Groundwater Temperature as an Indicator of the Vulnerability of Karst Coastal Aquifers
Abstract
:1. Introduction
2. The 3D Vulnerability of Coastal Aquifers
2.1. Sources of Pollution/Salts and Vulnerability Indicators
2.2. Limits of Indicators
3. Material and Methods
Geologic and Hydrogeological Setting of the Study Area
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Margat, J. Vulnerabilite des Nappes d’eau Souterraine a la Pollution (Groundwater Vulnerability to Contamination). Bases de la Cartographie; BRGM Publication: Orléans, France, 1968. [Google Scholar]
- Dörfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef]
- Witkowski, A.J.; Kowalczyk, A.; Vrba, J. (Eds.) Groundwater Vulnerability Assessment and Mapping; Taylor & Francis Group: Ustron, Poland, 2007; ISBN 9780415445610. [Google Scholar]
- Zwahlen, F. COST Action 620 Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers Final Report. Available online: https://www.bgr.bund.de/EN/Themen/Wasser/Projekte/abgeschlossen/F+E/Cost620/cost620_fb_02.html?nn=1546392 (accessed on 11 December 2018).
- Gogu, R.C.; Hallet, V.; Dassargues, A. Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ. Geol. 2003, 44, 881–892. [Google Scholar] [CrossRef]
- Custodio, E.; Bruggeman, G.A. Groundwater Problems in Coastal Areas. UNESCO-IHP Studies and Reports in Hydrology, 45; UNESCO: Paris, France, 1987; ISBN 92-3-10241 5-9. [Google Scholar]
- FAO. Seawater Intrusion in Coastal Aquifers, Guidelines for Study, Monitoring and Control. Water Reports (FAO) Eng No. 11; FAO: Rome, Italy, 1997; ISBN 9251039860. [Google Scholar]
- Bear, J.; Cheng, A.H.; Sorek, S.; Ouazar, D.; Herrers, I. (Eds.) Seawater Intrusion in Coastal Aquifer Concepts, Methods, and Practices; Kluwer Academic Publishers: London, UK, 1999. [Google Scholar]
- Cheng, A.H.; Ouazar, D. Coastal Aquifer Management-Monitoring, Modeling, and Case Studies; CRC Press: Abingdon, UK, 2003; ISBN 9781566706056. [Google Scholar]
- Tulipano, L.; Fidelibus, M.D.; Panagopoulos, A. (Eds.) Groundwater Management of Coastal Karstic Aquifers”, COST ACTION 621 Final Report, vol. EUR 21366; EU Publications Office (OPOCE): Luxembourg City, Luxembourg, 2005; ISBN 92-894-0015-1. [Google Scholar]
- Leduc, C.; Pulido-Bosch, A.; Remini, B.; Massuel, S. Changes in Mediterranean groundwater resources. In The Mediterranean Region under Climate Change; IRD, Ed.; IRD Editions: Marseille, France, 2016; pp. 328–333. ISBN 978-2-7099-2219-7. [Google Scholar]
- Kallioras, A.; Pliakas, F.; Skias, S.; Gkiougkis, I. Groundwater vulnerability assessment at SW Rhodope aquifer system in NE Greece. In Advances in the Research of Aquatic Environment; Lambrakis, N., Stournaras, G., Katsanou, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 351–358. [Google Scholar]
- Najib, S.; Grozavu, A.; Mehdi, K.; Breaban, I.G.; Guessir, H.; Boutayeb, K. Application of the method GALDIT for the cartography of groundwater vulnerabilty: Aquifer of Chaouia coast (Morocco). Sci. Ann. Alexandru IOan Cuza Univ. IASI 2012, 58, 77–88. [Google Scholar]
- Saidi, S.; Bouri, S.; Dhia, H. Ben Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modelling: Application to the Mahdia-Ksour Essaf aquifer, Tunisia. Environ. Earth Sci. 2013, 70, 1551–1568. [Google Scholar] [CrossRef]
- Saidi, S.; Bouri, S.; Hassine, S.; Ben Dhia, H. Comparison of three applied methods of groundwater vulnerability mapping: Application to the coastal aquifer of Chebba-Mellouleche (Tunisia). Desalin. Water Treat. 2014, 52, 2120–2130. [Google Scholar] [CrossRef]
- Kura, N.U.; Ramli, M.F.; Ibrahim, S.; Sulaiman, W.N.A.; Aris, A.Z.; Tanko, A.I.; Zaudi, M.A. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods. Environ. Sci. Pollut. Res. 2015, 22, 1512–1533. [Google Scholar] [CrossRef]
- Pedreira, R.; Kallioras, A.; Pliakas, F.; Gkiougkis, I.; Schuth, C. Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta, Greece. Environ. Earth Sci. 2015, 73, 6387–6415. [Google Scholar] [CrossRef]
- Bouderbala, A.; Remini, B.; Saaed Hamoudi, A.; Pulido-Bosch, A. Assessment of groundwater vulnerability and quality in coastal aquifers: A case study (Tipaza, North Algeria). Arab. J. Geosci. 2016, 9, 181. [Google Scholar] [CrossRef]
- Gontara, M.; Allouche, N.; Jmal, I.; Bouri, S. Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arab. J. Geosci. 2016, 9, 416. [Google Scholar] [CrossRef]
- Idowu Temitope, E.; Nyadawa, M.; K’orowe, M. Seawater Intrusion Vulnerability Assessment of a Coastal Aquifer: North Coast Of Mombasa, Kenya as a Case Study. J. Eng. Res. Appl. 2016, 6, 2248–962237. [Google Scholar]
- Lappas, I.; Kallioras, A.; Pliakas, F.; Th, R. Groundwater vulnerability assessment to seawater intruson through GIS–based GALDIT method. Case study: Atalanti coastal aquifer, Central Greece. Bull. Geol. Soc. Greece 2016, 50, 798–807. [Google Scholar] [CrossRef]
- Tasnim, Z.; Tahsin, S. Application of the Method of Galdit for Groundwater Vulnerability Assessment: A Case of South Florida. Asian J. Appl. Sci. Eng. 2016, 5, 27–40. [Google Scholar]
- Trabelsi, N.; Triki, I.; Hentati, I.; Zairi, M. Aquifer vulnerability and seawater intrusion risk using GALDIT, GQISWI and GIS: Case of a coastal aquifer in Tunisia. Environ. Earth Sci. 2016, 75, 669. [Google Scholar] [CrossRef]
- Kardan Moghaddam, H.; Jafari, F.; Javadi, S. Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrol. Sci. J. 2017, 62, 137–146. [Google Scholar] [CrossRef]
- Ballesteros, B.J.; Morell, I.; García-Menéndez, O.; Renau-Pruñonosa, A. A Standardized Index for Assessing Seawater Intrusion in Coastal Aquifers: The SITE Index. Water Resour. Manag. 2016, 30, 4513–4527. [Google Scholar] [CrossRef] [Green Version]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. In UNESCO-IHP Workshop on Modelling in Hydrogeology; Coastin e Modelling in Hydrogeology: Chennai, India, 2001; pp. 43–156. [Google Scholar]
- Ferreira, J.P.L.; Chachadi, A.G.; Diamantino, C.; Henriques, M.J. Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1-Application to the Portuguese Aquifer of Monte Gordo. In Water in Celtic Countries: Quantity, Quality and Climate Variability, Proc. of the Fourth Inter Colloquium on Hydrology and Management of Water Resources, Guimares, Portugal; Lobo Ferreira, J.P., Viera, J.M.P., Eds.; IAHS Press: Wallingford, UK, 2007; pp. 161–171. ISBN 978-1-901502-88-6. [Google Scholar]
- Zaarour, T. Application of GALDIT Index in the Mediterranean Region to Assess Vulnerability to Sea Water Intrusion. Master’s Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Klassen, J.; Allen, D.M. Assessing the risk of saltwater intrusion in coastal aquifers. J. Hydrol. 2017, 551, 730–745. [Google Scholar] [CrossRef]
- Stuyfzand, P.J.; Stuurman, R.J. Recognition and genesis of various hypersaline ground-waters in the Netherlands. In Proc. 13th SWIM; Barrocu, G., Ed.; Università degli studi di Cagliari: Cagliari, Italy, 1994; pp. 125–136. [Google Scholar]
- Foster, S.; Pulido-Bosch, A.; Vallejos, Á.; Molina, L.; Llop, A.; MacDonald, A.M. Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeol. J. 2018, 26, 2781–2791. [Google Scholar] [CrossRef]
- Colombani, N.; Giambastiani, B.M.S.; Mastrocicco, M. Impact of climate variability on the salinization of the coastal wetland-aquifer system of the Po Delta, Italy. J. Water Supply Res. Technol. 2017, 66, 430–441. [Google Scholar] [CrossRef]
- Aquilina, L.; Emblanch, C.; Fidelibus, M.D.; Zuppi, G.M. Geochemical diagenesis of rock and groundwaters in karstic coastal aquifers. In Groundwater Management of Coastal Karstic Aquifers-Final Report of COST Action 621; Tulipano, L., Fidelibus, M.D., Panagopoulos, A., Eds.; Office For Official Publications Of The European Communities: Luxembourg City, Luxembourg, 2005; pp. 157–171. ISBN 92-898-0015-1. [Google Scholar]
- García-Menéndez, O.; Morell, I.; Ballesteros, B.J.; Renau-Pruñonosa, A.; Renau-Llorens, A.; Esteller, M.V. Spatial characterization of the seawater upconing process in a coastal Mediterranean aquifer (Plana de Castellón, Spain): Evolution and controls. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Reilly, T.E.; Goodman, A.S. Analysis of saltwater upconing beneath a pumping well. J. Hydrol. 1987, 89, 169–204. [Google Scholar] [CrossRef]
- Fidelibus, M.D.; Tulipano, L. Regional flow of intruding sea water in the carbonate aquifers of Apulia (Southern Italy). In Rapporter och Meddelanden-Proc. 14th SWIM, Malmo, Sweden; Geological Survey of Sweden, Gotab, Stockholm: Uppsala, Sweden, 1996; Volume 86, pp. 230–240. ISBN 91-7158-572-9. [Google Scholar]
- Barbieri, M.; Barbieri, M.; Fidelibus, M.D.; Morotti, M.; Sappa, G.; Tulipano, L. First results of isotopic ratio 87Sr/86Sr in the characterization of seawater intrusion in the coastal karstic aquifer of Murgia (Southern Italy). Available online: https://www.researchgate.net/publication/260244949_First_results_of_the_application_of_the_isotopic_ratio_87Sr86Sr_in_the_characterization_of_seawater_intrusion_in_the_coastal_karstic_aquifer_of_Murgia_Southern_Italy (accessed on 11 December 2018).
- Tellam, J.H. Hydrochemistry of the saline groundwaters of the lower Mersey Basin Permo-Triassic sandstone aquifer, UK. J. Hydrol. 1995, 165, 45–84. [Google Scholar] [CrossRef]
- Oude Essink, G.H. Salt Water Intrusion in a Three-dimensional Groundwater System in The Netherlands: A Numerical Study. Transp. Porous Media 2001, 43, 137–158. [Google Scholar] [CrossRef]
- Harbison, J.; Cox, M. Hydrological characteristics of groundwater in a subtropical coastal plain with large variations in salinity: Pimpama, Queensland, Australia. Hydrol. Sci. J. 2002, 47, 651–665. [Google Scholar] [CrossRef] [Green Version]
- Batelaan, O.; Banks, E.; Post, V.; Dean, W.; Ellis, J.; Wilson, C.; Cahill, K. Near-Surface Geophysics for Water supply Investigation for the Water Constrained Aboriginal Community of Milingimbi Island, Australia. Geoscientists without Borders Final Report, Grant Number: #20131000. Available online: https://seg.org/Portals/0/SEG/About%20SEG/GWB/Projects/North%20Australia%20GWB%20Project%20Flinders%20University%20Final%20Report.pdf (accessed on 11 December 2018).
- Schmitz, R.M. Can the diffuse double layer theory describe changes in hydraulic conductivity of compacted clays? Geotech. Geol. Eng. 2006, 24, 1835–1844. [Google Scholar] [CrossRef]
- Larsen, F.; Tran, L.V.; Van Hoang, H.; Tran, L.T.; Christiansen, A.V.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef]
- Delsman, J.R. Saline Groundwater—Surface Water Interaction in Coastal Lowlands; Vrije Universiteit: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Post, V.; Kooi, H.; Simmons, C. Using Hydraulic Head Measurements in Variable-Density Ground Water Flow Analyses. Groundwater 2007, 45, 664–671. [Google Scholar] [CrossRef]
- Violette, S.; Boulicot, G.; Gorelick, S.M. Tsunami-induced groundwater salinization in southeastern India. C. R. Geosci. 2009, 341, 339–346. [Google Scholar] [CrossRef]
- Illangasekare, T.; Tyler, S.W.; Clement, T.P.; Villholth, K.G.; Perera, A.P.G.R.L.; Obeysekera, J.; Gunatilaka, A.; Panabokke, C.R.; Hyndman, D.W.; Cunningham, K.J.; et al. Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Debernard, J.; Sætra, Ø.; Røed, L.P. Future wind, wave and storm surge 916 climate in the northern North Atlantic. Clim. Res. 2002, 23, 39–49. [Google Scholar] [CrossRef]
- International Perspectives on Natural Disasters: Occurrence, Mitigation, and Consequences; Stoltman, J.P.; Lidstone, J.; Dechano, L.M. (Eds.) Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-2850-2. [Google Scholar]
- Vengosh, A.; Spivack, A.J.; Artzi, Y.; Ayalon, A. Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean Coast of Israel. Water Resour. Res. 1999, 35, 1877–1894. [Google Scholar] [CrossRef] [Green Version]
- Fakir, Y.; El Mernissi, M.; Kreuser, T.; Berjami, B. Natural tracer approach to characterize groundwater in the coastal Sahel of Oualidia (Morocco). Environ. Geol. 2002, 43, 197–202. [Google Scholar] [CrossRef]
- Sanchez-Martos, F.; Pulido-Bosch, A.; Molina-Sanchez, L.; Vallejos-Izquierdo, A. Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Sci. Total Environ. 2002, 297, 45–58. [Google Scholar] [CrossRef]
- Najib, S.; Fadili, A.; Mehdi, K.; Riss, J.; Makan, A.; Guessir, H. Salinization process and coastal groundwater quality in Chaouia, Morocco. J. African Earth Sci. 2016, 115, 17–31. [Google Scholar] [CrossRef]
- Richter, B.C.; Kreitler, C.V. Geochemical Techniques for Identifying Sources of Ground-Water Salinization; CRC Press: BOCA Raton, FL, USA, 1993; ISBN 9781566700009. [Google Scholar]
- Post, V.E.A.; von Asmuth, J.R. Review: Hydraulic head measurements—New technologies, classic pitfalls. Hydrogeol. J. 2013, 21, 737–750. [Google Scholar] [CrossRef]
- Gotovac, H.; Vranjeö, R.; Andričević, M. Effects of aquifer heterogeneity on the intrusion of sea water. In Proceedings of the First International Conference on Saltwater Intrusion and Coastal Aquifers—Monitoring, Modeling, and Management, Essaouira, Maroc, 23–25 April 2001; pp. 1–9. [Google Scholar]
- Levanon, E.; Yechieli, Y.; Shalev, E.; Friedman, V.; Gvirtzman, H. Reliable monitoring of the transition zone between fresh and saline waters in coastal aquifers. Groundw. Monit. Remediat. 2013, 33, 101–110. [Google Scholar] [CrossRef]
- Shalev, E.; Lazar, A.; Wollman, S.; Kington, S.; Yechieli, Y.; Gvirtzman, H. Biased monitoring of fresh water-salt water mixing zone in coastal aquifers. Ground Water 2009, 47, 49–56. [Google Scholar] [CrossRef]
- Colombani, N.; Volta, G.; Osti, A.; Mastrocicco, M. Misleading reconstruction of seawater intrusion via integral depth sampling. J. Hydrol. 2016, 536, 320–326. [Google Scholar] [CrossRef]
- Bakalowicz, M.; Drew, D.; Orvan, J.; Pulido-Bosch, A.; Salaga, L.; Sarin, A.; Tulipano, L. The characteristics of karst groundwater systems. In Final Report of COST Action 65, Hydrogeological Aspects of Groundwater Protection in Karstic Areas; Eurpean Commission, Directorate General XII: Brussels, Belgium, 1995. [Google Scholar]
- Kiraly, L. Karstification and Groundwater Flow. Speleogenes. Evol. Karst Aquifers 2003, 1, 155–192. [Google Scholar]
- Hanshaw, B.B.; Back, W. Deciphering hydrological systems by means of geochemical processes. Hydrol. Sci. J. 1985, 30, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Fidelibus, M.D.; Tulipano, L. Mixing phenomean owing to seawater intrusion for the interpretation of chemical and isotopic data of discharge waters in the Apulian coastal carbonate aquifer (Southern Italy). In Proceedings of the 9th Salt Water Intrusion Meeting, Delft, The Netherlands, 12–16 May 1986; Boekelman, R.H., van Dam, J.C., Evertman, M., ten Hoorn, W.H.C., Eds.; Water Management Group, Department of Civil Engineering, Delft University of Technology: Delft, The Netherlands, 2008; Volume 39, pp. 561–563. [Google Scholar]
- Sanford, W.E.; Konikow, L.F. Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers. Water Resour. Res. 1989, 25, 655–667. [Google Scholar] [CrossRef]
- Rezaei, M.; Sanz, E.; Raeisi, E.; Ayora, C.; Vázquez-Suñé, E.; Carrera, J. Reactive transport modeling of calcite dissolution in the fresh-salt water mixing zone. J. Hydrol. 2005, 311, 282–298. [Google Scholar] [CrossRef]
- Pool, M.; Dentz, M. Effects of Heterogeneity, Connectivity, and Density Variations on Mixing and Chemical Reactions Under Temporally Fluctuating Flow Conditions and the Formation of Reaction Patterns. Water Resour. Res. 2018, 54, 186–204. [Google Scholar] [CrossRef]
- Pool, M.; Post, V.E.A.; Simmons, C.T. Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers. Water Resour. Res. 2015, 51, 1570–1585. [Google Scholar] [CrossRef] [Green Version]
- Sáinz García, Á.M.; Molinero Huguet, J.J.; Saaltink, M.W. Numerical modeling of coastal aquifer karst processes by means of coupled simulations of density-driven flow and reactive solute transport phenomena. Carbonates Evaporites 2011, 26, 19–27. [Google Scholar] [CrossRef]
- Mylroie, J.E.; Carew, J.L. The flank margin model for dissolution cave development in carbonate platforms. Earth Surf. Process. Landforms 1990, 15, 413–424. [Google Scholar] [CrossRef]
- Badino, G.; De Vivo, A.; Forti, P.; Piccini, L. The Puerto Princesa Underground River (Palawan, Philippines): Some peculiar features of a tropical, high-energy coastal karst system. Geol. Soc. Lond. Spec. Publ. 2018, 466, 155–170. [Google Scholar] [CrossRef]
- Dewey, J.F.; Holdsworth, R.E.; Strachan, R.A. Transpression and transtension zones. Geol. Soc. Lond. Spec. Publ. 1998, 135, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Caine, J.S.; Forster, C.B. Fault zone architecture and fluid flow: Insights from field data and numerical modeling. In Faults and Subsurface Fluid Flow in the Shallow Crust—Geophysical Monograph 113; Haneberg, W.C., Mozley, P.S., Moore, J.C., Goodwin, L.B., Eds.; American Geophysical Union: San Francisco, CA, USA, 1999; pp. 101–127. [Google Scholar]
- Rawling, G.C.; Goodwin, L.B.; Wilson, J.L. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 2001, 29, 43. [Google Scholar] [CrossRef]
- Billi, A.; Salvini, F.; Storti, F. The damage zone-fault core transition in carbonate rocks: Implications for fault growth, structure and permeability. J. Struct. Geol. 2003, 25, 1779–1794. [Google Scholar] [CrossRef]
- Micarelli, L.; Moretti, I.; Jaubert, M.; Moulouel, H. Fracture analysis in the south-western Corinth rift (Greece) and implications on fault hydraulic behavior. Tectonophysics 2006, 426, 31–59. [Google Scholar] [CrossRef]
- Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.; Shipton, Z.K.; Wibberley, C.A.J.; Withjack, M.O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 2010, 32, 1557–1575. [Google Scholar] [CrossRef]
- Bense, V.F.; Gleeson, T.; Loveless, S.E.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth-Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Jeanne, P.; Guglielmi, Y.; Cappa, F. Hydromechanical heterogeneities of a mature fault zone: Impacts on fluid flow. Groundwater 2013, 51, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Scibek, J.; Mckenzie, J.M.; Gleeson, T. How Fault Zones Impact Regional Permeability And Groundwater Systems: Insights from a Global Database of Fault Zone. In Proceedings of the American Geophysical Union, Fall Meeting 2014, AGU, San Francisco, CA, USA, 15–19 December 2015. [Google Scholar]
- Gallen, S.F.; Wegmann, K.W. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf. Dyn. Discuss. 2016, 1–47. [Google Scholar] [CrossRef]
- Williams, R.T.; Goodwin, L.B.; Mozley, P.S. Diagenetic controls on the evolution of fault-zone architecture and permeability structure: Implications for episodicity of fault-zone fluid transport in extensional basins. Geol. Soc. Am. Bull. 2017, 129, 464–478. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Parise, M.; Florea, I.J. I sinkholes nella letteratura scientifica internazionale: Una breve rassegna, con particolare riferimento agli Stati Uniti d’America (The sinkholes in the scientific international literature: A short review, with particular regard to the USA). Mem. Descr. Cart. Geol. d’It 2008, 85, 427–450. [Google Scholar]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Fidelibus, M.D.; Balacco, G.; Gioia, A.; Iacobellis, V.; Spilotro, G. Mass transport triggered by heavy rainfall: The role of endorheic basins and epikarst in a regional karst aquifer. Hydrol. Process. 2017, 31. [Google Scholar] [CrossRef]
- Oehlmann, S.; Geyer, T.; Licha, T.; Birk, S. Influence of aquifer heterogeneity on karst hydraulics and catchment delineation employing distributive modeling approaches. Hydrol. Earth Syst. Sci. 2013, 17, 4729–4742. [Google Scholar] [CrossRef] [Green Version]
- Zech, A.; Zehner, B.; Kolditz, O.; Attinger, S. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin. J. Hydrol. 2016, 532, 90–101. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T. Interpretation of groundwater level monitoring results in karst aquifers: Examples from the Dinaric karst. Hydrol. Process. 2000, 14, 2423–2438. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T. Sea water intrusion in coastal karst springs: Example of the Blaz spring (Croatia). Hydrol. Sci. J. 1997, 42, 89–100. [Google Scholar] [CrossRef]
- Fleury, P.; Bakalowicz, M.; de Marsily, G. Submarine springs and coastal karst aquifers: A review. J. Hydrol. 2007, 339, 79–92. [Google Scholar] [CrossRef]
- Arfib, B.; Bonacci, O. Particular aspects of discharge in coastal karstic aquifers. In Final Report of COST Action 621, Groundwater Management of Coastal Karstic Aquifers; Tulipano, L., Fidelibus, M.D., Panagopoulos, A., Eds.; Office For Official Publications Of The European Communities: Luxembourg City, Luxembourg, 2005; pp. 87–96. [Google Scholar]
- Arfib, B.; Charlier, J.B. Insights into saline intrusion and freshwater resources in coastal karstic aquifers using a lumped Rainfall–Discharge–Salinity model (the Port-Miou brackish spring, SE France). J. Hydrol. 2016, 540, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Canora, F.; Fidelibus, D.; Spilotro, G. Coastal and inland karst morphologies driven by sea level stands: A GIS based method for their evaluation. Earth Surf. Process. Landforms 2012, 37, 1376–1386. [Google Scholar] [CrossRef]
- De Waele, J.; Parise, M. Discussion on the article ‘Coastal and inland karst morphologies driven by sea level stands: A GIS based method for their evaluation’ by Canora F, Fidelibus D and Spilotro G. Earth Surf. Process. Landforms 2013, 38, 902–907. [Google Scholar] [CrossRef]
- Fidelibus, D.; Spilotro, G.; Canora, F. Reply to the discussion on “Coastal and inland karst morphologies driven by sea level stands: A GIS based method for their evaluation” by Filomena Canora, Dolores Fidelibus and Giuseppe Spilotro (2012). Earth Surf. Process. Landforms 2013, 38, 898–901. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst at depth below the sea level around the Mediterranean due to the Messinian crisis of salinity. Hydrogeological consequences and issues. Geol. Belgica 2014, 17, 96–101. [Google Scholar]
- Sola, F.; Vallejos, Á.; Currás, J.; Daniele, L.; Pulido-Bosch, A. Descarga de agua subterránea submarina durante el Pleistoceno en el acantilado de Aguadulce (Almería, SE España) (Pleistocene submarine groundwater discharge along the Aguadulce cliff (Almería, SE Spain)). Geogaceta 2015, 57, 151–154. [Google Scholar]
- Tadolini, T.; Tulipano, L. The evolution of fresh water-salt water equilibrium in connection with drafts from the coastal carbonate and karst aquifer of the Salentine Peninsula (Southern Italy). In Geologisches Jahrbuch Reihe C, Hydrogeologie, Ingenieurgeologie, Heft 29, Sixth Salt Water Intrusion Meeting in Hanover 1979; Pfeiffer, D., Messner, B., Strauch, H., Eds.; Alfred-Bentz-Haus: Hannover, Germany, 1981; pp. 69–85. [Google Scholar]
- Cotecchia, V.; Polemio, M. Apulian groundwater (Southern Italy) salt pollution monitoring network. In Proceedings of the 15 th SWIM, Ghent, Belgium, 1998; De Breuck, W., Walschot, L., Eds.; Flemish Journal of Natural Science: Ghent, Belgium, 25–29 May 1999; Volume 79, pp. 197–204. [Google Scholar]
- Polemio, M.; Dragone, V.; Limoni, P.P. Monitoring and methods to analyse the groundwater quality degradation risk in coastal karstic aquifers (Apulia, Southern Italy). Environ. Geol. 2009, 58, 299–312. [Google Scholar] [CrossRef]
- Regione Puglia. Report di Monitoraggio Ambientale. Il Sistema di Monitoraggio per la Componente Acqua—Acque Continentali e Risorse Idriche. Available online: http://93.63.84.69/ecologia/Documenti/GestioneDocumentale/Documenti/Ecologia/AutoritaAmbientale/Attivita/ECO_ATT_AA_14_PMA_ACQUA.pdf (accessed on 11 December 2018).
- Molina, L.; Vallejos, A.; Pulido-Bosch, A.; Sánchez-Martos, F. Water temperature and conductivity variability as indicators of groundwater behaviour in complex aquifer systems in the south-east of Spain. Hydrol. Process. 2002, 16, 3365–3378. [Google Scholar] [CrossRef]
- Fidelibus, M.D.; Tulipano, L. Groundwater temperature as environmental tracer. In Proceedings of the 7th Hellenic Hydrogeology Conference, Athens, Greece, 5–6 October 2005; Stournaras, G., Pavlopoulos, K., Bellos, T., Eds.; Geological Society of Greece: Athens, Greece, 2005; pp. 211–218, ISBN 960-88816-2-5. [Google Scholar]
- Sánchez-Martos, F.; Pulido-Bosch, A.; Tulipano, L.; Fidelibus, M.D.; Molina-Sánchez, L. Identification of Thermal Anomalies in the Carbonate Aquifer of the Lower Andarax (SE Spain) by Means of Temperature Cross-Sections. In Environmental Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–214. [Google Scholar]
- Fidelibus, M.D.; Tulipano, L.; D’Amelio, P. Convective Thermal Field Reconstruction by Ordinary Kriging in Karstic Aquifers (Puglia, Italy): Geostatistical Analysis of Anisotropy. In Environmental Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2010; pp. 203–208. [Google Scholar]
- Ravnik, D.; Rajver, D. The use of inverse geotherms for determining underground water flow at the Ombla karst spring near Dubrovnik, Croatia. J. Appl. Geophys. 1998, 39, 177–190. [Google Scholar] [CrossRef]
- Smith, L.; Chapman, D.S. On the thermal effects of groundwater flow: 1. Regional scale systems. J. Geophys. Res. 1983, 88, 593. [Google Scholar] [CrossRef]
- Woodbury, A.D.; Smith, L. On the thermal effect of three dimensional groundwater flow. J. Geophys. Res. Solid Earth 1985, 90, 759–767. [Google Scholar] [CrossRef]
- Forster, C.; Smith, L. Groundwater flow systems in mountainous terrain: 2. Controlling factors. Water Resour. Res. 1988, 24, 1011–1023. [Google Scholar] [CrossRef]
- Fidelibus, M.D.; Tulipano, L. Monitoring seawater intrusion by means of long-term series of EC and T logs (Salento coastal karstic aquifer, Southern Italy. In Proceedings of the 23rd Salt Water Intrusion Meeting, Programme and Proceedings, Husum, Germany, 16–20 June 2014; Wiederhold, H., Michaelsen, J., Hinsby, K., Nommensen, B., Eds.; Leibniz-Institut für Angewandte Geophysik, Neue Perspektiven Digital-und Offsetdruck: Hannover, Germany, 2014; pp. 117–120. [Google Scholar]
- Portoghese, I.; Bruno, E.; Dumas, P.; Guyennon, N.; Hallegatte, S.; Hourcade, J.C.; Nassopoulos, H.; Pisacane, G.; Struglia, M.V.; Vurro, M. Regional Assessment of Climate Change in the Mediterranean. In Regional Assessment of Climate Change in the Mediterranean; Navarra, A., Tubiana, L., Eds.; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2013; Volume 50, pp. 241–306. ISBN 978-94-007-5780-6. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE Italy): An anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Pieri, P.; Festa, V.; Moretti, M.; Tropeano, M. Quaternary tectonic activity of the Murge area (Apulian foreland-Southern Italy). Ann. Geophys. 1997, 40, 1395–1404. [Google Scholar] [CrossRef]
- Ciaranfi, N.; Pieri, P.; Ricchetti, G. Note alla carta geologica delle Murge e del Salento. Mem. Soc. Geol. Ital. 1988, 41, 449–602. [Google Scholar]
- Gambini, R.; Tozzi, M. Tertiary geodynamic evolution of the Southern Adria microplate. Terra Nov. 1996, 8, 593–602. [Google Scholar] [CrossRef]
- Di Bucci, D.; Coccia, S.; Fracassi, U.; Iurilli, V.; Mastronuzzi, G.; Palmentola, G.; Sanso, P.; Selelri, G.; Valensise, G. Late Quaternary deformation of the southern Adriatic foreland (southern Apulia) from mesostructural data: Preliminary results. Ital. J. Geosci. 2009, 128, 33–46. [Google Scholar]
- Forte, F.; Pennetta, L. Geomorphological map of the salento peninsula (southern italy). J. Maps 2007, 3, 173–180. [Google Scholar] [CrossRef]
- Festa, V.; Fiore, A.; Miccoli, M.N.; Parise, M.; Spalluto, L. Tectonics versus Karst Relationships in the Salento Peninsula (Apulia, Southern Italy): Implications for a Comprehensive Land-Use Planning. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 5, pp. 493–496. ISBN 978-3-319-09047-4. [Google Scholar]
- Pepe, M.; Parise, M. Structural Control on Development of Karst Landscape in the Salento Peninsula (Apulia, Se Italy). Acta Carsologica 2014, 43, 101–114. [Google Scholar] [CrossRef]
- Vurro, M.; Portoghese, I.; De Girolamo, A. Il bilancio idrogeologico come strumento per una gestione sostenibile delle idrostrutture pugliesi. Geol. e Territ. 2004, 1, 79–86. [Google Scholar]
- Cotecchia, V. Area Idrogeologica del Salento. In Memorie Descrittive Della Carta Geologica d’Italia; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2017; Volume 92, pp. 312–442. [Google Scholar]
- Masciopinto, C.; Liso, I.S. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge. Sci. Total Environ. 2016, 569–570, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Bense, V.F.; Van Balen, R.T.; De Vries, J.J. The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: An overview. Neth. J. Geosci. 2003, 82, 41–54. [Google Scholar] [CrossRef]
- Lusczynski, N.J. Head and flow of ground water of variable density. J. Geophys. Res. 1961, 66, 4247–4256. [Google Scholar] [CrossRef]
- Polemio, M.; Casarano, D. Climate change, drought and groundwater availability in southern Italy. Geol. Soc. London, Spec. Publ. 2008, 288, 39–51. [Google Scholar] [CrossRef]
- Diodato, N.; Bellocchi, G. Historical perspective of drought response in central-southern Italy. Clim. Res. 2011, 49, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Delle Rose, M.; Parise, M.; Andriani, G. Evaluating the impact of quarrying on karst aquifers of Salento (southern Italy). In Natural and Anthropogenic Hazards in Karst: Recognition, Analysis and Mitigation. Special Publication 279; Parise, M., Gunn, J., Eds.; The Geological Society of London: London, UK, 2007; pp. 153–171. [Google Scholar]
- Khorsandi, A.; Miyata, T. Fault determination due to sinkhole array on Lar Valley, Northeast of Tehran (Iran). Acta Carsologica 2007, 36, 203–208. [Google Scholar] [CrossRef]
- Pehme, P.E.; Parker, B.L.; Cherry, J.A.; Greenhouse, J.P. Improved resolution of ambient flow through fractured rock with temperature logs. Ground Water 2010, 48, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Pehme, P.; Parker, B.L.; Cherry, J.A.; Greenhouse, J.P. The Potential for Compromised Interpretations When Based on Open Borehole Geophysical Data in Fractured Rock. In Proceedings of the 2007 NGWA/U.S. EPA Fractured Rock Conference: State of the Science and Measuring Success in Remediation (#5017), Portland, ME, USA, 24–26 September 2007. [Google Scholar]
- Campana, C.; Fidelibus, M.D. Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy. Hydrogeol. J. 2015, 23, 1381–1398. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidelibus, M.D.; Pulido-Bosch, A. Groundwater Temperature as an Indicator of the Vulnerability of Karst Coastal Aquifers. Geosciences 2019, 9, 23. https://doi.org/10.3390/geosciences9010023
Fidelibus MD, Pulido-Bosch A. Groundwater Temperature as an Indicator of the Vulnerability of Karst Coastal Aquifers. Geosciences. 2019; 9(1):23. https://doi.org/10.3390/geosciences9010023
Chicago/Turabian StyleFidelibus, Maria Dolores, and Antonio Pulido-Bosch. 2019. "Groundwater Temperature as an Indicator of the Vulnerability of Karst Coastal Aquifers" Geosciences 9, no. 1: 23. https://doi.org/10.3390/geosciences9010023
APA StyleFidelibus, M. D., & Pulido-Bosch, A. (2019). Groundwater Temperature as an Indicator of the Vulnerability of Karst Coastal Aquifers. Geosciences, 9(1), 23. https://doi.org/10.3390/geosciences9010023