A Geochemical Overview of Mid-Archaean Metavolcanic Rocks from Southwest Greenland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tholeiitic Basalts
3.2. Calc-Alkaline Andesites
4. Discussion
- Leucocratic amphibolites of intermediate composition (andesites) represent melts derived from slab-melt metasomatized mantle wedge [48]. This process would be an analogue for subduction zone processes found at modern-style island arcs.
- The andesites represent mixing/homogenization of juvenile mafic magmas with felsic partial melts derived from lower crust of either mafic or felsic composition in deep-seated magma chambers that underwent subsequent fractional crystallization of plagioclase + clinopyroxene ± garnet. This process would be an analogue for modern-style andesite formation along continental margins, although non-uniformitarian scenarios have also been proposed [56,57].
- The andesites formed by large degree melting of the same mafic source as the regional TTG-suite orthogneiss. In this case the andesites would therefore represent an early stage volcanic equivalent to the regional granitoid crust, which would explain their common hafnium-isotopic features.
- Finally, the andesites formed by tectonic intercalation of mafic metavolcanic rocks and younger TTG-suite continental crust, and thus simply represents a mechanical mixture. This case would negate any pervious study of the andesites, which interprets these rocks in a context volcanic processes with implications on geodynamic settings. Detailed field and structural observations would be essential for testing this latter tectonic intercalation model.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Polat, A.; Hofmann, A.W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res. 2003, 126, 197–218. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Münker, C.; Dziggel, A.; Rosing, M.T. Eoarchean within-plate basalts from southwest Greenland: Comment. Geology 2014, 42, e330. [Google Scholar] [CrossRef]
- Bédard, J.H. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 2018, 9, 19–49. [Google Scholar] [CrossRef]
- Wyman, D. Do cratons preserve evidence of stagnant lid tectonics? Geosci. Front. 2018, 9, 3–17. [Google Scholar] [CrossRef]
- Windley, B.F.; Garde, A.A. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues. Earth-Sci. Rev. 2009, 93, 1–30. [Google Scholar] [CrossRef]
- Polat, A.; Appel, P.W.; Fryer, B.J. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Res. 2011, 20, 255–283. [Google Scholar] [CrossRef]
- Polat, A.; Wang, L.; Appel, P.W. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics 2015, 662, 67–94. [Google Scholar] [CrossRef] [Green Version]
- Thirlwall, M.F.; Smith, T.E.; Graham, A.M.; Theodorou, N.; Hollings, P.; Davidson, J.P.; Arculus, R.J. High field strength element anomalies in arc lavas: Source or process? J. Petrol. 1994, 35, 819–838. [Google Scholar] [CrossRef]
- Kisters, A.F.; van Hinsberg, V.J.; Szilas, K. Geology of an Archaean accretionary complex—The structural record of burial and return flow in the Tartoq Group of South West Greenland. Precambrian Res. 2012, 220, 107–122. [Google Scholar] [CrossRef]
- Polat, A.; Kokfelt, T.; Burke, K.C.; Kusky, T.M.; Bradley, D.C.; Dziggel, A.; Kolb, J. Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach–Prince William accretionary complex, southern Alaska: Evidence for uniformitarian plate-tectonic processes. Can. J. Earth Sci. 2016, 53, 1336–1371. [Google Scholar] [CrossRef]
- Dziggel, A.; Diener, J.F.A.; Kolb, J.; Kokfelt, T.F. Metamorphic record of accretionary processes during the Neoarchaean: The Nuuk region, southern West Greenland. Precambrian Res. 2014, 242, 22–38. [Google Scholar] [CrossRef]
- Dyck, B.; Reno, B.L.; Kokfelt, T.F. The Majorqaq Belt: A record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland. Lithos 2015, 220, 253–271. [Google Scholar] [CrossRef]
- Polat, A.; Frei, R.; Fryer, B.; Appel, P.W. The origin of geochemical trends and Eoarchean (ca. 3700 Ma) zircons in Mesoarchean (ca. 3075 Ma) ocelli-hosting pillow basalts, Ivisaartoq greenstone belt, SW Greenland: Evidence for crustal contamination versus crustal recycling. Chem. Geol. 2009, 268, 248–271. [Google Scholar] [CrossRef]
- Zhang, H.F.; Sun, M.; Zhou, X.H.; Zhou, M.F.; Fan, W.M.; Zheng, J.P. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim. Cosmochim. Acta 2003, 67, 4373–4387. [Google Scholar] [CrossRef]
- Wang, Z.; Wilde, S.A.; Wang, K.; Yu, L. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Res. 2004, 131, 323–343. [Google Scholar] [CrossRef]
- Barley, M.E.; Loader, S.E.; McNaughton, N.J. 3430 to 3417 Ma calc-alkaline volcanism in the McPhee Dome and Kelly Belt, and growth of the eastern Pilbara Craton. Precambrian Res. 1998, 88, 3–23. [Google Scholar] [CrossRef]
- Morris, P.A.; Kirkland, C.L. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia. Lithos 2014, 190, 403–419. [Google Scholar] [CrossRef]
- Leclerc, F.; Bédard, J.H.; Harris, L.B.; McNicoll, V.J.; Goulet, N.; Roy, P.; Houle, P. Tholeiitic to calc-alkaline cyclic volcanism in the Roy Group, Chibougamau area, Abitibi Greenstone Belt—Revised stratigraphy and implications for VHMS exploration. Can. J. Earth Sci. 2011, 48, 661–694. [Google Scholar] [CrossRef]
- Lodge, R.W. Petrogenesis of intermediate volcanic assemblages from the Shebandowan greenstone belt, Superior Province: Evidence for subduction during the Neoarchean. Precambrian Res. 2016, 272, 150–167. [Google Scholar] [CrossRef]
- Bédard, J.H. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem. Geol. 1994, 118, 143–153. [Google Scholar] [CrossRef]
- Szilas, K.; van Hinsberg, V.J.; Creaser, R.A.; Kisters, A.F. The geochemical composition of serpentinites in the Mesoarchaean Tartoq Group, SW Greenland: Harzburgitic cumulates or melt-modified mantle? Lithos 2014, 198, 103–116. [Google Scholar] [CrossRef]
- Szilas, K.; Kelemen, P.B.; Rosing, M.T. The petrogenesis of ultramafic rocks in the >3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends. Gondwana Res. 2015, 28, 565–580. [Google Scholar] [CrossRef]
- Polat, A.; Appel, P.W.; Frei, R.; Pan, Y.; Dilek, Y.; Ordóñez-Calderón, J.C.; Fryer, B.; Hollis, J.A.; Raith, J.G. Field and geochemical characteristics of the Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Gondwana Res. 2007, 11, 69–91. [Google Scholar] [CrossRef]
- Ordóñez-Calderón, J.C.; Polat, A.; Fryer, B.J.; Appel, P.W.U.; van Gool, J.A.M.; Dilek, Y.; Gagnon, J.E. Geochemistry and geodynamic origin of the Mesoarchean Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos 2009, 113, 133–157. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Schulz, T.; Hansmeier, C.; Polat, A.; Viehmann, S.; Kasper, H.U.; Münker, C. Combined bulk-rock Hf-and Nd-isotope compositions of Mesoarchaean metavolcanic rocks from the Ivisaartoq Supracrustal Belt, SW Greenland: Deviations from the mantle array caused by crustal recycling. Chem. Erde-Geochem. 2016, 76, 543–554. [Google Scholar] [CrossRef]
- Garde, A.A. A mid-Archaean island arc complex in the eastern Akia terrane, Godthåbsfjord, southern West Greenland. J. Geol. Soc. 2007, 164, 565–579. [Google Scholar] [CrossRef]
- Szilas, K.; Tusch, J.; Hoffmann, J.E.; Garde, A.A.; Münker, C. Hafnium isotope constraints on the origin of Mesoarchaean andesites in southern West Greenland, North Atlantic craton. Geol. Soc. Lond. Spec. Publ. 2017, 449, 19–38. [Google Scholar] [CrossRef]
- Szilas, K.; Tusch, J.; van Gool, J.A.M.; Münker, C. Andesites of the mid-Archaean Bjørneøen Supracrustal Belt, SW Greenland: Evidence for Archaean subduction zone? Precambrian Res. 2018. under review. [Google Scholar]
- Szilas, K.; van Gool, J.A.; Scherstén, A.; Frei, R. The Neoarchaean Storø Supracrustal Belt, Nuuk region, southern West Greenland: An arc-related basin with continent-derived sedimentation. Precambrian Res. 2014, 247, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Szilas, K.; Garde, A.A. Mesoarchaean aluminous rocks at Storø, southern West Greenland: New age data and evidence of premetamorphic seafloor weathering of basalts. Chem. Geol. 2013, 354, 124–138. [Google Scholar] [CrossRef]
- Szilas, K.; Maher, K.; Bird, D.K. Aluminous gneiss derived by weathering of basaltic source rocks in the Neoarchean Storø Supracrustal Belt, southern West Greenland. Chem. Geol. 2016, 441, 63–80. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Hansmeier, C.; Hollis, J.A.; Münker, C.; Viehmann, S.; Kasper, H.U. Sm-Nd and Lu-Hf isotope and trace-element systematics of Mesoarchaean amphibolites, inner Ameralik fjord, southern West Greenland. Mineral. Mag. 2015, 79, 857–876. [Google Scholar] [CrossRef]
- Szilas, K.; Næraa, T.; Scherstén, A.; Stendal, H.; Frei, R.; van Hinsberg, V.J.; Kokfelt, T.F.; Rosing, M.T. Origin of Mesoarchaean arc-related rocks with boninite/komatiite affinities from southern West Greenland. Lithos 2012, 144, 24–39. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Scherstén, A.; Kokfelt, T.F.; Münker, C. Archaean andesite petrogenesis: Insights from the Grædefjord Supracrustal Belt, southern West Greenland. Precambrian Res. 2013, 236, 1–15. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Scherstén, A.; Rosing, M.T.; Windley, B.F.; Kokfelt, T.F.; Keulen, N.; van Hinsberg, V.J.; Næraa, T.; Frei, R.; et al. Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshåb Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Res. 2012, 208, 90–123. [Google Scholar] [CrossRef]
- Klausen, M.B.; Szilas, K.; Kokfelt, T.F.; Keulen, N.; Schumacher, J.C.; Berger, A. Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik Supracrustal Belt, SW Greenland. Precambrian Res. 2017, 302, 50–73. [Google Scholar] [CrossRef]
- Szilas, K.; van Hinsberg, V.J.; Kisters, A.F.; Hoffmann, J.E.; Windley, B.F.; Kokfelt, T.F.; Scherstén, A.; Frei, R.; Rosing, M.T.; Münker, C. Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland. Gondwana Res. 2013, 23, 436–451. [Google Scholar] [CrossRef]
- Janoušek, V.; Farrow, C.M.; Erban, V. Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 2006, 47, 1255–1259. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Pearce, J.A. A User’s Guide to Basalt Discrimination Diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Wyman, D.A., Ed.; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 1996; Volume 12, pp. 79–113. [Google Scholar]
- Palme, H.; O’Neill, H.S.C. Composition of the Primitive Mantle. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 1–38. [Google Scholar]
- Arndt, N.T. High Ni in Archean tholeiites. Tectonophysics 1991, 187, 411–419. [Google Scholar] [CrossRef]
- Kerrich, R.; Polat, A.; Wyman, D.; Hollings, P. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 1999, 46, 163–187. [Google Scholar] [CrossRef]
- Baier, J.; Audétat, A.; Keppler, H. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth Planet. Sci. Lett. 2008, 267, 290–300. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Hanghøj, K.; Greene, A.R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem. 2003, 3, 659. [Google Scholar] [CrossRef]
- Nicholls, I.A.; Harris, K.L. Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim. Cosmochim. Acta 1980, 44, 287–308. [Google Scholar] [CrossRef]
- Grove, T.L.; Kinzler, R.J. Petrogenesis of andesites. Annu. Rev. Earth Planet. Sci. 1986, 14, 417–454. [Google Scholar] [CrossRef]
- Kelemen, P.B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 1995, 120, 1–19. [Google Scholar]
- Reubi, O.; Blundy, J. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 2009, 461, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Arndt, N.T.; Tang, Q.; Ripley, E.M. Trace element indiscrimination diagrams. Lithos 2015, 232, 76–83. [Google Scholar] [CrossRef]
- Hollocher, K.; Robinson, P.; Walsh, E.; Roberts, D. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: A key to correlations and paleotectonic settings. Am. J. Sci. 2012, 312, 357–416. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Bédard, J.H. How many arcs can dance on the head of a plume? A ‘Comment’ on: A critical assessment of Neoarchean ‘plume only’ geodynamics: Evidence from the Superior province, by Derek Wyman, Precambrian Research, 2012. Precambrian Res. 2013, 229, 189–197. [Google Scholar] [CrossRef]
- Spera, F.J.; Bohrson, W.A. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 2001, 42, 999–1018. [Google Scholar] [CrossRef]
- Kovalenko, A.; Clemens, J.D.; Savatenkov, V. Petrogenetic constraints for the genesis of Archaean sanukitoid suites: Geochemistry and isotopic evidence from Karelia, Baltic Shield. Lithos 2005, 79, 147–160. [Google Scholar] [CrossRef]
- Bédard, J.H.; Harris, L.B.; Thurston, P.C. The hunting of the snArc. Precambrian Res. 2013, 229, 20–48. [Google Scholar] [CrossRef]
- Barnes, S.J.; Van Kranendonk, M.J. Archean andesites in the east Yilgarn craton, Australia: Products of plume-crust interaction? Lithosphere 2014, 6, 80–92. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Jensen, L.S. A New Cation Plot for Classifying Subalkalic Volcanic Rocks; Miscellaneous Paper 66; Ministry of Natural Resources: Peterborough, ON, Canada, 1976.
- Miyashiro, A. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 1974, 274, 321–355. [Google Scholar] [CrossRef]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Shand, S.J. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite; John Wiley & Sons: New York, NY, USA, 1943. [Google Scholar]
- Pearce, J.A.; Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 1973, 19, 290–300. [Google Scholar] [CrossRef]
- Ohta, T.; Arai, H. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol. 2007, 240, 280–297. [Google Scholar] [CrossRef]
Supracrustal Belt/Greenstone Belt | Magmatic Age | Metavolcanic Samples (#) | References |
---|---|---|---|
Ivisaartoq | 3075 Ma | 54 | [23,24,25] |
Qussuk | 3075 Ma | 17 | [26,27] |
Bjørneøen | 3075 Ma | 11 | [28] |
Storø | 2840 Ma | 39 | [29,30,31] |
Ameralik | ~3000 Ma | 12 | [32] |
Nunatak 1390 | ~3000 Ma | 29 | [33] |
Grædefjord | 2975 Ma | 35 | [34] |
Ikkattup Nunaa | 2975 Ma | 108 | [35] |
Nigerlikasik | 2975 Ma | 73 | [36] |
Tartoq Group | >3000 Ma | 58 | [37] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szilas, K. A Geochemical Overview of Mid-Archaean Metavolcanic Rocks from Southwest Greenland. Geosciences 2018, 8, 266. https://doi.org/10.3390/geosciences8070266
Szilas K. A Geochemical Overview of Mid-Archaean Metavolcanic Rocks from Southwest Greenland. Geosciences. 2018; 8(7):266. https://doi.org/10.3390/geosciences8070266
Chicago/Turabian StyleSzilas, Kristoffer. 2018. "A Geochemical Overview of Mid-Archaean Metavolcanic Rocks from Southwest Greenland" Geosciences 8, no. 7: 266. https://doi.org/10.3390/geosciences8070266
APA StyleSzilas, K. (2018). A Geochemical Overview of Mid-Archaean Metavolcanic Rocks from Southwest Greenland. Geosciences, 8(7), 266. https://doi.org/10.3390/geosciences8070266