Controls on Deuterium Excess across Asia
Abstract
:1. Introduction
2. Empirical Observations of Deuterium Excess
2.1. Synoptic-Scale Spatial Patterns of Deuterium Excess
2.2. Seasonal Patterns in Deuterium Excess
2.3. Mountain-Scale Spatial Patterns in Deuterium Excess
3. Interpreting Paleoclimate from Deuterium excess
4. Conclusions
Supplementary Materials
Funding
Acknowledgements
Conflicts of Interest
References
- Merlivat, L.; Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. Oceans 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Froehlich, K.; Gibson, J.; Aggarwal, P. Deuterium excess in precipitation and its climatological significance. In Proceedings of the Study of Environmental Change Using Isotope Techniques, Vienna, Austria, 23–27 April 2001; pp. 54–66. [Google Scholar]
- Cui, J.; An, S.; Wang, Z.; Fang, C.; Liu, Y.; Yang, H.; Xu, Z.; Liu, S. Using deuterium excess to determine the sources of high-altitude precipitation: Implications in hydrological relations between sub-alpine forests and alpine meadows. J. Hydrol. 2009, 373, 24–33. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B. Chem. Phys. Meteorol. 2013, 65, 19251. [Google Scholar] [CrossRef]
- Kreutz, K.J.; Wake, C.P.; Aizen, V.B.; Cecil, L.D.; Synal, H.-A. Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yao, T.; White, J.; Yu, W.; Wang, N. Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess. Chin. Sci. Bull. 2005, 50, 1026–1030. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Coplen, T.B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report). Pure Appl. Chem. 1994, 66, 273–276. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res.-Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef] [Green Version]
- Rozanski, K.; Araguas-Araguas, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Uemura, R.; Matsui, Y.; Yoshimura, K.; Motoyama, H.; Yoshida, N. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.; Carmi, I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium excess in precipitation of Alpine regions-moisture recycling. Isot. Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 1975, 80, 1133–1146. [Google Scholar] [CrossRef]
- Bershaw, J.; Penny, S.M.; Garzione, C.N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.; Veizer, J. Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Hren, M.T.; Bookhagen, B.; Blisniuk, P.M.; Booth, A.L.; Chamberlain, C.P. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet. Sci. Lett. 2009, 288, 20–32. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res. Atmos. 2007, 112, 10112. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Che, Y.; Zhu, X.; Liu, X. Influence of Below-Cloud Evaporation on Deuterium Excess in Precipitation of Arid Central Asia and Its Meteorological Controls. J. Hydrometeorol. 2016, 17, 1973–1984. [Google Scholar] [CrossRef]
- Bershaw, J.; Saylor, J.E.; Garzione, C.N.; Leier, A.; Sundell, K.E. Stable Isotope Variations (δ18O and δD) in Modern Waters Across the Andean Plateau. Geochim. Cosmochim. Acta 2016, 194, 310–324. [Google Scholar] [CrossRef]
- Salati, E.; Dall’Olio, A.; Matsui, E.; Gat, J.R. Recycling of water in the Amazon basin: An isotopic study. Water Resour. Res. 1979, 15, 1250–1258. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X.; Tang, H. Water Recycling between the Land Surface and Atmosphere on the Northern Tibetan Plateau-A Case Study at Flat Observation Sites. Arct. Antarct. Alp. Res. 2007, 39, 694–698. [Google Scholar] [CrossRef]
- Curio, J.; Maussion, F.; Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dyn. 2015, 6, 109. [Google Scholar] [CrossRef]
- Kurita, N.; Yamada, H. The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season. J. Hydrometeorol. 2008, 9, 760–775. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. 1999, 104, 1957–1972. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Atmospheric moisture recycling: Role of advection and local evaporation. J. Clim. 1999, 12, 1368–1381. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2018. Available online: http://isohis.iaea.org (accessed on 28 June 2018).
- Kumar, B.; Rai, S.P.; Kumar, U.S.; Verma, S.K.; Garg, P.; Kumar, S.V.V.; Jaiswal, R.; Purendra, B.K.; Kumar, S.R.; Pande, N.G. Isotopic characteristics of Indian precipitation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Hough, B.G.; Garzione, C.N.; Wang, Z.; Lease, R.O.; Burbank, D.W.; Yuan, D. Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan Plateau. Geol. Soc. Am. Bull. 2011, 123, 168–185. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Hughes, C.E.; Zhu, X.; Dong, L.; Ren, Z.; Chen, F. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, central Asia. Tellus B. Chem. Phys. Meteorol. 2016, 68, 26206. [Google Scholar] [CrossRef]
- Gourcy, L. Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA-TECDOC No. 1453; International Atomic Energy Agency: Vienna, Austria, 2005; p. 223. [Google Scholar]
- Liotta, M.; Favara, R.; Valenza, M. Isotopic composition of the precipitations in the central Mediterranean: Origin marks and orographic precipitation effects. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tian, L.; Wang, J.; Wen, R.; Weng, Y.; Shen, Y.; Vladislav, M.; Kanaev, E. A study of longitudinal and altitudinal variations in surface water stable isotopes in West Pamir, Tajikistan. Atmos. Res. 2015, 153, 10–18. [Google Scholar] [CrossRef]
- NOAA/ESRL. Physical Sciences Division. Available online: http://www.esrl.noaa.gov/psd (accessed on 28 June 2018).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Barros, A.P.; Chiao, S.; Lang, T.J.; Burbank, D.; Putkonen, J. From weather to climate—Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Geol. Soc. Am. Spec. Pap. 2006, 398, 17–38. [Google Scholar]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Li, L.; Garzione, C.N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction. Earth Planet. Sci. Lett. 2016, 460, 302–314. [Google Scholar] [CrossRef]
- Aravena, R.; Suzuki, O.; Pena, H.; Pollastri, A.; Fuenzalida, H.; Grilli, A. Isotopic composition and origin of the precipitation in Northern Chile. Appl. Geochem. 1999, 14, 411–422. [Google Scholar] [CrossRef]
- Garreaud, R.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Rohrmann, A.; Strecker, M.R.; Bookhagen, B.; Mulch, A.; Sachse, D.; Pingel, H.; Alonso, R.N.; Schildgen, T.F.; Montero, C. Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth Planet. Sci. Lett. 2014, 407, 187–195. [Google Scholar] [CrossRef]
- Hansen, D.; Bershaw, J. Spatial Variability of Δ17O in Meteoric Water in the Pacific Northwest; Goldschmidt: Paris, France, 2017. [Google Scholar]
- Rank, D.; Papesch, W. Isotopic Composition of Precipitation in Austria in Relation to Air Circulation Patterns and Climate. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA-TECDOC-1453; IAEA: Vienna, Austria, 2005; pp. 19–36. [Google Scholar]
- Garzione, C.N.; Quade, J.; DeCelles, P.G.; English, N.B. Predicting paleoelevation of Tibet and the Himalaya from d18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett. 2000, 183, 215–229. [Google Scholar] [CrossRef]
- Bershaw, J.; Lechler, A.R. The Isotopic Composition of Meteoric Water along Altitudinal Transects in the Tian Shan of Central Asia. Chem. Geol. 2018. in review. [Google Scholar]
- Meyer-Christoffer, A.; Becker, A.; Finger, P.; Rudolf, B.; Schneider, U.; Ziese, M. GPCC Climatology Version 2015 at 0.25: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges Built on GTS-Based and Historic Data; Deutscher Wetterdienst: Offenbach, Germany, 2015; Volume 10, p. 5676. [Google Scholar]
- USGS. Shuttle Radar Topography Mission, 30 Arc Second; University of Maryland: College Park, MD, USA, 2004. [Google Scholar]
- An, W.; Hou, S.; Zhang, Q.; Zhang, W.; Wu, S.; Xu, H.; Pang, H.; Wang, Y.; Liu, Y. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records. J. Geophys. Res. Atmos. 2017. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Joswiak, D.R.; Fujita, K.; Takeuchi, N.; Nikitin, S.A. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann. Glaciol. 2006, 43, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Jouzel, J.; Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. Atmos. 1984, 89, 11749–11757. [Google Scholar] [CrossRef]
- Rohrmann, A.; Sachse, D.; Mulch, A.; Pingel, H.; Tofelde, S.; Alonso, R.N.; Strecker, M.R. Miocene orographic uplift forces rapid hydrological change in the southern central Andes. Sci. Rep. 2016, 6, 35678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Tian, L.; Risi, C.; Yao, T.; Ma, Y.; Zhao, H.; Zhu, H.; He, Y.; Xu, B.; Zhang, H.; et al. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 2016, 456, 146–156. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bershaw, J. Controls on Deuterium Excess across Asia. Geosciences 2018, 8, 257. https://doi.org/10.3390/geosciences8070257
Bershaw J. Controls on Deuterium Excess across Asia. Geosciences. 2018; 8(7):257. https://doi.org/10.3390/geosciences8070257
Chicago/Turabian StyleBershaw, John. 2018. "Controls on Deuterium Excess across Asia" Geosciences 8, no. 7: 257. https://doi.org/10.3390/geosciences8070257
APA StyleBershaw, J. (2018). Controls on Deuterium Excess across Asia. Geosciences, 8(7), 257. https://doi.org/10.3390/geosciences8070257