Morphodynamic Trends of the Ribb River, Ethiopia, Prior to Dam Construction
Abstract
:1. Introduction
2. Study Area
2.1. General Description
2.2. Anthropogenic Aspects
3. Materials and Methods
- the description of the river discharge regime,
- the assessment of bed level changes and sediment transport rates,
- the description of the historical channel evolution (alignment, width),
- the assessment of the past adjustment of river slope to sediment mining and water withdrawal, and
- the assessment of propagation time of riverbed level adjustment to Lake Tana regulation.
3.1. River Flow Regime
3.2. Bed Level Changes and Sediment Transport Rates
3.3. Historical Channel Evolution
3.4. River Slope Adjustment to Interventions
3.5. Assessment of Propagation of Bed Level Adjustment to Lake Tana regulation
4. Results
4.1. River Discharge Characterization
4.2. Bed Level Changes and Sediment Transport Rates
4.3. Historical Channel Evolution
4.4. River Slope Adjustment to Interventions
4.5. Propagation of River Bed Level Adjustment to Lake Tana Regulation
5. Discussion
5.1. River Channel Changes
5.2. River Response to Sand Mining and Water Withdrawal
5.3. Effects of the Embankments
5.4. Application of the Equilibrium Theory
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jansen, P.P.; Van Bendegom, L.; De Varies, M.; Zenen, A. Principles of River Engineering. The Non-Tidal Alluvial River; Delftse Uitgevers Maatschappij B.V: Delft, The Netherlands, 1979. [Google Scholar]
- Latapie, A.; Camenen, B.; Rodrigues, S.; Paquier, A.; Bouchard, J.; Moatar, F. Assessing channel response of a long river influenced by human disturbance. Catena 2014, 121, 1–12. [Google Scholar] [CrossRef]
- Gilvear, D.J. Fluvial geomorphology and river engineering: Future roles utilizing a fluvial hydrosystems framework. Geomorphology 1999, 31, 229–245. [Google Scholar] [CrossRef]
- Bravard, J.; Kondolf, G.; Piégay, H. Environmental and Societal Effects of Channel Incision and Remedial Strategies. In Incised River Channels: Processes, Forms, Engineering and Management; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Gilvear, D.J. River management and conservation issues on formerly braided river systems; the case of the River Tay, Scotland. Geol. Soc. Lond. Spec. Publ. 1993, 75, 231–240. [Google Scholar] [CrossRef]
- Marston, R.A.; Girel, J.; Pautou, G.; Piegay, H.; Bravard, J.-P.; Arneson, C. Channel metamorphosis, floodplain disturbance, and vegetation development: Ain River, France. Geomorphology 1995, 13, 121–131. [Google Scholar] [CrossRef]
- Gilvear, D.; Winterbottom, S. Channel change and flood events since 1783 on the regulated River Tay, Scotland: Implications for flood hazard management. Regul. Rivers Res. Manag. 1992, 7, 247–260. [Google Scholar] [CrossRef]
- Nelson, J.M.; Shimizu, Y.; Abe, T.; Asahi, K.; Gamou, M.; Inoue, T.; Iwasaki, T.; Kakinuma, T.; Kawamura, S.; Kimura, I. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Adv. Water Resour. 2016, 93, 62–74. [Google Scholar] [CrossRef]
- Belete, M.A. Modeling and Analysis of Lake Tana Sub-Basin Water Resources Systems, Ethiopia. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2013. [Google Scholar]
- WWDSE; TAHAL. Ribb Dam Hydrological Study (Final Report); Water Works Design and Supervision Enterprise (WWDSE) and TAHAL Consulting Engineers Ltd.: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Graf, W. Downstream hydrologic and geomorphic effects of large dams on American Rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Williams, G.P.; Wolman, M.G. Downstream Effects of Dams on Alluvial Rivers; U.S. Government Printing Office: Washington, DC, USA, 1984. [Google Scholar]
- Kondolf, G.M. Hungry water—Effects of dams and gravel mining on river channels and floodplains. Aggreg. Resour. Glob. Perspect. AA Balkema Vermont 1997, 113–129. [Google Scholar] [CrossRef]
- Khan, O.; Mwelwa-Mutekenya, E.; Crosato, A.; Zhou, Y. Effects of dam operation on downstream river morphology: The case of the Middle Zambezi River. Proc. Inst. Civ. Eng. Water Manag. 2014, 167, 585–600. [Google Scholar] [CrossRef]
- De Vries, M. A morphological time scale for rivers. In Proceedings of the 16th Congress IAHR, São Paulo, Brazil, 27 July–1 August 1975; Volume 2, pp. 17–23. [Google Scholar]
- Tekleab, S.; Mohamed, Y.; Uhlenbrook, S. Hydro-climatic trends in the Abay/Upper Blue Nile Basin, Ethiopia. Phys. Chem. Earth Parts A/B/C 2013, 61, 32–42. [Google Scholar] [CrossRef]
- Abate, M.; Nyssen, J.; Steenhuis, T.S.; Moges, M.M.; Tilahun, S.A.; Enku, T.; Adgo, E. Morphological changes of Gumara River channel over 50 years, Upper Blue Nile Basin, Ethiopia. J. Hydrol. 2015, 525, 152–164. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Mohamed, Y.A.; Steenhuis, T.S. Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol. Process. 2010, 24, 3747–3758. [Google Scholar] [CrossRef] [Green Version]
- Hurni, H.; Tato, K.; Zeleke, G. The implications of changes in population, land use, and land management for surface runoff in the Upper Nile Basin area of Ethiopia. Mt. Res. Dev. 2005, 25, 147–154. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Admasu, T.; Pauwels, V.R.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J. Effects of the floodplain on river discharge into Lake Tana (Ethiopia). J. Hydrol. 2014, 519, 699–710. [Google Scholar] [CrossRef]
- BRLi; MCE. Pump, Drainage Schemes at Megech: Environmental and Social Impact Assessment of the Ribb Irrigation and Drainage Project; BRLi: Nîmes, France; MCE: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- SMEC. Hydrological Study of the Tana-Beles Sub-basin: Main Report; Snowy Mountains Engineering Corporation (SMEC) International Pty Ltd.: Melbourne, VIC, Australia, 2008; pp. 1–110. [Google Scholar]
- Kinzel, P.; Runge, J. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931–2009; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- ENTRO. Flood Risk Mapping Consultancy for Pilot Areas in Ethiopia; Final Report to the Eastern Nile Technical Regional Office (ENTRO); ENTRO: Addis Ababa, Ethiopia, 2010; pp. 1–206. [Google Scholar]
- Snowy Mountains Engineering Corporation (SMEC). Hydrological Study of the Tana-Beles Sub-Basin: Surface Water Investigation; SMEC International Pty Ltd.: Queensland, QLD, Australia, 2008. [Google Scholar]
- Abate, M.; Nyssen, J.; Moges, M.M.; Enku, T.; Zimale, F.A.; Tilahun, S.A.; Adgo, E.; Steenhuis, T.S. Long-term landscape changes in the Lake Tana Basin as evidenced by delta development and floodplain aggradation in Ethiopia. Land Degrad. Dev. 2017, 28, 1820–1830. [Google Scholar] [CrossRef]
- Parker, G.; Wilcock, P.R.; Paola, C.; Dietrich, W.E.; Pitlick, J. Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, G.V.; Parker, G. Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers. J. Hydraul. Eng. 2010, 137, 739–753. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G. River Channel Pattern: Braided, Meandering and Straight; U.S. Government Printing Office: Washington, DC, USA, 1957. [Google Scholar]
- Van den Berg, J.H. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 1995, 12, 259–279. [Google Scholar] [CrossRef]
- Crosato, A. Analysis and Modelling of River Meandering. Ph.D. Thesis, Delft University of Technology, Nieuwe Hemweg 6b, Amsterdam, The Netherlands, 2008. [Google Scholar]
- Blom, A.; Arkesteijn, L.; Chavarrías, V.; Viparelli, E. The equilibrium alluvial river under variable flow and its channel-forming discharge. J. Geophys. Res. Earth Surf. 2017, 122, 1924–1948. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; W.H. Freeman and Company: San Francisco, CA, USA, 1964; p. 522. [Google Scholar]
- Williams, G.P. Bank-full discharge of rivers. Water Resour. Res. 1978, 14, 1141–1154. [Google Scholar] [CrossRef]
- Vargas-Luna, A.; Crosato, A.; Byishimo, P.; Uijttewaal, W.S. Impact of flow variability and sediment characteristics on channel width evolution in laboratory streams. J. Hydraul. Res. 2018, 1–11. [Google Scholar] [CrossRef]
- Shaw, E.M. Hydrology in Practice, 3rd ed.; Stanley Thornes Pub.: Cheltenham, UK, 2002. [Google Scholar]
- Meyer-Peter, E.; Müller, R. Formulas for Bed-Load Transport. In Proceedings of the International Association for Hydraulic Research (IAHR) 2nd Meeting, Stockholm, Sweden, 7–9 June 1948. [Google Scholar]
- Wong, M.; Parker, G. Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. J. Hydraul. Eng. 2006, 132, 1159–1168. [Google Scholar] [CrossRef]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Streams; TEKNISKFORLAG Skelbrekgade: Copenhagen, Denmark, 1967. [Google Scholar]
- Duró, G.; Crosato, A.; Tassi, P. Numerical study on river bar response to spatial variations of channel width. Adv. Water Resour. 2016, 93, 21–38. [Google Scholar] [CrossRef]
- Frings, R.M.; Schüttrumpf, H.; Vollmer, S. Verification of porosity predictors for fluvial sand-gravel deposits. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Garede, N.M.; Minale, A.S. Land use/cover dynamics in Ribb watershed, North Western Ethiopia. J. Nat. Sci. Res. 2014, 4, 9–16. [Google Scholar]
- Frings, R.M. Sand and gravel on the move: Human impacts on bed-material load along the Lower Rhine River. In Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe; Springer: New York, NY, USA, 2015. [Google Scholar]
- Thornton, E.B.; Sallenger, A.; Sesto, J.C.; Egley, L.; McGee, T.; Parsons, R. Sand mining impacts on long-term dune erosion in Southern Monterey Bay. Mar. Geol. 2006, 229, 45–58. [Google Scholar] [CrossRef]
- Jiang, S.W.; Haibier, A.; Wu, Y.X. Combined impacts of sand mining activities: The Nandu River downstream segment. Adv. Mater. Res. 2013, 671–674, 3134–3137. [Google Scholar] [CrossRef]
- Surian, N. Channel changes due to river regulation: The case of the Piave River, Italy. Earth Surf. Process. Landf. 1999, 24, 1135–1151. [Google Scholar] [CrossRef]
- Li, L.; Lu, X.; Chen, Z. River channel change during the last 50 years in the Middle Yangtze River, the Jianli Reach. Geomorphology 2007, 85, 185–196. [Google Scholar] [CrossRef]
Data Type | Data Period | Resolution | Source |
---|---|---|---|
Black and white aerial photographs | 1957 (November and December) | Approx. 1:55,000 | Ethiopian Mapping Agency |
February 1980 | Approx. 1:45,000 | ||
SPOT satellite images | 6 January 2006 | 2.5 m by 2.5 m | Airbus Defence |
28 November 2012 | 2.5 m by 2.5 m | and Space | |
ASTER DEM | 23 September 2014 | 30 m by 30 m | Maps.google.be |
Google Earth satellite images | 2016 | https://earthexplorer.usgs.gov/ | |
River cross-sectional survey | March 2016 | Field campaign | |
River flow discharge at the Lower gauging station | 1964–2014 | Daily | Ministry of Water, Irrigation and Energy |
River flow discharge at the Upper gauging station | 1980–2013 | Daily | Ministry of Water, Irrigation and Energy |
Water level at the Lower gauging station | 1980–2010 | Daily | Ministry of Water, Irrigation and Energy |
Lake Tana level at Bahir Dar station | 1960–2015 | Daily | Ministry of Water, Irrigation and Energy |
River bed-material samples | March 2016 | Field campaign | |
Rainfall at Debre Tabor Meteorological station | 1988–2015 | Daily | National Meteorological Agency, Ethiopia |
Reach | Year | Length of Channel (km) | Valley Length (km) | Sinuosity (-) | Change of Sinuosity from 1957 (%) | Average River Width (m) | Average River Depth (m) | Valley Slope (%) | River Channel Slope (%) |
---|---|---|---|---|---|---|---|---|---|
Upper-I | 1957 | 9.9 | 4.9 | 1.61 | - | - | - | - | |
1980 | 10.0 | 1.63 | 2.04 | - | - | - | |||
2006 | 10.4 | 1.71 | 10.20 | - | - | - | |||
2012 | 9.6 | 1.55 | −6.12 | - | - | - | |||
2016 | 9.7 | 1.57 | −4.08 | 65 | 4.3 | 0.64 | 0.3 | ||
Upper-II | 1957 | 20.8 | 13.3 | 1.71 | - | - | - | - | |
1980 | 21.1 | 1.74 | 2.26 | - | - | - | |||
2006 | 21.8 | 1.79 | 7.52 | - | - | - | |||
2012 | 21.7 | 1.78 | 6.77 | - | - | - | |||
2016 | 22.3 | 1.83 | 11.28 | 58 | 4.8 | 0.21 | 0.07 | ||
Middle | 1957 | 27.4 | 14.2 | 1.93 | - | - | - | - | |
1980 | 25.2 | 1.77 | −15.49 | - | - | - | |||
2006 | 24.7 | 1.74 | −19.01 | - | - | - | |||
2012 | 24.8 | 1.75 | −18.31 | - | - | - | |||
2016 | 25.0 | 1.76 | −16.90 | 46 | 5.2 | 0.1 | 0.06 | ||
Lower, (old) | 1957 | 22.8 | 15.3 | 1.49 | - | - | - | - | |
1980 | 23.0 | 1.50 | 1.31 | - | - | - | |||
2006 | 22.9 | 1.50 | 0.65 | - | - | - | |||
Lower, (new) | 2012 | 20.1 | 13.4 | 1.50 | - | - | - | - | |
2016 | 20.2 | 1.51 | 1.73 | 38 | 5.5 | 0.05 | 0.03 |
Reach Name | Catchment Area (km2) | Average Annual River Discharge Volume (×106 m3) | Reach-Averaged Annual Sediment Transport Volume (×104 m3) | |||
---|---|---|---|---|---|---|
Without Intervention | Scenarios 1 | Without Intervention | Scenario 1 | Scenario 2 | ||
Upper-I | 844 | 268.52 | 268.52 | 69.58 | 69.58 | 69.58 |
Upper-II | 1162 | 369.95 | 369.95 | 20.02 | 20.02 | 20.02 |
Upper Middle | 1381 | 440.37 | 425.27 | 6.51 | 6.49 | 5.84 |
Lower Middle | 1592 | 478.45 | 458.57 | 5.7 | 5.66 | 5.09 |
Reach | i∞, Slope in 2014 as Determined from 2014 ASTER DEM (%) | io, Estimated Slope of the Year 1980 for Scenario 1 (%) | io, Estimated Slope of the Year 1980 for Scenario 2 (%) |
---|---|---|---|
Middle (Upper and Lower) | 0.04 | 0.04 | 0.0426 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulatu, C.A.; Crosato, A.; Moges, M.M.; Langendoen, E.J.; McClain, M. Morphodynamic Trends of the Ribb River, Ethiopia, Prior to Dam Construction. Geosciences 2018, 8, 255. https://doi.org/10.3390/geosciences8070255
Mulatu CA, Crosato A, Moges MM, Langendoen EJ, McClain M. Morphodynamic Trends of the Ribb River, Ethiopia, Prior to Dam Construction. Geosciences. 2018; 8(7):255. https://doi.org/10.3390/geosciences8070255
Chicago/Turabian StyleMulatu, Chalachew A., Alessandra Crosato, Michael M. Moges, Eddy J. Langendoen, and Michael McClain. 2018. "Morphodynamic Trends of the Ribb River, Ethiopia, Prior to Dam Construction" Geosciences 8, no. 7: 255. https://doi.org/10.3390/geosciences8070255
APA StyleMulatu, C. A., Crosato, A., Moges, M. M., Langendoen, E. J., & McClain, M. (2018). Morphodynamic Trends of the Ribb River, Ethiopia, Prior to Dam Construction. Geosciences, 8(7), 255. https://doi.org/10.3390/geosciences8070255