Numerical Modeling of Remediation Scenarios of a Groundwater Cr(VI) Plume in an Alpine Valley Aquifer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Numerical Modeling
- Scenario 1—the simulation of a hydraulic barrier in order to contain the Cr(VI) plume within the area of the steelworks.
- Scenario 2—the simulation of the natural attenuation of the dissolved Cr(VI) plume in groundwater after a complete removal of the Cr(VI) source from the unsaturated zone, by means of in situ or ex situ remediation, was achieved.
- Scenario 3—a combination of the previous two remediation works.
2.2.1. Groundwater Flow Modeling
2.2.2. Cr(VI) Transport Modeling (Scenario 0)
2.2.3. Model Settings for Remediation Scenarios
2.3. Dora Baltea River Sampling
3. Results and Discussion
3.1. Cr(VI) in the Dora Baltea River
3.2. Scenario 1
- the hydraulic barrier is composed of 5 wells (BW) located along the eastern border of the steelworks area, their exact locations are shown in Figure 3a;
- the depth of the hydraulic barrier wells ranges between 31 and 36 m b.g.l., the well screen interval is between model layers 3 and 6, that corresponds to ~15–20 and ~31–36 m b.g.l.;
- the 5 hydraulic barrier wells (BW1 to BW5) have a well discharge of 6500, 7000, 7000, 6000, and 1000 m3/day, respectively, for a total discharge of 27,500 m3/day;
- in order to compensate the discharge of the hydraulic barrier, three steelworks wells were deactivated; they are wells 6, 8, and 10 (W6, W8, and W10 in Figure 3a) with a discharge of 10,849; 862; and 13,104 m3/day, respectively (data for January 2009), that correspond to a total deactivated discharge of 24,815 m3/day;
- in terms of well discharge, the needs of the hydraulic barrier overcome the deactivation of the steelworks wells (2685 m3/day), and this corresponds to an increase of only ~5% of the total discharge of the steelworks wells.
3.3. Scenario 2
3.4. Scenario 3
3.5. Advantages and Disadvantages of Modeled Scenarios
4. Conclusions
- a hydraulic barrier composed of five wells located along the eastern border of the steelwork area would contain Cr(VI) concentrations above 5 µg/L (i.e., the Italian regulatory limit) within the steelwork area; these five wells, tapping the aquifer between ~15–20 and ~31–36 m b.g.l., would have a total discharge of 27,500 m3/day; this value of discharge would be compensated by the deactivation of three steelwork wells (for a total deactivated discharge of 24,815 m3/day), in order to limit the impact of the barrier on groundwater resources quantity;
- this hydraulic barrier would drop the Cr(VI) concentrations below 5 µg/L in the areas downstream of the steelwork after ~3 years from its start of operation;
- a remediation work aimed at removing the Cr(VI) sources from the unsaturated zone would have better results with respect to the activation of the hydraulic barrier: a full remediation of the Cr(VI) groundwater plume would be obtained after 17 years from the sources removal, with a fall of ~82% of Cr(VI) mass in aquifer within the first 6 years;
- for a faster remediation, the removal of the Cr(VI) sources from the unsaturated zone would be accompanied by the activation of the hydraulic barrier; the working of the barrier would be needed only for the first 4–5 years.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; Techniques of Water-Resources Investigations, Book 6, Chapter A1; US Geological Survey: Reston, VA, USA, 1988.
- Pollock, D.W. User Guide for MODPAHT Version 6—A Particle-Tracking Model for MODFLOW; Techniques and Methods 6–A41; US Geological Survey: Reston, VA, USA, 2012; p. 58.
- Zheng, C.; Wang, P. MT3DMS: A Modular Three-Dimensional Multispecies Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1; The University of Alabama: Vicksburg, MS, USA, 1999; p. 202. [Google Scholar]
- Guo, W.; Langevin, C.D. User’s Guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow; Techniques of Water-Resources Investigations 6-A7; US Geological Survey: Reston, VA, USA, 2002; p. 77.
- Alberti, L.; Colombo, L.; Formentin, G. Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Sci. Total Environ. 2018, 621, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Chelli, A.; Zanini, A.; Petrella, E.; Feo, A.; Celico, F. A multidisciplinary procedure to evaluate and optimize the efficacy of hydraulic barriers in contaminated sites: A case study in Northern Italy. Environ. Earth Sci. 2018, 77, 246. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Prommer, H.; Sbarbati, C.; Petitta, M. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion. J. Contam. Hydrol. 2015, 179, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Impact of climate change on salinization of coastal water resources. Water Resour. Manag. 2016, 30, 2483–2496. [Google Scholar] [CrossRef]
- Grava, A.; Rotiroti, M.; Fumagalli, L.; Bonomi, T. Optimization of a well system using the ground water management package of MODFLOW-2000. Rend. Online Soc. Geol. Ital. 2016, 39, 101–104. [Google Scholar] [CrossRef]
- Post, V.E.A.; Houben, G.J. Density-driven vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) following the 1962 storm flood. J. Hydrol. 2017, 551, 689–702. [Google Scholar] [CrossRef]
- Dokou, Z.; Karagiorgi, V.; Karatzas, G.P.; Nikolaidis, N.P.; Kalogerakis, N. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: The case of Asopos River Basin. Environ. Sci. Pollut. Res. 2016, 23, 5307–5321. [Google Scholar] [CrossRef] [PubMed]
- Dokou, Z.; Karatzas, G.P.; Panagiotakis, I.; Dermatas, D. Groundwater modeling and remediation scenarios of a hexavalent chromium plume released from an industrial site. Bull. Environ. Contam. Toxicol. 2017, 98, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Friedly, J.C.; Davis, J.A.; Kent, D.B. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments. Water Resour. Res. 1995, 31, 2783–2794. [Google Scholar] [CrossRef]
- Mayer, K.U.; Blowes, D.W.; Frind, E.O. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water Resour. Res. 2001, 37, 3091–3103. [Google Scholar] [CrossRef] [Green Version]
- Rivero, M.J.; Primo, O.; Ortiz, M.I. Modelling of Cr(VI) removal from polluted groundwaters by ion exchange. J. Chem. Technol. Biotechnol. 2004, 79, 822–829. [Google Scholar] [CrossRef]
- Thacher, R.; Hsu, L.; Ravindran, V.; Nealson, K.H.; Pirbazari, M. Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter. Chem. Eng. Sci. 2015, 138, 552–565. [Google Scholar] [CrossRef]
- Tiwary, R.K.; Dhakate, R.; Ananda Rao, V.; Singh, V.S. Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ. Geol. 2005, 48, 420–429. [Google Scholar] [CrossRef]
- Wanner, C.; Eggenberger, U.; Mäder, U. Reactive transport modelling of Cr(VI) treatment by cast iron under fast flow conditions. Appl. Geochem. 2011, 26, 1513–1523. [Google Scholar] [CrossRef]
- Wanner, C.; Zink, S.; Eggenberger, U.; Mäder, U. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling. J. Contam. Hydrol. 2012, 131, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; De Maio, M. Assessment of risk to human health due to intake of chromium in the groundwater of the Aosta Valley region, Italy. Hum. Ecol. Risk Assess. 2017, 23, 1153–1163. [Google Scholar] [CrossRef]
- Bonomi, T.; Fumagalli, L.; Stefania, G.A.; Rotiroti, M.; Pellicioli, F.; Simonetto, F.; Capodaglio, P. Groundwater contamination by Cr(VI) in the Aosta Plain (Northern Italy): Characterization and preliminary modeling. Rend. Online Soc. Geol. Ital. 2015, 35, 21–24. [Google Scholar] [CrossRef]
- Bonomi, T.; Fumagalli, M.; Benastini, V.; Rotiroti, M.; Capodaglio, P.; Simonetto, F. Preliminary groundwater modelling by considering the interaction with superficial water: Aosta Plain case (Northern Italy). Acque Sotter. Ital. J. Groundw. 2013, 2, 31–45. [Google Scholar] [CrossRef]
- Bonomi, T.; Fumagalli, M.; Rotiroti, M.; Perego, R.; Simonetto, F.; Capodaglio, P. Groundwater flow modelling of the Aosta Plain in northern Italy. In Engineering Geology for Society and Territory; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.-C., Grant, G.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 227–230. [Google Scholar]
- Novel, J.P.; Puig, J.M.; Zuppi, G.M.; Dray, M.; Dzikowski, M.; Jusserand, C.; Money, E.; Nicoud, G.; Parriaux, A.; Pollicini, F. Complexité des circulations dans l’aquifère alluvial de la plaine d’Aoste (Italie): Mise en évidence par l’hydrogéochimie. Eclogae Geol. Helv. 2002, 95, 323–331. [Google Scholar]
- Rotiroti, M.; Di Mauro, B.; Fumagalli, L.; Bonomi, T. COMPSEC, a new tool to derive natural background levels by the component separation approach: Application in two different hydrogeological contexts in northern Italy. J. Geochem. Explor. 2015, 158, 44–54. [Google Scholar] [CrossRef]
- Rotiroti, M.; Fumagalli, L.; Frigerio, M.C.; Stefania, G.A.; Simonetto, F.; Capodaglio, P.; Bonomi, T. Natural background levels and threshold values of selected species in the alluvial aquifers in the Aosta Valley Region (N Italy). Rend. Online Soc. Geol. Ital. 2015, 35, 256–259. [Google Scholar] [CrossRef]
- Stefania, G.A.; Rotiroti, M.; Fumagalli, L.; Simonetto, F.; Capodaglio, P.; Zanotti, C.; Bonomi, T. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources. Hydrogeol. J. 2018, 26, 147–162. [Google Scholar] [CrossRef]
- Tiwari, A.K.; De Maio, M.; Amanzio, G. Evaluation of metal contamination in the groundwater of the Aosta Valley region, Italy. Int. J. Environ. Res. 2017, 11, 291–300. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Nota, N.; Marchionatti, F.; De Maio, M. Groundwater-level risk assessment by using statistical and geographic information system (GIS) techniques: A case study in the Aosta Valley region, Italy. Geomat. Nat. Hazards Risk 2017, 8, 1396–1406. [Google Scholar] [CrossRef]
- Triganon, A.; Dzikowski, M.; Novel, J.P.; Dray, M.; Zuppi, G.M.; Parriaux, A. Échanges nappe–rivière en vallée alpine: Quantification et modélisation (Vallée d’Aoste, Italie). Can. J. Earth Sci. 2003, 40, 775–786. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing the framework of Community action in the field of water policy. Off. J. Eur. Commun. 2000, 43, L327/1. [Google Scholar]
- Rotiroti, M.; Fumagalli, L.; Stefania, G.A.; Frigerio, M.C.; Simonetto, F.; Capodaglio, P.; Bonomi, T. Assessment of the chemical status of the alluvial aquifer in the Aosta Plain: An example of the implementation of the Water Framework Directive in Italy. Geophys. Res. Abstr. 2015, 17, 4044. [Google Scholar]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; Open-File Report 00-92; US Geological Survey: Reston, VA, USA, 2000; p. 121.
- Bonomi, T.; Fumagalli, M.; Rotiroti, M.; Bellani, A.; Cavallin, A. The hydrogeological well database TANGRAM©: A tool for data processing to support groundwater assessment. Acque Sotter. Ital. J. Groundw. 2014, 3, 35–45. [Google Scholar] [CrossRef]
- Bonomi, T. Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: Application to the Milan plain. Comput. Geosci. 2009, 35, 134–145. [Google Scholar] [CrossRef]
- Fabbri, P.; Trevisani, S. A geostatistical simulation approach to a pollution case in northeastern Italy. Math. Geol. 2005, 37, 569–586. [Google Scholar] [CrossRef]
- Perego, R.; Bonomi, T.; Fumagalli, L.; Benastini, V.; Aghib, F.; Rotiroti, M.; Cavallin, A. 3D reconstruction of the multi-layer aquifer in a Po Plain area. Rend. Online Soc. Geol. Ital. 2014, 30, 41–44. [Google Scholar] [CrossRef]
- Rotiroti, M.; Jakobsen, R.; Fumagalli, L.; Bonomi, T. Arsenic release and attenuation in a multilayer aquifer in the Po Plain (Northern Italy): Reactive transport modeling. Appl. Geochem. 2015, 63, 599–609. [Google Scholar] [CrossRef]
- Pollicini, F. Geologia ed Idrogeologia Della Piana di Aosta. Master’s Thesis, University of Turin, Turin, Italy, 1994. [Google Scholar]
- De Luca, D.; Masciocco, L.; Motta, E.V.; Tonussi, M. Studio Geologico Finalizzato Alla Definizione Delle Aree di Salvaguardia Dei Pozzi di Acquedotto Del Comune di AOSTA; University of Turin: Turin, Italy, 2004. [Google Scholar]
- Niswonger, R.G.; Prudic, D.E. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams: A Modification to SFR1; Techniques and Methods 6-A13; US Geological Survey: Reston, VA, USA, 2005; p. 50.
- Mercado, A. The spreading pattern of injected water in a permeability stratified aquifer. Int. Assoc. Hydrol. Sci. 1967, 72, 23–36. [Google Scholar]
- Gazzetta Ufficiale. Decreto Legislativo 3 aprile 2006, n. 152. In Norme in Materia Ambientale; Gazzetta Ufficiale: Rome, Italy, 2006. [Google Scholar]
- Xu, Y.; Zhao, D. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res. 2007, 41, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Anjana, K.; Kaushik, A.; Kiran, B.; Nisha, R. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazards Mater. 2007, 148, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Bedekar, V.; Morway, E.D.; Langevin, C.D.; Tonkin, M.J. MT3D-USGS Version 1: A U.S. Geological Survey Release of MT3DMS Updated with New and Expanded Transport Capabilities for Use with MODFLOW; Techniques and Methods 6-A53; US Geological Survey: Reston, VA, USA, 2016; p. 84.
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefania, G.A.; Rotiroti, M.; Fumagalli, L.; Zanotti, C.; Bonomi, T. Numerical Modeling of Remediation Scenarios of a Groundwater Cr(VI) Plume in an Alpine Valley Aquifer. Geosciences 2018, 8, 209. https://doi.org/10.3390/geosciences8060209
Stefania GA, Rotiroti M, Fumagalli L, Zanotti C, Bonomi T. Numerical Modeling of Remediation Scenarios of a Groundwater Cr(VI) Plume in an Alpine Valley Aquifer. Geosciences. 2018; 8(6):209. https://doi.org/10.3390/geosciences8060209
Chicago/Turabian StyleStefania, Gennaro A., Marco Rotiroti, Letizia Fumagalli, Chiara Zanotti, and Tullia Bonomi. 2018. "Numerical Modeling of Remediation Scenarios of a Groundwater Cr(VI) Plume in an Alpine Valley Aquifer" Geosciences 8, no. 6: 209. https://doi.org/10.3390/geosciences8060209
APA StyleStefania, G. A., Rotiroti, M., Fumagalli, L., Zanotti, C., & Bonomi, T. (2018). Numerical Modeling of Remediation Scenarios of a Groundwater Cr(VI) Plume in an Alpine Valley Aquifer. Geosciences, 8(6), 209. https://doi.org/10.3390/geosciences8060209