Six Years Temperature Monitoring Using Fibre-Optic Sensors in a Bioreactor Landfill
Abstract
:1. Introduction
2. Material and Methods
2.1. Landfill Bioreactor Description
2.2. Temperature Measurements using Distributed Temperature Sensing (DTS) Technology
2.2.1. Implementation and Calibration of Optical Fibre for Temperature Measurement
2.2.2. Comparison between Fibre Optics and Punctual Probes
2.2.3. Temperature Measurements Interpretation
2.3. Three-Dimensional (3D) Simulation of Temperature of Waste Deposit CELL4
2.3.1. Governing Equation
2.3.2. Geometry and Material
2.3.3. Boundary Conditions
2.3.4. Heat Source Optimisation
3. Results and Discussion
3.1. Distributed Temperature Readings from Fibre Optics Compared to Point Temperature Readings
3.2. Distributed Temperatures from Fibre-Optic Sensors
3.3. Modelling CELL4’s Temperature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Treatment of Waste by Waste Category, Hazardousness and Waste Operations. Available online: http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do. (accessed on 1 October 2019).
- Barlaz, M.A.; Reinhart, D. Bioreactor landfills: Progress continues. Waste Manag. 2004, 24, 859–860. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, P.T.; Reinhart, D.R.; Englund, M.; Guérin, R.; Gawande, N.; Han, B.; Jonnalagadda, S.; Townsend, T.G.; Yazdani, R. Review of state of the art methods for measuring water in landfills. Waste Manag. 2007, 27, 729–745. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, D.R.; Townsend, T.G. Landfill Bioreactor Design & Operation; Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Pohland, F.G.; Al-Yousfi, B. Design and operation of landfills for optimum stabilization and biogas production. Water Sci. Technol. 1994, 30, 117–124. [Google Scholar] [CrossRef]
- Rees, J.F. The fate of carbon compounds in the landfill disposal of organic matter. J. Chem. Technol. Biotechnol. 1980, 30, 161–175. [Google Scholar] [CrossRef]
- Reinhart, D.; Al-Yousfi, B. The Impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag. Res. 1996, 14, 337–346. [Google Scholar] [CrossRef]
- Arrêté du 15 Février 2016 Relatif aux Installations de Stockage de Déchets non Dangereux. Available online: https://www.legifrance.gouv.fr/eli/arrete/2016/2/15/DEVP1519168A/jo/texte (accessed on 1 October 2019).
- Rendra, S.; Warith, M.; Fernandes, L. Degradation of Municipal Solid Waste in Aerobic Bioreactor Landfills. Environ. Technol. 2007, 28, 609–620. [Google Scholar] [CrossRef]
- Warith, M. Bioreactor landfills: experimental and field results. Waste Manag. 2002, 22, 7–17. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P. Basic biochemical processes in landfills. In Sanitary Landfill: Process, Technology, and Environmental Impact; Christensen, T.H., Cossu, R., Stegman, R., Eds.; Academic Press: London, UK, 1989. [Google Scholar]
- Augenstein, D.; Pacey, J. Modeling landfill methane generation. In Proceedings of the Third International Landfill Symposium, Sardinia, Italy, 14–18 October 1991; pp. 115–148. [Google Scholar]
- Aguilar-Juarez, O. Analyse et Modélisation des Réactions Biologiques Aérobies au Cours de la Phase D’exploitation d’un Casier d’un Centre D’enfouissement Technique. Ph.D. Thesis, Institut des Sciences Appliquées de Toulouse, Toulouse, France, 21 June 2000. [Google Scholar]
- Tchobanoglous, G.; Theisen, H.; Vigil, S.A. Integrated Solid Waste Management: Engineering Principles and Management Issues; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- El-Fadel, M.; Findikakis, A.N.; Leckie, J.O. Estimating and Enhancing Methane Yield from Municipal Solid Waste. Hazard. Waste Hazard. Mater. 1996, 13, 309–331. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. Anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Aghdam, E.F.; Scheutz, C.; Kjeldsen, P. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals. Waste Manag. 2017, 63, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Gawande, N.A.; Reinhart, D.R.; Thomas, P.A.; McCreanor, P.T.; Townsend, T.G. Municipal solid waste in situ moisture content measurement using an electrical resistance sensor. Waste Manag. 2003, 23, 667–674. [Google Scholar] [CrossRef]
- Kumar, S.; Bhattacharyya, J.; Vaidya, A.; Chakrabarti, T.; Devotta, S.; Akolkar, A. Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight. Waste Manag. 2009, 29, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.; Ripaud, F.; Saidi, F.; Bouyé, J.-M. Laboratory test to study waste moisture from resistivity. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2011, 164, 17–30. [Google Scholar] [CrossRef]
- Bernstone, C.; Dahlin, T.; Ohlsson, T.; Hogland, H. DC-resistivity mapping of internal landfill structures: Two pre-excavation surveys. Environ. Earth Sci. 2000, 39, 360–371. [Google Scholar] [CrossRef]
- Gazoty, A.; Fiandaca, G.; Pedersen, J.; Auken, E.; Christiansen, A. Gazoty Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study. Near Surf. Geophys. 2012, 10, 575–586. [Google Scholar] [CrossRef]
- Leroux, V.; Dahlin, T.; Svensson, M. Dense resistivity and induced polarization profiling for a landfill restoration project at Härlöv, Southern Sweden. Waste Manag. Res. 2007, 25, 49–60. [Google Scholar] [CrossRef]
- Ettala, M.; Sormunen, K.; Englund, M.; Hyvönen, P.; Laurila, T.; Karhu, K.; Rintala, J. Instrumentation of a landfill. In Proceedings of the 9th International Waste Management and Landfill Symposium, Cagliari, Italy, 6–10 October 2003; pp. 199–200. [Google Scholar]
- Moreau, S.; Chevrier, B.; Saidi, F.; Buton, G.; Bouye, J.-M. Using fibreoptic to measure waste mass temperature: Application to evaluate leachate recirculation network in landfill bioreactor. In Proceedings of the Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, Sardinia, Italy, 5–9 October 2009. [Google Scholar]
- Gholamifard, S. Modélisation des Écoulements Diphasiques Bioactifs Dans les Installations de Stockage de Déchets. Ph.D. Thesis, Université Paris Est Marne La Vallée, Champs-sur-Marne, France, January 2009. [Google Scholar]
- Faitli, J.; Magyar, T.; Erdélyi, A.; Murányi, A. Characterization of thermal properties of municipal solid waste landfills. Waste Manag. 2014, 36, 213–221. [Google Scholar] [CrossRef]
- Yesiller, N.; Hanson, J.L.; Yee, E.H. Waste heat generation: A comprehensive review. Waste Manag. 2015, 42, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Faitli, J.; Magyar, T.; Romend, R.; Erdélyi, A.; Boldizsár, C. Laying the Foundation for Engineering Heat Management of Waste Landfills. In Landfills: Environmental Impacts, Assessment and Management; Chandler, N., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; Chapter 9; pp. 215–244. [Google Scholar]
- Lefebvre, X.; Lanini, S.; Houi, D. The role of aerobic activity on refuse temperature rise, I. Landfill experiment study. Waste Manag. Res. 2000, 18, 444–452. [Google Scholar] [CrossRef]
- Hanson, J.L.; Yesiller, N.; Oettle, N.K. Spatial Variability of Waste Temperatures in MSW Landfills. In Proceedings of the Global Waste Management Symposium, Phoenix, AZ, USA, 24–28 February 2008. [Google Scholar]
- Hanson, J.L.; Yesiller, N.; Onnen, M.T.; Liu, W.-L.; Oettle, N.K.; Marinos, J.A. Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Manag. 2013, 33, 1993–2000. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization. BS EN 14899 Characterization of Waste. Sampling of Waste Materials. Framework for the Preparation and Application of a Sampling Plan; Deutsches Institut für Normung: Berlin, Germany, 2006. [Google Scholar] [CrossRef]
- Déchets Ménagers et Assimilés–Méthode de caractérisation–Analyse sur Produit sec NF X30-466; French Standardization Association: Paris, France, 2013.
- ADEME Éditions. La Composition des Ordures Ménagères en France; ADEME Éditions: Montpellier, France, 2010; ISBN 978-2-35838-093-5. [Google Scholar]
- Perry, R.H.; Green, D.W. Perry’s Chemical Engineers’ Handbook; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Audebert, M.; Oxarango, L.; Duquennoi, C.; Touze-Foltz, N.; Forquet, N.; Clément, R. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling-Part II: Constraint methodology of hydrodynamic models. Waste Manag. 2015, 55, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Bonany, J.; Van Geel, P.J.; Gunay, H.B.; Isgor, O.B. Heat budget for a waste lift placed under freezing conditions in a landfill operated in a northern climate. Waste Manag. 2013, 33, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Audebert, M.; Clement, R.; Moreau, S.; Duquennoi, C.; Loisel, S.; Touze-Foltz, N. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling—Part I: Analysis of infiltration shape on two different waste deposit cells. Waste Manag. 2016, 55, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Hauduc, H.; Neumann, M.; Muschalla, D.; Gamerith, V.; Gillot, S.; Vanrolleghem, P.; Vanrolleghem, P. Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment. Environ. Model. Softw. 2015, 68, 196–204. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Yesiller, N.; Hanson, J.L.; Liu, W.-L. Heat Generation in Municipal Solid Waste Landfills. J. Geotech. Geoenviron. Eng. 2005, 131, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Yeşiller, N.; Hanson, J.L.; Kopp, K.B.; Yee, E.H. Heat management strategies for MSW landfills. Waste Manag. 2016, 56, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Barlaz, M.A.; Ham, R.K.; Schaefer, D.M.; Isaacson, R. Methane production from municipal refuse: A review of enhancement techniques and microbial dynamics. Crit. Rev. Environ. Control. 1990, 19, 557–584. [Google Scholar] [CrossRef]
- Farquhar, G.J.; Rovers, F.A. Gas production during refuse decomposition. Water Air Soil Pollut. 1973, 2, 483–495. [Google Scholar] [CrossRef]
- Rees, J.F. Optimisation of Methane Production and Refuse Decomposition in Landfills by Temperature Control. J. Chem. Technol. Biotechnol. 1980, 30, 458–465. [Google Scholar] [CrossRef]
- Karakashev, D.; Batstone, D.J.; Angelidaki, I. Influence of Environmental Conditions on Methanogenic Compositions in Anaerobic Biogas Reactors. Appl. Environ. Microbiol. 2005, 71, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Density (kg.dm−3) | Thermal Conductivity (W.m−1.K−1) | Specific Heat Capacity (J.kg−1.K−1) | |
---|---|---|---|
Soil (loamy soil) | 1.5 | 0.35–1 | 2300–2500 |
Waste mass | 0.95 | 0.10–0.50 | 1500–2500 |
Density (kg.dm−3) | Thermal Conductivity (W.m−1.K−1) | Specific Heat Capacity (J.kg−1.K−1) | |
---|---|---|---|
Soil (loamy soil) | 1.5 | 0.35 | 2400 |
Waste mass | 0.95 | 0.21 | 1800 |
Best fitting parameters for Hanson’s function (Equation (2)). | |||
A = 100 (W/m3) | B = 40 (day) | C = 500 (day) | D = 18 (day) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreau, S.; Jouen, T.; Grossin-Debattista, J.; Loisel, S.; Mazéas, L.; Clément, R. Six Years Temperature Monitoring Using Fibre-Optic Sensors in a Bioreactor Landfill. Geosciences 2019, 9, 426. https://doi.org/10.3390/geosciences9100426
Moreau S, Jouen T, Grossin-Debattista J, Loisel S, Mazéas L, Clément R. Six Years Temperature Monitoring Using Fibre-Optic Sensors in a Bioreactor Landfill. Geosciences. 2019; 9(10):426. https://doi.org/10.3390/geosciences9100426
Chicago/Turabian StyleMoreau, Sylvain, Thomas Jouen, Julien Grossin-Debattista, Simon Loisel, Laurent Mazéas, and Rémi Clément. 2019. "Six Years Temperature Monitoring Using Fibre-Optic Sensors in a Bioreactor Landfill" Geosciences 9, no. 10: 426. https://doi.org/10.3390/geosciences9100426
APA StyleMoreau, S., Jouen, T., Grossin-Debattista, J., Loisel, S., Mazéas, L., & Clément, R. (2019). Six Years Temperature Monitoring Using Fibre-Optic Sensors in a Bioreactor Landfill. Geosciences, 9(10), 426. https://doi.org/10.3390/geosciences9100426