Using Size and Composition to Assess the Quality of Lunar Impact Glass Ages
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bottke, W.F.; Norman, M.D. The Late Heavy Bombardment. Annu. Rev. Earth Planet. Sci. 2017, 45, 619–647. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Fritz, J.; Weiss, B.P.; Garrick-Bethell, I.; Shuster, D.L. The bombardment history of the Moon as recorded by 40Ar-39Ar chronology. Meteorit. Planet. Sci. 2013, 48, 241–269. [Google Scholar] [CrossRef]
- Zellner, N.E.B.; Spudis, P.D.; Delano, J.W.; Whittet, D.C.B. Impact glasses from the Apollo 14 landing site and implications for regional geology. J. Geophys. Res. Planets 2002, 107, 5102. [Google Scholar] [CrossRef]
- Papike, J.; Ryder, G.; Shearer, C. Lunar Samples. In Planetary Materials; Mineralogical Society of America: Washington, DC, USA, 1998; pp. 5.001–5.234. [Google Scholar]
- Delano, J.W. Pristine lunar glasses: Criteria, data, and implications. J. Geophys. Res. 1986, 91, D201–D213. [Google Scholar] [CrossRef]
- Delano, J.W.; Zellner, N.E.B.; Barra, F.; Olson, E.; Swindle, T.D.; Tibbetts, N.J.; Whittet, D.C.B. An integrated approach to understanding Apollo 16 impact glasses: Chemistry, isotopes, and shape. Meteorit. Planet. Sci. 2007, 42, 993–1004. [Google Scholar] [CrossRef]
- Zellner, N.E.B.; Delano, J.W. 40 Ar/39 Ar ages of lunar impact glasses: Relationships among Ar diffusivity, chemical composition, shape, and size. Geochim. Cosmochim. Acta 2015, 161, 203–218. [Google Scholar] [CrossRef]
- Zellner, N.E.B.; Delano, J.W.; Swindle, T.D.; Barra, F.; Olsen, E.; Whittet, D.C.B. Evidence from 40Ar/39Ar ages of lunar impact glasses for an increase in the impact rate ∼800Ma ago. Geochim. Cosmochim. Acta 2009, 73, 4590–4597. [Google Scholar] [CrossRef]
- Zellner, N.E.B.; Norman, M.D. Compositions and Ages of Apollo 15 Lunar Impact and Volcanic Glasses: First Results. In Proceedings of the 43rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2012. Abstract #1711. [Google Scholar]
- Zellner, N.E.B.; Nguyen, P.Q.; Vesa, O.; Cook, R.D.; Blachut, S.T.; Delano, J.W.; Swindle, T.D.; Beard, S.; Isachsen, C. Only Specific Lunar Impact Glasses Record Episodic Events on the Moon. In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017. Abstract #2619. [Google Scholar]
- Jourdan, F. The 40Ar/39Ar dating technique applied to planetary sciences and terrestrial impacts. Aust. J. Earth Sci. 2012, 59, 199–224. [Google Scholar] [CrossRef]
- Swindle, T.D.; Weirich, J.R. The Effect of Partial Thermal Resetting on 40Ar-39Ar “Plateaus”. In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017. Abstract #1265. [Google Scholar]
- Gombosi, D.J.; Baldwin, S.L.; Watson, E.B.; Swindle, T.D.; Delano, J.W.; Roberge, W.G. Argon diffusion in Apollo 16 impact glass spherules: Implications for 40$Ar/39$Ar dating of lunar impact events. Geochim. Cosmochim. Acta 2015, 148, 251–268. [Google Scholar] [CrossRef]
- Mysen, B.; Richet, P. Silicate Glasses and Melts: Properties and Structure; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Lee, S.K. Simplicity in melt densification in multicomponent magmatic reservoirs in Earth’s interior revealed by multinuclear magnetic resonance. Proc. Natl. Acad. Sci. USA 2011, 108, 6847. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Minton, D.A.; Zellner, N.E.B.; Hirabayashi, M.; Richardson, J.E.; Fassett, C.I. No Change in the Recent Lunar Impact Flux Required Based on Modeling of Impact Glass Spherule Age Distributions. Geophys. Res. Lett. 2018, 45, 6805–6813. [Google Scholar] [CrossRef]
- Shearer, C.; Neal, C.; Zeigler, R. Unopened Treasures in the Apollo 17 Sample Collection. A Perspective for Future Research and Missions. In Proceedings of the 49th Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2018. Abstract #1253. [Google Scholar]
- Jolliff, B.L.; Shearer, C.K.; Papanastassiou, D.A.; Alkalai, L.; Moonrise Science Team. MoonRise: South Pole-Aitken Basin Sample Return Mission for Solar System Science. In Proceedings of the 2010 Annual Meeting of the Lunar Exploration Analysis Group, Washington, DC, USA, 14–16 September 2010. Abstract #3072. [Google Scholar]
- Jolliff, B.L.; Shearer, C.K.; Papanastassiou, D.A.; Liu, Y.; MoonRise Science Team. Why Do We Need Samples from the Moon’s South Pole-Aitken Basin and What Would We Do with Them? In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017. Abstract #1300. [Google Scholar]
- Zhao, J.; Xiao, L.; Qiao, L.; Glotch, T.D.; Huang, Q. The Mons Rümker volcanic complex of the Moon: A candidate landing site for the Chang’E-5 mission. J. Geophys. Res. Planets 2017, 122, 1419–1442. [Google Scholar] [CrossRef]
Sample# | K2O (wt %) | X (NBO) | Age (Ma) | ± 2σ (Ma) | # Steps, % 39Ar Used in Age | Notes on Age | Assessment of Age | Size (µm) | Shape | |
---|---|---|---|---|---|---|---|---|---|---|
Apollo 14 | 6 | 0.15 | 0.30 | 3733 | 592 | 2, 68.4 | weighted | fair | 150 | dumbbell |
14,259,624 | 8 | 0.26 | 0.30 | 825 | 126 | 9, 97.9 | weighted | good | 174 | shard |
11 | 0.58 | 0.32 | 1310 | 20 | 6, 95 | plateau | good | 300 | shard | |
16 | 0.21 | 0.32 | 3557 | 249 | 8, 85 | plateau | good | 300 | shard | |
21 | 0.16 | 0.32 | 213 | 85 | 4, 97.8 | plateau | good | 250.5 | oblong | |
25 | 0.29 | 0.28 | 326 | 86 | 2, 100 | 2 steps | fair | 199.5 | dumbbell | |
26 | 0.50 | 0.33 | 1792 | 68 | 8, 91 | plateau | good | 300 | shard | |
29 | 0.43 | 0.31 | 1088 | 87 | 6, 73.6 | weighted | good | 250.5 | sphere | |
33 | 0.30 | 0.31 | 4442 | 429 | 3, 60 | weighted | fair | 174 | sphere | |
43 | 0.28 | 0.42 | 491 | 63 | 10, 93.4 | plateau | good | 250.5 | shard | |
47 | 0.88 | 0.32 | 3457 | 277 | 2, 97 | weighted | good | 150 | sphere | |
65 | 0.58 | 0.34 | 3798 | 226 | 1, 100 | 1 step | fair | 199.5 | shard | |
70 | 0.36 | 0.32 | 2709 | 388 | 1, 88 | 1 step | fair | 199.5 | sphere | |
123 | 0.14 | 0.29 | 2330 | 700 | 3, 100 | plateau | fair | 199.5 | sphere | |
125 | 0.61 | 0.29 | 3304 | 1636 | 2, 100 | weighted | fair | 199.5 | shard | |
145 | 0.40 | 0.29 | 2984 | 779 | 3, 90.8 | weighted | good | 150 | sphere | |
148 | 0.16 | 0.30 | 363 | 122 | 5, 100 | plateau | good | 250.5 | sphere | |
150 | 0.15 | 0.19 | 3610 | 2496 | 3, 100 | plateau | fair | 150 | dumbbell | |
158 | 0.72 | 0.21 | 2016 | 258 | 3, 75.6 | weighted | good | 199.5 | shard | |
160 | 0.35 | 0.36 | 3526 | 685 | 1, 79 | 1 step | fair | 199.5 | shard | |
163 | 0.45 | 0.30 | 3135 | 611 | 2, 94 | plateau | good | 199.5 | shard | |
167 | 0.47 | 0.28 | 106 | 19 | 6, 93.6 | plateau | good | 300 | shard | |
Apollo 16 | 191 | 0.11 | 0.32 | 1000 | 230 | 7, 67.3 | plateau | fair | 250.5 | shard |
64,501,225 | 204 | 0.21 | 0.24 | 3905 | 168 | 6, 90.7 | plateau | good | 349.5 | shard |
207 | 0.10 | 0.36 | 925 | 358 | 8, 89 | plateau | good | 300 | shard | |
231 | 0.11 | 0.35 | 1573 | 190 | 6, 72.8 | plateau | good | 324 | shard | |
262 | 0.79 | 0.28 | 2818 | 249 | 2, 80.5 | weighted | fair | 199.5 | shard | |
Apollo 17 | 289 | 0.11 | 0.34 | 1323 | 904 | 4, 64 | weighted | fair | 199.5 | sphere |
71,501,262 | 375 | 0.33 | 0.26 | 3475 | 452 | 1, 100 | 1 step | fair | 250.5 | shard |
Criteria | Fraction of Good Glasses | # Good | # Fair | # Poor | Total |
---|---|---|---|---|---|
Size Only (≥200 µm) | 0.56 | 56 | 23 | 21 | 100 |
X(NBO) Only (≥0.23) | 0.51 | 61 | 31 | 28 | 120 |
K2O Only (≥0.07) | 0.55 | 60 | 26 | 23 | 109 |
Size and X(NBO) | 0.65 | 48 | 14 | 12 | 74 |
Size, X(NBO), and K2O | 0.71 | 39 | 8 | 8 | 55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.; Zellner, N. Using Size and Composition to Assess the Quality of Lunar Impact Glass Ages. Geosciences 2019, 9, 85. https://doi.org/10.3390/geosciences9020085
Nguyen P, Zellner N. Using Size and Composition to Assess the Quality of Lunar Impact Glass Ages. Geosciences. 2019; 9(2):85. https://doi.org/10.3390/geosciences9020085
Chicago/Turabian StyleNguyen, Pham, and Nicolle Zellner. 2019. "Using Size and Composition to Assess the Quality of Lunar Impact Glass Ages" Geosciences 9, no. 2: 85. https://doi.org/10.3390/geosciences9020085
APA StyleNguyen, P., & Zellner, N. (2019). Using Size and Composition to Assess the Quality of Lunar Impact Glass Ages. Geosciences, 9(2), 85. https://doi.org/10.3390/geosciences9020085