]
- Cruz de Oliveira, S.; Rocha, J.; Zêzere, J.L.; Garcia, R.A.C.; Piedade, A. Evaluation of susceptibility to rotational landslides by applying statistical methods. In Cartografia e Geodesia 2009; LIDEL: Lisbon, Portugal, 2009; pp. 530–539. [Google Scholar]
- Marques, R.; Amaral, P.; Zêzere, J.L.; Queiroz, G.; Goulart, C. A Comparative Study of Different Probabilistic Methods for the Evaluation of Susceptibility to the Occurrence of Landslides: A Case Study from the Ribeira Quente Valley (S. Miguel, Azores); Publications of the Portuguese Association of Geomorphology: Porto, Portugal, 2009; pp. 183–190. (In Portuguese) [Google Scholar]
- Marques, R. Study of Landslides in the Povoação Municipality (São Miguel Island, Azores): Inventory, Characterization and Susceptibility Analysis. Ph.D. Thesis, Geosciences Department, University of the Azores, Ponta Delgada, Portugal, 2013. (In Portuguese). [Google Scholar]
- Chung, C.; Fabbri, A. Probabilistic prediction models for landslide hazard mapping. Photogramm. Eng. Rem. S 1999, 65, 1389–1399. (In Portuguese) [Google Scholar]
- Fratinni, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010, 111, 62–72. [Google Scholar] [CrossRef]
- Pereira, S.; Zêzere, J.L.; Bateira, C. Technical Note: Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat. Hazards Earth Syst. 2012, 12, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Glade, T.; Crozier, M.J. The nature of landslide impact. In Landslide Hazard and Risk; John Wiley: Chichester, UK, 2005; pp. 43–74. [Google Scholar]
- Zêzere, J.L. Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. 2002, 2, 73–82. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides types and processes. In Landslides Investigation and Mitigation; Special Report 247; Transportation Research Board, National Research Council: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Crozier, M.J. Landslides: Causes, Consequences & Environment; Croom Helm Pub.: London, UK, 1986; 252p. [Google Scholar]
- Zêzere, J.L.; Oliveira, S.C.; Garcia, R.A.C; Reis, E. Weighting predisposing factors for shallow slides susceptibility assessment at the regional scale. In Landslides and Engineered Slopes. From the Past to the Future; Chen, Z., Zhang, J., Li, Z., Wu, F., Ho, K., Eds.; Taylor & Francis Group: London, UK, 2008; pp. 1831–1837. [Google Scholar]
- Blahut, J.; van Westen, C.J.; Sterlacchini, S. Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 2010, 119, 36–51. [Google Scholar] [CrossRef]
- Piedade, A.; Zêzere, J.L.; Garcia, R.A.C.; Oliveira, S.C. Sensitive analysis of predisposing factors to geomorphological instability in the area north of Lisbon. In Proceedings of the V National Congress of Geomorphology; Bateira, C., Soares, L., Gomes, A., Chaminé, H.I., Eds.; Publications of the Portuguese Association of Geomorphology: Porto, Portugal, 2010; pp. 59–63. [Google Scholar]
- Guzzetti, F. Landslide Hazard and Risk Assessment—Concepts, Methods and Tools for the Detection and Mapping of Landslides, for Landslides Susceptibility Zonation and Hazard Assessment, and for Landslide Risk Evaluation. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2005. [Google Scholar]
Typology | Subsets | No of Landslides | Instability Area (m2) | Density (no Landslides/km2) | No of Pixels (5 m × 5 m) |
---|---|---|---|---|---|
Falls (FALL) | Modeling (FALL-MOD) | 43 | 185,991.4 | 5.6 | 7424 |
Validation (FALL-VAL) | 128 | 62,569.5 | 16.6 | 2459 | |
Total (FALL-TOT) | 171 | 248,560.9 | 22.1 | 9883 | |
Slides (SLD) | Modeling (SLD-MOD) | 152 | 73,481.4 | 19.7 | 3106 |
Validation (SLD-VAL) | 151 | 87,216.9 | 19.5 | 3313 | |
Total (SLD-TOT) | 303 | 160,698.4 | 39.2 | 6419 | |
Total (LAND-TOT) | 474 | 409,259.3 | 61.3 | 16,302 |
Predisposing Factors | Classes | Fall | Slide | ||
---|---|---|---|---|---|
Ii F-TOT | Ii F-MOD | Ii S-TOT | Ii S-MOD | ||
Altitude (m) | [0–100] | 0.883 | 0.335 | 0.681 | 0.640 |
]100–200] | −0.424 | −0.307 | 0.628 | 0.730 | |
]200–300] | −0.383 | −0.097 | −0.390 | −0.691 | |
]300–400] | 0.304 | 0.590 | −0.404 | −0.611 | |
]400–500] | −0.220 | 0.066 | −2.288 * | −2.331 * | |
]500–600] | −1.455 * | −1.169 * | −1.073 * | −0.550 | |
]600–680] | −1.455 * | −1.169 * | −2.774 * | −2.331 * | |
Slope angle (°) | [0–5] | −5.230 * | −5.232 * | −2.042 * | −1.904 * |
]5–10] | −5.232 * | −4.946 * | −2.315 * | −1.906 * | |
]10–15] | −1.713 * | −1.538 * | −1.456 * | −0.901 | |
]15–20] | −2.247 * | −2.105 * | −0.462 | −0.091 | |
]20–25] | −1.924 * | −2.090 * | −0.071 | 0.128 | |
]25–30] | −1.096 * | −1.391 * | 0.174 | 0.254 | |
]30–35] | −0.574 | −0.904 | 0.369 | 0.303 | |
]35–40] | 0.115 | −0.333 | 0.564 | 0.350 | |
]40–45] | 0.625 | 0.258 | 0.696 | 0.509 | |
]45–50] | 1.063 ** | 0.883 | 0.853 | 0.636 | |
]50–55] | 1.536 ** | 1.580 ** | 0.527 | −0.007 | |
]55–60] | 1.640 ** | 1.703 ** | 0.371 | −0.195 | |
]60–90] | 2.548 ** | 2.786 ** | −0.542 | −0.605 | |
Aspect | Flat | −3.270 * | −4.243 * | −2.301 * | −1.671 * |
North | −2.515 * | −3.695 * | 0.435 | 0.831 | |
Northeast | −1.393 * | −4.243 * | −0.730 | −0.481 | |
East | −3.270 * | −2.984 * | −0.880 | −0.704 | |
Southeast | −0.606 | −0.425 | −0.072 | 0.524 | |
South | 0.558 | 0.660 | 0.233 | 0.207 | |
Southwest | 0.629 | 0.634 | 0.209 | −0.360 | |
West | −0.164 | −0.349 | −0.093 | −0.067 | |
Northwest | −2.046 * | −2.774 * | −0.422 | −0.461 | |
Slope transversal profile | Very concave | 0.756 | 0.749 | 0.663 | 0.698 |
Concave | −0.044 | −0.086 | 0.187 | 0.196 | |
Rectilinear | −1.753 * | −1.687 * | −1.065 * | −0.898 * | |
Convex | −0.121 | −0.107 | −0.127 | −0.167 | |
Very convex | 0.862 | 0.920 | −0.164 | −0.177 | |
Slope longitudinal profile | Very concave | 1.075 ** | 1.175 ** | 0.201 | 0.109 |
Concave | −0.551 | −0.674 | −0.024 | 0.000 | |
Rectilinear | −2.479 * | −2.462 * | −1.270 * | −1.121 * | |
Convex | −0.450 | −0.585 | 0.021 | 0.031 | |
Very convex | 1.082 ** | 1.158 ** | 0.442 | 0.396 | |
Contribution Area (m2) | ]25–50] | −1.578 * | −1.351 * | −1.534 * | −1.060 * |
]50–100] | −0.838 | −0.795 | −1.719 * | −1.330 * | |
]100–200] | −0.634 | −0.677 | −0.812 | −0.651 | |
]200–400] | −0.416 | −0.529 | −0.182 | −0.256 | |
]400–800] | −0.031 | −0.049 | 0.157 | 0.043 | |
]800–1600] | 0.427 | 0.495 | 0.054 | −0.055 | |
]1600–3200] | 0.461 | 0.541 | 0.168 | 0.300 | |
]3200–6400] | 0.031 | −0.497 | 0.298 | 0.478 | |
]6400–12800] | −0.762 | −1.038 | 0.779 | 1.156 ** | |
>12800 | −0.626 | −0.647 | 0.351 | 0.415 | |
Inverse of wetness index | [0–0.001] | −4.661 * | −5.474 * | −0.959 | −0.560 |
]0.001–0.0025] | −1.466 * | −1.689 * | 0.095 | 0.298 | |
]0.0025–0.0050] | −0.600 | −0.968 | −0.105 | 0.155 | |
]0.0050–0.0075] | −0.502 | −0.601 | −0.067 | 0.041 | |
]0.0075–0.0100] | −0.206 | −0.306 | 0.026 | −0.152 | |
]0.0100–0.0250] | 0.073 | 0.033 | 0.212 | −0.065 | |
]0.0250–0.0500] | 0.273 | 0.327 | 0.148 | 0.044 | |
]0.0500–0.0750] | 0.543 | 0.613 | −0.072 | −0.127 | |
]0.0750–0.1000] | 0.691 | 0.754 | −0.301 | −0.475 | |
>0.1 | 1.185 ** | 1.300 ** | −0.664 | −0.672 | |
Geology | Landslide deposits (Age < 3000 BP) | 0.422 | 0.354 | −0.636 | −0.814 |
Phreatomagmatic deposits (Age < 3000 BP) | −1.617 * | −3.216 * | −2.706 * | −2.507 * | |
Scoria deposits (Age < 3000 BP) | −1.617 * | −3.216 * | −0.536 | −1.908 * | |
Basaltic lava flows (s.l.) (Age = [0.22 Ma, 0.40 Ma BP]) | −1.558 * | −1.273 * | −0.998 | −0.617 | |
Basaltic (s.l.) and trachytic flows (Age = ]0.40 Ma, 0.67 Ma BP]) | 1.229 ** | 1.514 ** | −2.706 * | −2.507 * | |
Breccias and tuffs (Age = ]0.67 Ma, 0.80 Ma BP]) | −1.617 * | −3.216 * | −0.761 | −0.877 | |
Basaltic lava flows (s.l.) (Age = [0.80 Ma, 1.5 Ma BP]) | −1.617 * | −3.216 * | 0.459 | 0.787 | |
Basaltic lava flows (s.l.) (Age = [1.5 Ma, 1.8 Ma BP]) | −1.028 * | −1.949 * | 1.114 ** | 1.131 ** | |
Basaltic lava flows (s.l.) (Age > 2.0 Ma BP) | 1.199 ** | 0.185 | 0.908 | 0.443 | |
Volcaniclastic deposits (Age> 2.0 Ma BP) | 1.084 ** | 0.760 | −0.745 | −2.507 * | |
Insolation (kW/m2/year) | ≤500 | 0.356 | −1.448 * | −0.743 | −0.982 |
]500–600] | −0.470 | −0.829 | 0.492 | −0.229 | |
]600–700] | −0.634 | −0.939 | 0.336 | −0.068 | |
]700–800] | 0.279 | 0.326 | 0.553 | 0.484 | |
]800–900] | 0.342 | 0.405 | −0.055 | 0.010 | |
]900–1000] | 0.686 | 0.823 | 0.249 | 0.518 | |
]1000–1100] | 0.743 | 0.809 | 0.225 | 0.263 | |
]1100–1200] | 0.052 | −0.011 | −0.239 | −0.353 | |
]1200–1300] | −0.418 | −0.547 | 0.062 | 0.147 | |
]1300–1400] | −0.866 | −0.898 | −0.154 | −0.417 | |
>1400 | −1.816 * | −1.530 * | −2.676 * | −0.982 | |
Drainage density (km/km2) | {0} | 0.410 | 0.395 | −0.043 | −0.221 |
]0–5] | −1.417 * | −1.718 * | −0.238 | 0.132 | |
]5–10] | −0.969 | −0.786 | 0.238 | 0.242 | |
]10–15] | 0.600 | 0.835 | 0.008 | −0.101 | |
]15–20] | −1.452 * | −1.390 * | 0.661 | 0.734 | |
]20–25] | −3.303 * | −3.711 * | 0.877 | 0.758 | |
>25 | −1.188 * | −1.509 * | −0.159 | 0.210 | |
Stream line distance (m) | [0–25] | −1.030 * | −0.953 | 0.206 | 0.405 |
]25–50] | −0.796 | −0.739 | −0.165 | −0.071 | |
]50–75] | −0.416 | −0.307 | −0.216 | −0.362 | |
]75–100] | 0.053 | 0.073 | 0.071 | 0.022 | |
]100–125] | 0.425 | 0.389 | −0.266 | 0.123 | |
]125–150] | 0.782 | 0.761 | −0.629 | −0.624 | |
>150 | 0.987 | 0.926 | 0.292 | −0.436 | |
Land use | Urban | −1.735 * | −1.460 * | −3.435 * | −0.093 |
Cultivated areas | −1.735 * | −1.460 * | −0.072 | 0.466 | |
Pasture | −1.735 * | −1.460 * | −0.308 | −0.093 | |
Forest | −1.136 * | −1.222 * | 0.486 | 0.246 | |
Shrubby vegetation | −1.735 * | −1.460 * | −3.435 * | −0.093 | |
Denuded areas | 1.696 ** | 1.674 ** | 0.261 | 0.189 |
No of Predisposing Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No of Models | 12 | 66 | 220 | 495 | 792 | 924 | 792 | 495 | 220 | 66 | 12 | 1 | 4095 |
Predisposing Factors | Falls | Slides | ||
---|---|---|---|---|
Hierarchy | AUC | Hierarchy | AUC | |
Altitude | 7 | 0.672 | 2 | 0.703 |
Slope angle | 1 | 0.875 | 3 | 0.678 |
Slope aspect | 6 | 0.700 | 7 | 0.581 |
Slope transversal profile | 12 | 0.612 | 6 | 0.587 |
Slope longitudinal profile | 5 | 0.702 | 8 | 0.568 |
Insolation | 9 | 0.661 | 9 | 0.566 |
Stream lines distance | 4 | 0.704 | 10 | 0.565 |
Drainage density | 10 | 0.658 | 11 | 0.552 |
Contribution area | 11 | 0.618 | 5 | 0.588 |
Inverse of the wetness index | 8 | 0.669 | 12 | 0.548 |
Geology | 3 | 0.823 | 1 | 0.772 |
Land use | 2 | 0.855 | 4 | 0.631 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.F.; Marques, R.; Gaspar, J.L. Implications of Landslide Typology and Predisposing Factor Combinations for Probabilistic Landslide Susceptibility Models: A Case Study in Lajedo Parish (Flores Island, Azores—Portugal). Geosciences 2018, 8, 153. https://doi.org/10.3390/geosciences8050153
Silva RF, Marques R, Gaspar JL. Implications of Landslide Typology and Predisposing Factor Combinations for Probabilistic Landslide Susceptibility Models: A Case Study in Lajedo Parish (Flores Island, Azores—Portugal). Geosciences. 2018; 8(5):153. https://doi.org/10.3390/geosciences8050153
Chicago/Turabian StyleSilva, Rui Fagundes, Rui Marques, and João Luís Gaspar. 2018. "Implications of Landslide Typology and Predisposing Factor Combinations for Probabilistic Landslide Susceptibility Models: A Case Study in Lajedo Parish (Flores Island, Azores—Portugal)" Geosciences 8, no. 5: 153. https://doi.org/10.3390/geosciences8050153
APA StyleSilva, R. F., Marques, R., & Gaspar, J. L. (2018). Implications of Landslide Typology and Predisposing Factor Combinations for Probabilistic Landslide Susceptibility Models: A Case Study in Lajedo Parish (Flores Island, Azores—Portugal). Geosciences, 8(5), 153. https://doi.org/10.3390/geosciences8050153