Geophysical Input to Improve the Conceptual Model of the Hydrogeological Framework of a Coastal Karstic Aquifer: Uley South Basin, South Australia
Abstract
:1. Introduction
2. Geology and Hydrogeology of the Study Site
3. Materials and Methods
4. Results and Discussion
4.1. Uley South Aquifer Elevations: Ground Levels; QL, TC and TS Base Elevations
4.2. Uley South Link to Northern Lenses-QL and TSA aquifers
4.3. Uley South Link to Coffin Bay
4.4. Uley South Landward Boundary and Inter-Aquifer Leakage
4.5. Recharge and Evidence of Conduit Flow in the Central Basin
4.6. Nuclear Magnetic Resonance Soundings
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Zheng, C.; Liu, J.; Cao, G.; Xiao, H.; Li, H.; Li, W. Conceptual and numerical models for groundwater flow in an arid inland river basin. Hydrol. Process. 2015, 29, 1480–1492. [Google Scholar] [CrossRef]
- Middlemis, H. Groundwater Flow Modelling Guideline; Murray-Darling Basin Commission: Canberra, Australia, 2000.
- Rojas, R.; Feyen, L.; Dassargues, A. Conceptual model uncertainty in groundwater modelling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Neuman, S.; Wierenga, P. A Comprehensive Strategy of Hydrogeologic Modelling and Uncertainty Analysis for Nuclear Facilities and Sites; Rep. NUREG/CR-6805; US Nuclear Regulatory Commission: Washington, DC, USA, 2003.
- Refsgaard, J.; van der Sluijs, J.; Brown, J.; van de Keur, P. A framework for dealing with uncertainty due to model structure error. Adv. Water Resour. 2006, 29, 1586–1597. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Pohlmann, K.F.; Chapman, J.B.; Pholl, G.M.; Reeves, D.M. A model-averaging method for assessing groundwater conceptual model uncertainty. Groundwater 2010, 48, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.; Nelson, S.T.; Mayo, A.L.; Tingey, D.G. Why conceptual groundwater flow models matter: A transboundary example from the Great basin, western USA. Hydrogeol. J. 2012, 20, 1133–1147. [Google Scholar] [CrossRef]
- Bakalowicz, M. Chapter 12: Management of karst groundwater resources. In Karst Management; Springer: Berlin, Germany, 2011; pp. S262–S282. [Google Scholar]
- Edwards, A.E.; Amatiya, D.M.; Williams, T.M.; Hitchcock, D.R.; James, A.L. Flow characterization in the Santee Cave System in the Chapel Branch Creek watershed, upper coastal plain of South Carolina, USA. J. Cave Karst Stud. 2013, 75, 136–145. [Google Scholar] [CrossRef]
- Zhu, J.; Current, J.C.; Dinger, J.S. Challenges of using electrical resistivity method to locate karst conduits—A field case in the Inner Bluegrass Region, Kentucky. J. Appl. Geophys. 2011, 75, 523–530. [Google Scholar] [CrossRef]
- Farooq, M.; Park, S.; Song, Y.S.; Kim, J.H.; Tariq, M.; Abraham, A.A. Subsurface cavity detection in a karst environment using electrical resistivity: A case study from Yongweol-ri, South Korea. Earth Sci. Res. J. 2012, 16, 75–82. [Google Scholar]
- Ahmed, S.; Carpenter, P.J. Geophysical response of filled sinkholes, soil pipes and associated bedrock fractures in thin mantled karst, east central Illinois. Environ. Geol. 2003, 44, 705–716. [Google Scholar] [CrossRef]
- Van Schoor, M. Detection of sinkholes using 2D electrical resistivity imaging. J. Appl. Geophys. 2002, 50, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Beck, B.F.; Adams, A.L. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ. Geol. 2002, 42, 922–928. [Google Scholar] [CrossRef]
- Somaratne, N.; Mann, S. Integrated use of geological, geophysical, radiocarbon and stable isotopes data for tracing the conduit flow paths in a small karstic aquifer: Poocher Swamp freshwater lens, South Australia. Environ. Nat. Resour. Res. 2016, 6, 119. [Google Scholar] [CrossRef]
- Somaratne, N. Karst conduit networks, connectivity and recharge dynamics of a sinkhole. Environ. Nat. Resour. Res. 2017, 7, 70. [Google Scholar] [CrossRef]
- Wedekind, J.E.; Osten, M.A.; Kitt, E.; Herridge, B. Combining surface and downhole geophysical methods to identify karst conditions in North-central Iowa. In Sinkholes and the Engineering and Environmental Impacts of Karst; American Society of Civil Engineers: Reston, VA, USA, 2005; Volume 144, pp. 616–625. [Google Scholar]
- Jardani, A.; Revil, A.; Santos, F.; Fauchard, C.; Dupont, J.P. Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys. Prospect. 2007, 55, 1–12. [Google Scholar] [CrossRef]
- Fitzpatrick, A.; Cahill, K.; Munday, T.; Beren, V. Informing the Hydrogeology of Coffin Bay, South Australia, through the Constrained Inversion of TEMPEST AEM Data; CSIRO: Water for a Healthy Country National Research Flagship; CSIRO Report No. P2009/300; CSIRO: Canberra, Australia, 2009. [Google Scholar]
- Davis, A.; Cahill, K.; Hatch, M.; Munday, T. Aquifer Characterization in the Uley South Basin, South Australia, Using NMR: Final Report; CSIRO: Water for a Healthy Country National Research Flagship; Technical Report (EP-31-01-12-14); CSIRO: Canberra, Australia, 2011. [Google Scholar]
- Harrington, N.; Zulfic, D.; Wohling, D. Uley Basin Groundwater Modelling Project. Volume 1: Project Overview and Conceptual Model Development; DWLBC Report 2006/01; Government of South Australia: Sydney, Australia, 2006.
- Evans, S.L. Estimating Long-Term Recharge to Thin, Unconfined Carbonate Aquifers Using Conventional and Environmental Isotopes Techniques: Eyre Peninsula, South Australia. Master’s Thesis, Flinders University of South Australia, Adelaide, Australia, 1997, unpublished. [Google Scholar]
- Somaratne, N. Characteristics of point recharge. Water 2014, 6, 2782–2807. [Google Scholar] [CrossRef]
- Somaratne, N. Karst Aquifer Recharge: A case history of over simplification from the Uley South basin, South Australia. Water 2015, 7, 464–479. [Google Scholar] [CrossRef]
- Somaratne, N.; Frizenschaf, J. Geological control upon groundwater flow and major ion chemistry with influence on basin management in a coastal aquifer, South Australia. J. Water Resour. Prot. 2013, 5, 1170–1177. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Shuttle Radar Topography Mission (SRTM). Available online: https://lta.cr.usgs.gov/srtm (accessed on 21 June 2018).
- Wonik, T. Borehole logging. In Environmental Geology: Handbook of Field Methods and Case Studies; Knodel, K., Lange, G., Voigt, H.J., Eds.; Springer Press: Berlin, Germany, 2007; pp. 431–474. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Palacky, G.V. Resistivity characteristics of geologic targets. In Electromagnetics Methods in Applied Geophysics; Nabighian, M.N., Ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 1987; Volume 1, pp. 53–129. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–64. [Google Scholar] [CrossRef]
- Cardimona, S. Electrical Resistivity Techniques for Subsurface Investigation; Department of Geology and Geophysics, University of Missouri-Rolla: Rolla, MO, USA, 2002; Available online: https://www.researchgate.net/publication/242692638_ELECTRICAL_RESISTIVITY_TECHNIQUES_FOR_SUBSURFACE_INVESTIGATION (accessed on 21 April 2016).
- Saller, S.P.; Ronayne, M.J.; Long, A.J. Comparison of a karst groundwater model with and without discrete conduit flow. Hydrogeol. J. 2013, 21, 1555–1566. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Mace, R.E.; Barret, M.E.; Smith, B. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, baron Springs Edwards Aquifer, U.S.A. J. Hydrol. 2003, 276, 137–158. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somaratne, N.; Ashman, G.; Irvine, M.; Mann, S. Geophysical Input to Improve the Conceptual Model of the Hydrogeological Framework of a Coastal Karstic Aquifer: Uley South Basin, South Australia. Geosciences 2018, 8, 226. https://doi.org/10.3390/geosciences8070226
Somaratne N, Ashman G, Irvine M, Mann S. Geophysical Input to Improve the Conceptual Model of the Hydrogeological Framework of a Coastal Karstic Aquifer: Uley South Basin, South Australia. Geosciences. 2018; 8(7):226. https://doi.org/10.3390/geosciences8070226
Chicago/Turabian StyleSomaratne, Nara, Glyn Ashman, Michelle Irvine, and Simon Mann. 2018. "Geophysical Input to Improve the Conceptual Model of the Hydrogeological Framework of a Coastal Karstic Aquifer: Uley South Basin, South Australia" Geosciences 8, no. 7: 226. https://doi.org/10.3390/geosciences8070226
APA StyleSomaratne, N., Ashman, G., Irvine, M., & Mann, S. (2018). Geophysical Input to Improve the Conceptual Model of the Hydrogeological Framework of a Coastal Karstic Aquifer: Uley South Basin, South Australia. Geosciences, 8(7), 226. https://doi.org/10.3390/geosciences8070226