Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Initial Model-Based Optimization: 1D-SA with NSGA-II
3.1.1. HEC-RAS Simulation Model
3.1.2. Optimization Formulation and Solution with NSGA-II
- If maximum inundation level > Zhuangtai level
- If maximum inundation level < Zhuangtai level
3.2. Analysis with Different Optimization Algorithms: 1D-SA with NSGA-II, PESA-II, SPEA-II
3.3. Analysis with More Complex Simulation Model: 1D-SA(Terrain-based) and 1D-2D, with NSGA-II
3.3.1. Terrain and Land Use Data Processing
3.3.2. 1D-SA(Terrain-based) Model Setup
3.3.3. 1D-2D Model Setup
4. Results
4.1. Results of the Initial Setup with Model 1D-SA
4.2. Results of the Analysis with Different Optimization Algorithms
4.3. Results of the Analysis with Different Simulation Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akanbi, A.A.; Lian, Y.; Soong, D.T. An Analysis of Managed Flood Storage Options for Selected Levees along the Lower Illinois River for Enhancing Flood Protection; Report no. 4: Flood Storage Reservoirs and Flooding on the Lower Illinois River; ISWS Contract Report CR 645; Illinois State Water Survey: Champaign, IL, USA, 1999. [Google Scholar]
- Xue, L.; Hao, Z.; Liu, X.; Li, Y. Numerical Simulation and Optimal System Scheduling on Flood Diversion and Storage in Dongting Basin, China. Proced. Environ. Sci. 2012, 12, 1089–1096. [Google Scholar]
- Yu, B.; Ni, J.; Ben, P.; Wu, P.; Sui, J. The combined operation of flood plain and flood diversion channel in middle reach of Huaihe River. In Proceedings of the international conference on fluvial hydraulics (RIVER FLOW 2016), St. Louis, MI, USA, 11–14 July 2016; pp. 1797–1803. [Google Scholar]
- Silva, W.; Dijkman, J.; Loucks, P. Flood management options for The Netherlands. Int. J. River Basin Manag. 2004, 2, 101–112. [Google Scholar] [CrossRef]
- Gunnell, K.; Mulligan, M.; Francis, R.A.; Hole, H.G. Evaluating natural infrastructure for flood management within the watersheds of selected global cities. Sci. Total Environ. 2019, 670, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Förster, S.; Chatterjee, C.; Bronstert, A. Hydrodynamic simulation of the operational management of a proposed flood emergency storage area at the Middle Elbe River. River Res. Appl. 2008, 24, 900–913. [Google Scholar] [CrossRef]
- Reed, P.M.; Hadka, D.; Herman, J.D.; Kasprzyk, J.R.; Kollat, J.B. Evolutionary multiobjective optimization in water resources: The past, present, and future. Adv. Water Resour. 2013, 51, 438–456. [Google Scholar] [CrossRef] [Green Version]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, V.; Dandy, V.; Gibbs, M.S.; Keedwell, E.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Salazar, J.Z.; Reed, P.M.; Quinn, J.D.; Giuliani, M.; Castelletti, A. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization. Adv. Water Resour. 2017, 109, 196–210. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yoo, D.G.; Lee, Y.S.; Kim, J.H. Optimization of Upstream Detention Reservoir Facilities for Downstream Flood Mitigation in Urban Areas. Water 2016, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Jonoski, A.; Popescu, I.; Sun, Z. Optimal Operation of Flood Storage Areas in Huai River Using Coupled HEC-RAS River Model and NSGAII Global Optimization Algorithm. EPiC Ser. Eng. 2018, 3, 1004–1012. [Google Scholar]
- Deb, K.; Pratap, A.; Agrawal, S.; Meyarivan, T. A fast elitist muti-objective genetic algorithm NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Syvitski, J.P.M.; Gao, S.; Overeem, I.; Kettner, A.J. Socio-economic Impacts on Flooding: A 4000-Year History of the Yellow River, China. AMBIO 2012, 41, 682–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittock, J.; Ming, X. World Resources Report Case Study. Controlling Yangtze River Floods: A New Approach, World Resources Report. Available online: http://www.worldresourcesreport.org (accessed on 29 October 2019).
- Gebeyehu, A.E.; Chunju, Z.; Yihong, Z.; Pingale, S. Overview of prominent problems in Huai River basin, China. Int. J. Hydrol. 2018, 2, 9–12. [Google Scholar]
- Mingkai, Q.; Kai, W. Flood Management in China: The Huaihe River Basin as a Case Study. In Flood Risk Management; Hromadka, T., Ed.; InTech: London, UK, 2017; pp. 129–152. [Google Scholar]
- Shi, C.X.; Zhang, L.; Xu, J.Q.; Guo, L.P. Sediment load and storage in the lower Yellow River during the late Holocene. Geogr. Ann. 2010, 92, 297–309. [Google Scholar] [CrossRef]
- Pietz, D.A. Controlling the Waters in Twentieth-Century China: The nationalist State and the Huai River. In A History of Water; Tvedt, T., Jakobsson, E., Eds.; I.B. Tauris &Co. Ltd: London, UK, 2006; pp. 92–115. [Google Scholar]
- Wang, Z.Y.; Lee, J.H.W.; Melching, C.S. River Dynamics and Integrated River Management; Tsinghua University Press: Beijing, China; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; pp. 337–395. [Google Scholar]
- Sun, Y.; Zhu, W.; Liu, D.; Huang, W.; Chen, S. Precipitation climatically features over the Huai River Basin, China. Dyn. Atmos. Oceans 2019, 86, 104–115. [Google Scholar] [CrossRef]
- Yuan, Y.; Yan, D.; Yuan, Z.; Yin, J.; Zhao, Z. Spatial Distribution of Precipitation in Huang-Huai-Hai River Basin between 1961 to 2016, China. Int. J. Environ. Res. Public Health. 2019, 16, 3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kai, W.; Deyi, C.; Yang, Z. Flood control and management for the transitional Huaihe River in China. Procedia Eng. 2016, 154, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xia, J.; Hong, C. New Challenges and Opportunities for Flood Control in the Huai River: Addressing a Changing River-Lake Relationship. Clim. Change Water Manag. BICAS 2012, 26, 40–47. [Google Scholar]
- Lv, M.; Hao, Z.; Lin, Z.; Ma, Z.; Wang, J. Reservoir Operation with Feedback in a Coupled Land Surface and Hydrologic Model: A Case Study of the Huai River Basin, China. J. Am. Water Resour. Assoc. (JAWRA) 2016, 52, 168–183. [Google Scholar] [CrossRef]
- Powell, W.B. Approximate Dynamic Programming:1 Modeling, In Wiley Encyclopedia of Operational Research and Management Science; Cochran, J., Ed.; John Wiley & Sons: Oxford, UK, 2010. [Google Scholar]
- Leon, A.S.; Goodell, C. Controlling HEC-RAS using MATLA. Environ. Model. Softw. 2016, 84, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Hadka, D. MOEA Framework User Guide, 2011, Copyright 2011-2016 David Hadka. Available online: http://moeaframework.org/ (accessed on 29 October 2019).
- Zitzler, E.; Thiele, L. An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach; Technical Report 43; Swiss Federal Institute of Technology (ETH) Zurich: Zurich, Switzerland, 1998. [Google Scholar]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; Technical Report 103; Swiss Federal Institute of Technology (ETH) Zurich: Zurich, Switzerland, 2001. [Google Scholar]
- Corne, D.W.; Knowles, J.D.; Oates, M.J. The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2000; pp. 839–848. [Google Scholar]
- Corne, D.W.; Jerram, N.; Knowles, J.; Oates, M. PESA-II: Region-based selection in evolutionary multiobjective optimization. In GECCO’01 Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001; pp. 283–290. [Google Scholar]
- Coello, C.A.C. Multi-objective Optimization. In Handbook of Heuristics; Martí, R., Panos, P., Resende, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Mostafaie, A.; Forootan, E.; Safari, A.; Scumacher, M. Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Comput. Geosci. 2018, 22, 789–814. [Google Scholar] [CrossRef] [Green Version]
FSA | p (person) | a (ha) | H (m) | s1 (RMB/person) | s2 (RMB/person) | b (RMB/ha) | d1 | d2 |
---|---|---|---|---|---|---|---|---|
Shouxi | 86,000 | 11,333 | 3 | 400 | 100 | 4500 | 0.6 | 0.4 |
Dongfeng | 19,800 | 3.733 | 3 | 400 | 100 | 4500 | 0.6 | 0.4 |
Tangyu | 25,800 | 6000 | 3 | 500 | 200 | 4500 | 0.6 | 0.4 |
Jingshan | 11,700 | 5733 | 3 | 500 | 200 | 4500 | 0.6 | 0.4 |
Solution | Total | Shouxi | Dongfeng | Tangyu | Jingshan |
---|---|---|---|---|---|
A | 1.96 × 108 | 1.56 × 108 | 1.61 × 107 | 2.05 × 107 | 3.84 × 106 |
B | 4.03 × 107 | 0 | 1.62 × 107 | 2.02 × 107 | 3.86 × 106 |
Solution | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
---|---|---|---|---|---|---|---|---|
A | 11.1 | 4.3 | 8.6 | 3.1 | 6.6 | 0.4 | 4.8 | 0.5 |
B | / | / | 8.8 | 3.1 | 6.6 | 0.5 | 4.8 | 0.5 |
Algorithm | Frequency of Data Extraction (per N of Function Evaluations) | Running Time (min) |
---|---|---|
NSGA-II | 10 | 409.3 |
50 | 406.9 | |
Without data extraction | 350.4 | |
PESA-II | 10 | 409.1 |
50 | 406.3 | |
Without data extraction | 349.9 | |
SPEA-II | 10 | 440.2 |
50 | 435.9 | |
Without data extraction | 420.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonoski, A.; Popescu, I.; Zhe, S.; Mu, Y.; He, Y. Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms. Geosciences 2019, 9, 509. https://doi.org/10.3390/geosciences9120509
Jonoski A, Popescu I, Zhe S, Mu Y, He Y. Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms. Geosciences. 2019; 9(12):509. https://doi.org/10.3390/geosciences9120509
Chicago/Turabian StyleJonoski, Andreja, Ioana Popescu, Sun Zhe, Yuhan Mu, and Yiqing He. 2019. "Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms" Geosciences 9, no. 12: 509. https://doi.org/10.3390/geosciences9120509
APA StyleJonoski, A., Popescu, I., Zhe, S., Mu, Y., & He, Y. (2019). Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms. Geosciences, 9(12), 509. https://doi.org/10.3390/geosciences9120509