The Origin of Dissolved Sulphate in the Thermal Waters of Budapest Inferred from Stable S and O Isotopes
Abstract
:1. Introduction
2. Hydrogeological Framework
3. Samples and Analytical Methods
4. Results
5. Discussion
5.1. Checking the Two Hypotheses Using Sulphate’s Sulphur Isotopes
5.1.1. The Oxidation of Sulphide
5.1.2. The Dissolution of Sulphate
5.2. An Evaluation of the Chemical Data
5.3. Water Oxygen Isotopic Composition
5.4. Oxygen Isotope, Bisulphate–Water Geothermometer
5.5. The Possible Effect of S2− Content on the δ18OHSO4
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Szalontai, G. A budapesti hévizek kémiai tulajdonságai (Chemistry of the Budapest Thermal Waters). In Budapest hévizei (Thermal Waters of Budapest); Alföldi, L., Bélteky, L., Böcker, T., Horváth, J., Korim, K., Liebe, P., Rémi, R., Eds.; VITUKI: Budapest, Hungary, 1968; pp. 59–71. (In Hungarian) [Google Scholar]
- Lorberer, Á. Budapest hévizei mérnökgeológiai szemmel (Thermal waters of Budapest from the aspect of engineering geology). In Alagút- és mélyépítő szakmai napok, Proceedings of the a Millenium Után, Európával, jövőnk környezetéért, Eger, Hungary, 27–28 May 2002; MTESZ Közlekedéstudományi Egyesület—Deutsche Ingeinurkammer: Budapest, Hungary, 2002; pp. 71–78. (In Hungarian) [Google Scholar]
- Alföldi, L. Budapesti hévizek (Thermal waters of Budapest)—VITUKI Közlemények, 20.; VITUKI: Budapest, Hungary, 1979; pp. 1–102. (In Hungarian) [Google Scholar]
- Krouse, H.R.; Mayer, B. Sulphur and oxygen isotopes in sulphate. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Springer: Boston, MA, USA, 2019; pp. 195–231. [Google Scholar]
- Apollaro, C.; Dotsika, E.; Marini, L.; Barca, D.; Bloise, A.; De Rosa, R.; Doveri, M.; Lelli, M.; Muto, F. Chemical and isotopic characterization of the thermo mineral water of Terme Sibarite springs (Northern Calabria, Italy). Geochem. J. 2012, 46, 117–129. [Google Scholar] [CrossRef]
- Michalik, A.; Migaszewski, Z.M. Stable sulfur and oxygen isotope ratios of the Świętokrzyski National Park spring waters generated by natural and anthropogenic factors (south-central Poland). Appl. Geochem. 2012, 27, 1123–1132. [Google Scholar] [CrossRef]
- Migaszewski, Z.; Galuszka, A.; Michalik, A.; Dolegowska, S.; Migaszewski, A.; Halas, S.; Trembaczowski, A. The use of stable sulfur, oxygen and hydrogen isotope ratios as geochemical tracers of sulfates in the podwisniowka acid drainage area (South-Central Poland). Aquat. Geochem. 2013, 19, 261–280. [Google Scholar] [CrossRef]
- Porowski, A.; Porowska, D.; Halas, S. Identification of sulfate sources and biogeochemical processes in an aquifer affected by Peatland: Insights from monitoring the isotopic composition of groundwater sulfate in Kampinos National Park, Poland. Water 2019, 11, 1388. [Google Scholar] [CrossRef]
- Vendel, M.; Kisházi, P. Összefüggések melegforrások és karszt-vizek között a Dunántúli-középhegységben megfigyelt viszonyok alapján I and II (Correlations between thermal springs and Karstic waters in the Transdanubian Ranges I and II). MTA Műszaki Tudományok Osztályának Közleményei 1964, 32–33, 205–234, 393–417. (In Hungarian) [Google Scholar]
- Mádl-Szőnyi, J.; Erőss, A.; Tóth, Á. Fluid flow systems and hypogene karst of the transdanubian range, Hungary—With special emphasis on buda thermal karst. In Hypogene Karst Regions and Caves of the World; Klimchouk, A., Palmer, A.N., De Waele, J., Auler, A.S., Audra, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 267–278. [Google Scholar]
- Vető, I.; Nagymarosy, A.; Brukner-Wein, A.; Hetényi, M.; Sajgó, C. Salinity changes control isotopic composition and preservation of the organic matter: The Oligocene Tard clay, Hungary revisited. In Proceedings the of 19th International Organic Geochemistry, Istanbul, Turkey, 6–10 September 1999; Abstracts Part I, TÜBITAK; Marmara Research Center: Istanbul, Turkey, 1999; pp. 411–412. [Google Scholar]
- Hámor, T. Az anoxikus üledékképződés és a korai diagenezis vizsgálata stabil izotóp mérések alkalmazásával (Study of anoxic sedimentation and early diagenesis by means of stable isotopes). In Országos Tudományos Kutatási Alap 259. sz. téma zárójelentése (Final Report of Project no. 259 Financed by the National Scientific Research Fund); Hungarian Geological Institute (Now Mining and Geological Survey of Hungary): Budapest, Hungary, 1991. (In Hungarian) [Google Scholar]
- Hámor, T. Stabil izotóp mérések alkalmazása szedimentológiai és környezetvédelmi problémák megoldásában (Application of stable isotope measurement for sedimentological and environmental problems). In Az Országos Tudományos Kutatási Alap F007373. sz. kutatásának zárójelentése ((Final Report of Project no. F007373 Financed by the National Scientific Research Fund); Mining and Geological Survey of Hungary: Budapest, Hungary, 1997. (In Hungarian) [Google Scholar]
- Newton, R.J.; Pevitt, E.L.; Wignall, P.B.; Bottrell, S.H. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 2004, 218, 331–345. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Cortecci, G.; Reyes, E.; Berti, G.; Casati, P. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem. Geol. 1981, 34, 65–79. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Dogramaci, S.; McLean, L.; Skrzypek, G. Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia. J. Hydrol. 2017, 545, 288–298. [Google Scholar] [CrossRef]
- Drever, J.I. The Geochemistry of Natural Waters. Surface and Groundwater Environments, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Fórizs, I.; Czuppon, G.; Kern, Z.; Kohán, B.; Deák, J. Relationship between the isotopic characteristics of local precipitation and groundwater in Hungary. In Book of Abstracts—44th Annual Congress of International Association of Hydrogeologists. “Groundwater Heritage and Sustainability”, Proceedings of the International Association of Hydrogeologists (IAH), Dubrovnik, Croatia, 25–29 September 2017; Posavec, K., Marković, T., Eds.; Croatian National Chapter of the International Association of Hydrogeologists: Dubrovnik, Croatia, 2017; p. 258. [Google Scholar]
- Deák, J.; Coplen, T.B. Identification of Holocene and Pleistocene groundwaters in Hungary using oxygen and hydrogen isotopic ratios. In Isotopes in Water Resources Management (Symposium Proceedings, Vienna, 1995); International Atomic Energy Agency: Vienna, Austria, 1996; Volume 1, p. 438. [Google Scholar]
- Longinelli, A.; Flora, O. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: Paleoenvironmental implications. Chem. Geol. 2007, 245, 275–284. [Google Scholar] [CrossRef]
- Kusakabe, M.; Robinson, B.W. Oxygen and sulfur isotope equilibria in the BaSO4-HSO4−-H2O system from 110 to 350 °C and applications. Geochim. et Cosmochim. Acta 1977, 41, 1033–1040. [Google Scholar] [CrossRef]
- McKenzie, W.F.; Truesdell, A.H. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes. Geothermics 1977, 5, 51–61. [Google Scholar] [CrossRef]
- Lloyd, R.M. Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res. 1968, 73, 6099–6110. [Google Scholar] [CrossRef]
- Mizutani, Y.; Rafter, T.A. Oxygen isotopic composition of sulphates, 3. Oxygen isotopic fractionation in the bisulphate ion-water system. N. Zeal. J. Sci. 1969, 12, 54–59. [Google Scholar]
- Mizutani, Y. Isotopic composition and underground temperature of the Otake geothermal water, Kyushu, Japan. Geochem. J. 1972, 6, 67–73. [Google Scholar] [CrossRef]
- Chiba, H.; Sakai, H. Oxygen isotope exchange rate between dissolved sulphate and water at hydrothermal temperatures. Geochim. et Cosmochim. Acta 1985, 49, 993–1000. [Google Scholar] [CrossRef]
- Fritz, P.; Basharmal, G.M.; Drimmie, R.J.; Ibsen, J.; Qureshi, R.M. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. (Isotope Geosci. Sect.) 1989, 79, 99–105. [Google Scholar] [CrossRef]
Well/Spring | δ34S [‰] Sulphate | δ18O [‰] Water | δ18O [‰] Sulphate | Twater [°C] |
---|---|---|---|---|
Thermal Waters (>30 °C) | ||||
Csepel II well (Budapest) | 15.61 | −12.01 | 5.45 | 45.2 |
Széchenyi II well (Budapest) | 17.18 | −12.46 | 4.91 | 76.8 |
Széchenyi I well (Budapest) | 17.72 | −12.50 | 5.05 | 73.0 |
Lukács IV well (Budapest) | 11.63 | −11.59 | 4.22 | 52.5 |
Lukács V well (Budapest) | 10.28 | −11.36 | 5.18 | 50.9 |
VITUKI, Kvassay-well IX/38 (Budapest) | 11.65 | −11.53 | 5.27 | 46.2 |
Pesterzsébet, spa well (Budapest) | 11.32 | −11.60 | 5.21 | 41.8 |
Zugló, Paskál malom well (Budapest) | 13.35 | −11.75 | 6.39 | 67.7 |
Margitsziget, Magda-well (Budapest) | 16.12 | −11.88 | 5.36 | 69.0 |
Margitsziget, IV well (Budapest) | 9.68 | −10.95 | 38.1 | |
Margitsziget, III well (Budapest) | 10.19 | −10.99 | 4.47 | 37.8 |
Strand thermal well (Göd) | 14.01 | −11.87 | 4.94 | 50.4 |
Lukewarm Waters (15–30 °C) | ||||
Lukács, Boltív spring (Malom Lake) (Budapest) | −4.91 | −10.48 | 2.64 | 22.0 |
Lukács, Római spring (Budapest) | −5.66 | −10.30 | 2.87 | 20.8 |
Lukács, Török spring (Budapest) | −3.60 | −10.58 | 23.9 | |
Óbuda, Bründl spring (Budapest) | −2.47 | −10.24 | 18.5 | |
Cold Waters (<15 °C) | ||||
Vízművek-1 (3. works) well (Pilisborosjenő) | −0.22 | −9.38 | 4.12 | 14.4 |
Vízművek-2 (4. works) well (Pilisborosjenő) | −1.15 | −9.96 | 13.3 | |
Vízművek, Ipari well (Pilisszentiván) | 7.51 | −9.99 | 3.87 | 11.0 |
Szentkút spring (Csobánka) | 1.32 | −9.81 | 9.4 | |
Lajos spring (Szentendre) | 8.08 | −10.67 | 2.10 | 9.4 |
Diósvölgyi spring (Süttő) | 8.32 | −9.70 | 12.4 | |
Vízművek 2. well (Tarján) | 1.71 | −10.10 | 12.1 | |
Török-well (Zsámbék) | 7.04 | −10.24 | 2.59 | 12.5 |
Szentkút spring (Csobánka) | 2.37 | −9.74 | 0.68 | 8.9 |
Temperature [°C] | 30 °C | 40 °C | 50 °C | 60 °C | 70 °C | 80 °C | 90 °C |
---|---|---|---|---|---|---|---|
Time needed for 99.9% exchange (10 × half time) [a] | 18,445 | 9962 | 5589 | 3246 | 1946 | 1201 | 761 |
Thermal Wells | Twater [°C] | Twater [°C] Calculated | δ18O [‰] Sulphate | pH | 14C age (13C-corr.) [103 × a] |
---|---|---|---|---|---|
Csepel II well (Budapest) | 45.2 | 75.1 | 5.45 | 6.6 | 23.5 |
Széchenyi II well (Budapest) | 76.8 | 75.7 | 4.91 | 6.4 | 18.9 |
Széchenyi I well (Budapest) | 73.0 | 74.4 | 5.05 | 6.4 | 19.0 |
Lukács IV well (Budapest) | 52.5 | 87.3 | 4.22 | 6.9 | 3.0 |
Lukács V well (Budapest) | 50.9 | 81.8 | 5.18 | 6.9 | 4.7 |
VITUKI, Kvassay-well IX/38 (Budapest) | 46.2 | 79.9 | 5.27 | 6.8 | 14.6 |
Pesterzsébet, spa well (Budapest) | 41.8 | 79.8 | 5.21 | 6.7 | 15.8 |
Zugló, Paskál malom well (Budapest) | 67.7 | 70.5 | 6.39 | 6.5 | 15.2 |
Margitsziget, Magda-well (Budapest) | 69.0 | 76.6 | 5.36 | 6.7 | 15.5 |
Margitsziget, IV well (Budapest) | 38.1 | 6.9 | 4.9 | ||
Margitsziget, III well (Budapest) | 37.8 | 90.1 | 4.47 | 6.8 | 7.0 |
Strand thermal well (Göd) | 50.4 | 79.7 | 4.94 | 6.4 | 17.1 |
Thermal Wells | δ34S [‰] Sulphate (Measured) | δ18O [‰] Sulphate (Measured) | S2− [mg/L] | δ34S [‰] Sulphate (Calculated) | δ18O [‰] Sulphate (Calculated) |
---|---|---|---|---|---|
Csepel well II (Budapest) | 15.61 | 5.45 | 0.4 | 15.58 | 5.43 |
Széchenyi well II (Budapest) | 17.18 | 4.91 | 0.2 | 17.16 | 4.90 |
Széchenyi well I (Budapest) | 17.72 | 5.05 | 0.3 | 17.69 | 5.03 |
Lukács well IV (Budapest) | 11.63 | 4.22 | 0.98 | 11.50 | 4.14 |
Lukács well V (Budapest) | 10.28 | 5.18 | 0.64 | 10.16 | 5.11 |
Strand thermal well (Göd) | 14.01 | 4.94 | 0.34 | 13.95 | 4.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fórizs, I.; Szabó, V.R.; Deák, J.; Hałas, S.; Pelc, A.; Trembaczowski, A.; Lorberer, Á. The Origin of Dissolved Sulphate in the Thermal Waters of Budapest Inferred from Stable S and O Isotopes. Geosciences 2019, 9, 433. https://doi.org/10.3390/geosciences9100433
Fórizs I, Szabó VR, Deák J, Hałas S, Pelc A, Trembaczowski A, Lorberer Á. The Origin of Dissolved Sulphate in the Thermal Waters of Budapest Inferred from Stable S and O Isotopes. Geosciences. 2019; 9(10):433. https://doi.org/10.3390/geosciences9100433
Chicago/Turabian StyleFórizs, István, Viktória Rita Szabó, József Deák, Stanisław Hałas, Andrzej Pelc, Andrzej Trembaczowski, and Árpád Lorberer. 2019. "The Origin of Dissolved Sulphate in the Thermal Waters of Budapest Inferred from Stable S and O Isotopes" Geosciences 9, no. 10: 433. https://doi.org/10.3390/geosciences9100433
APA StyleFórizs, I., Szabó, V. R., Deák, J., Hałas, S., Pelc, A., Trembaczowski, A., & Lorberer, Á. (2019). The Origin of Dissolved Sulphate in the Thermal Waters of Budapest Inferred from Stable S and O Isotopes. Geosciences, 9(10), 433. https://doi.org/10.3390/geosciences9100433