Eocene Origin of Owens Valley, California
Abstract
:1. Introduction
2. Geologic Context
3. Materials and Methods
3.1. (U-Th)/He Data
3.2. Quantitative Thermochronologic Modeling
4. Results
4.1. Southern Sierra Nevada
4.2. Inyo Mountains
4.3. Conditions for Owens Valley Evolution
5. Discussion
5.1. Exhumation Athwart Owens Valley
5.2. Possibility of Tilted Isochrones
5.3. Eocene Structural Activity
5.4. Regional Eocene Extension
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Ahnert, F. Equilibrium, scale and inheritance in geomorphology. Geomorphology 1994, 11, 125–140. [Google Scholar] [CrossRef]
- Sibson, R.H. A note on fault reactivation. J. Struct. Geol. 1985, 7, 751–754. [Google Scholar] [CrossRef]
- Mahéo, G.; Saleeby, Z.; Saleeby, J.; Farley, K.A. Tectonic control on southern Sierra Nevada topography, California. Tectonics 2009, 28, 28. [Google Scholar] [CrossRef]
- Chapman, A.D.; Saleeby, J.; Wood, D.J.; Piasecki, A.; Kidder, S.; Ducea, M.N.; Farley, K.A. Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere 2012, 8, 314–341. [Google Scholar] [CrossRef]
- DeCelles, P.G. Late Jurrasic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. Am. J. Sci. 2004, 304, 105–168. [Google Scholar] [CrossRef]
- Jayko, A.S. Deformation of the late Miocene to Pliocene Inyo Surface, eastern Sierra region, California. In Late Cenozoic Structure and Evolution of the Great Basin-Sierra Nevada Transition; Geological Society of America: Boulder, CO, USA, 2009. [Google Scholar]
- Phillips, F.M. Geological and hydrological history of the paleo–Owens River drainage since the late Miocene. In Late Cenozoic Drainage History of the Southwestern Great Basin and Lower Colorado River Region: Geologic and Biotic Perspectives; Geological Society of America: Boulder, CO, USA, 2008. [Google Scholar]
- Phillips, F.M.; Majkowski, L. The role of low-angle normal faulting in active tectonics of the northern Owens Valley, California. Lithosphere 2011, 3, 22–36. [Google Scholar] [CrossRef]
- House, M.A.; Wernicke, B.P.; Farley, K.A.; Dumitru, T.A. Cenozoic thermal evolution of the central Sierra Nevada, California, from (UTh)/He thermochronometry. Earth Planet. Sci. Lett. 1997, 151, 167–179. [Google Scholar] [CrossRef]
- Ali, G.A.H.; Reiners, P.W.; Ducea, M.N. Unroofing history of Alabama and Poverty Hills basement blocks, Owens Valley, California, from apatite (U-Th)/He thermochronology. Int. Geol. 2009, 51, 1034–1050. [Google Scholar] [CrossRef]
- Lee, J.; Stockli, D.F.; Owen, L.A.; Finkel, R.C.; Kislitsyn, R. Exhumation of the Inyo Mountains, California: Implications for the timing of extension along the western boundary of the Basin and Range Province and distribution of dextral fault slip rates across the eastern California shear zone. Tectonics 2009, 28, 20. [Google Scholar] [CrossRef]
- Stone, P.; Dunne, G.C.; Moore, J.G.; Smith, G.I. Geologic Map of the Lone Pine 15’Quadrangle, Inyo County, California; US Geological Survey: Reston, VA, USA, 2000.
- Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, A.S.; Burgmann, R. Surface slip during large Owens Valley earthquakes. Geochem. Geophys. Geosystems 2016, 17, 2239–2269. [Google Scholar] [CrossRef] [Green Version]
- Pakiser, L.C.; Kane, M.F.; Jackson, W.H. Structural Geology and Volcanism of Owens Valley Region, California—A Geophysical Study. Available online: https://pubs.usgs.gov/pp/0438/report.pdf (accessed on 22 March 2019).
- Maheo, G.; Farley, K.; Clark, M. Cooling and Exhumation of the Sierra Nevada Batholith in the Mount Whitney Area (California) Based on (U-Th)/He Thermochronometry. Available online: http://adsabs.harvard.edu/abs/2004AGUFM.T41D1252M (accessed on 22 March 2019).
- Rood, D.H.; Burbank, D.W.; Finkel, R.C. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone. Earth Planet. Sci. Lett. 2011, 301, 457–468. [Google Scholar] [CrossRef]
- Beanland, S.; Clark, M.M. The Owens Valley Fault Zone, Eastern California, and Surface Faulting Associated with the 1872 Earthquake. Available online: https://pubs.usgs.gov/bul/1982/report.pdf (accessed on 22 March 2019).
- Bachman, S.B. Pliocene-Pleistocene break-up of the Sierra Nevada–White-Inyo Mountains block and formation of Owens Valley. Geology 1978, 6, 461–463. [Google Scholar] [CrossRef]
- Stockli, D.F.; Dumitru, T.A.; McWilliams, M.O.; Farley, K.A. Cenozoic tectonic evolution of the White Mountains, California and Nevada. GSA Bull. 2003, 115, 788–816. [Google Scholar] [CrossRef]
- Phillips, F.M.; McIntosh, W.C.; Dunbar, N.W. Chronology of late Cenozoic volcanic eruptions onto relict surfaces in the south-central Sierra Nevada, California. GSA Bull. 2011, 123, 890–910. [Google Scholar] [CrossRef]
- Kylander-Clark, A.R.C.; Coleman, D.S.; Glazner, A.F.; Bartley, J.M. Evidence for 65 km of dextral slip across Owens Valley, California, since 83 Ma. GSA Bull. 2005, 117, 962–968. [Google Scholar] [CrossRef]
- Lechler, A.R.; Niemi, N.A. Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California. Geology 2011, 39, 379–382. [Google Scholar] [CrossRef]
- Henry, C.D.; Hinz, N.H.; Faulds, J.E.; Colgan, J.P.; John, D.A.; Brooks, E.R.; Cassel, E.J.; Garside, L.J.; Davis, D.A.; Castor, S.B. Eocene-Early Miocene paleotopography of the Sierra Nevada-Great Basin-Nevadaplano based on widespread ash-flow tuffs and paleovalleys. Geosphere 2012, 8, 1–27. [Google Scholar] [CrossRef]
- Wakabayashi, J. Paleochannels, stream incision, erosion, topographic evolution, and alternative explanations of paleoaltimetry, Sierra Nevada, California. Geosphere 2013, 9, 191–215. [Google Scholar] [CrossRef]
- Chen, J.H.; Moore, J.G. Uranium-Lead Isotopic Ages from the Sierra-Nevada Batholith, California. J Geophys. Res. 1982, 87, 4761–4784. [Google Scholar] [CrossRef]
- Evernden, J.F.; Kistler, R.W. Chronology of Emplacement of Mesozoic Batholithic Complexes in California and Western Nevada. Available online: https://pubs.usgs.gov/pp/0623/report.pdf (accessed on 22 March 2019).
- Clark, M.K.; Maheo, G.; Saleby, J.; Farley, K.A. The non-equilibrium landscape of the southern Sierra Nevada, California. GSA Today 2005, 15, 4–10. [Google Scholar] [CrossRef]
- House, M.A.; Wernicke, B.P.; Farley, K.A. Paleo-geomorphology of the Sierra Nevada, California, from (U-Th)/He ages in apatite. Am. J. Sci. 2001, 301, 77–102. [Google Scholar] [CrossRef]
- House, M.A.; Wernicke, B.P.; Farley, K.A. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature 1998, 396, 66–69. [Google Scholar] [CrossRef]
- Sousa, F.J.; Saleeby, J.; Farley, K.A.; Unruh, J.R.; Lloyd, M.K. The southern Sierra Nevada pediment, central California. Geosphere 2017, 13, 82–101. [Google Scholar] [CrossRef]
- Sousa, F.J.; Farley, K.A.; Saleeby, J.; Clark, M. Eocene activity on the Western Sierra Fault System and its role incising Kings Canyon, California. Earth Planet. Sci. Lett. 2016, 439, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Dunne, G. Petrology of the Pat Keyes pluton, Inyo Mountains, California, and its relation to the Sierra Nevada batholith. Soc. Am. Abs. Progr. 1971, 3, 113–114. [Google Scholar]
- Dunne, G. Petrology of a portion of the Pat Keyes pluton, Inyo County, California: San Jose, Calif., San Jose State University. Master’s Thesis, San Jose State University, San Jose, CA, USA, 1970. [Google Scholar]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Solid Earth 2012, 117, B02408. [Google Scholar] [CrossRef]
- Flowers, R.M.; Ketcham, R.A.; Shuster, D.L.; Farley, K.A. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta 2009, 73, 2347–2365. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Ketcham, R.A.; Nasdala, L.; Giester, G. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am. J. Sci. 2013, 313, 145–198. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Gautheron, C.; Tassan-Got, L. Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case. Geochim. Cosmochim. Acta 2011, 75, 7779–7791. [Google Scholar] [CrossRef]
- Gautheron, C.; Tassan-Got, L.; Ketcham, R.A.; Dobson, K.J. Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochim. Cosmochim. Acta 2012, 96, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Gavillot, Y.; Meigs, A.J.; Sousa, F.J.; Stockli, D.; Yule, D.; Malik, M. Late Cenozoic Foreland-to-Hinterland Low-Temperature Exhumation History of the Kashmir Himalaya. Tectonics 2018, 37, 3041–3068. [Google Scholar] [CrossRef]
- Vermeesch, P.; Tian, Y. Thermal history modelling: HeFTy vs. QTQt. Earth-Sci. Rev. 2014, 139, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Stockli, D.F.; Farley, K.A.; Dumitru, T.A. Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology 2000, 28, 983–986. [Google Scholar] [CrossRef]
- Bartley, J.M.; Glazner, A.F.; Coleman, D.S.; Kylander-Clark, A.; Mapes, R.; Friedrich, A.M. Large Laramide dextral offset across Owens Valley, California, and its possible relation to tectonic unroofing of the southern Sierra Nevada. In Exhumation Associated with Continental Strike-Slip Fault Systems; Roeske, S.M., Till, A.B., Foster, D.A., Sample, J.C., Eds.; Geological Society of America: Boulder, CO, USA, 2007. [Google Scholar]
- Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J. Thermal Evolution and Exhumation of Deep-Level Batholithic Exposures, Southernmost Sierra Nevada, California; Geological Society of America: Boulder, CO, USA, 2007. [Google Scholar]
- Wood, D.J.; Saleeby, J.B. Late Cretaceous-Paleocene Extensional Collapse and Disaggregation of the Southernmost Sierra Nevada Batholith. Int. Geol. Rev. 1997, 39, 973–1009. [Google Scholar] [CrossRef]
- Cox, B. Stratigraphy, depositional environments, and paleotectonics of the Paleocene and Eocene Goler Formation, El Paso Mountains, California: Geologic summary and roadlog. In Basin Analysis and Paleontology of the Paleocene and Eocene Goler Formation, El Paso Mountains, California: Los Angeles, Pacific Section; Society for Sedimentary Geology: Tulsa, OK, USA, 1987. [Google Scholar]
- Cox, B. Stratigraphy, Sedimentology, and Structure of the Goler Formation (Paleocene), El Paso Mountains, California: Implications for Paleogene Tectonism on the Garlock Fault Zone; University of California, Riverside: Riverside, CA, USA, 1982. [Google Scholar]
- Reid, S.A. Late Cretaceous and Paleogene sedimentation along the east side of the San Joaquin Basin. AAPG Bull. 1988, 60, 157–171. [Google Scholar]
- Saleeby, J.; Saleeby, Z.; Le Pourhiet, L. Epeirogenic transients related to mantle lithosphere removal in the southern Sierra Nevada region, California, part II: Implications of rock uplift and basin subsidence relations. Geosphere 2013, 9. [Google Scholar] [CrossRef]
- Saleeby, J.; Saleeby, Z.; Sousa, F. From deep to modern time along the western Sierra Nevada Foothills of California, San Joaquin to Kern River drainages. Geol. Soc. Am. Field Guides 2013, 32, 37–62. [Google Scholar] [CrossRef]
- Saleeby, J.; Le Pourhiet, L.; Saleeby, Z.; Gurnis, M. Epeirogenic transients related to mantle lithosphere removal in the southern Sierra Nevada region, California, part I: Implications of thermomechanical modeling. Geosphere 2012, 8, 1286–1309. [Google Scholar] [CrossRef] [Green Version]
- Sousa, F.; Saleeby, J.; Farley, K.A. Chronology of Tectonic and Landscape Evolution of the southern Sierra Nevada Foothills-eastern San Joaquin Basin Transition, CA. In Proceedings of the Pacific Section AAPG, SPE and SEPM Joint Technical Conference, Bakersfield, CA, USA, 27–30 April 2014. [Google Scholar]
- Sousa, F.; Saleeby, J.; Farley, K.A.; Unruh, J. The Southern Sierra Nevada Foothills Bedrock Pediment. In Proceedings of the GSA Cordilleran Section Meeting, Fresno, CA, USA, 25–28 September 2017. [Google Scholar]
- Hake, B.F. Scarps of the Southwestern Sierra Nevada, California. GSA Bull. 1928, 39, 1017–1030. [Google Scholar] [CrossRef]
Sample Name | Mineral | Average Age ± 1σ (Ma) | Elevation ‡ (m) | U (ppm) | Th (ppm) | Ft | Source * | Pluton Age (Ma) † | Latitude (°N) | Longitude (°W) |
---|---|---|---|---|---|---|---|---|---|---|
Mt Whitney Transect ** | ||||||||||
109 | Apatite | 74.6 ± 3.4 | 4280 | 10 | 27 | 0.87 | H | 83 | 36.576 | 118.292 |
113 | Apatite | 69.3 ± 2.3 | 3900 | 9 | 26 | 0.89 | H | 83 | 36.562 | 118.286 |
114 | Apatite | 52.1 ± 1.1 | 3640 | 9 | 30 | 0.86 | H | 83 | 36.563 | 118.276 |
118 | Apatite | 38.7 ± 2.5 | 2695 | 10 | 30 | 0.89 | H | 83 | 36.586 | 118.245 |
105 | Apatite | 30.2 ± 3.4 | 2315 | 41 | 46 | 0.85 | H | 83 | 36.595 | 118.217 |
102 | Apatite | 22.7 ± 1.5 | 1985 | 51 | 45 | 0.82 | H | 83 | 36.595 | 118.206 |
Alabama Hills Transect *** | ||||||||||
AH1 | Apatite | 68.5 ± 5.2 | 1730 | 13 | 50 | 0.74 | A | 83 | 36.602 | 118.173 |
AH2 | Apatite | 60.0 ± 2.6 | 1673 | 13 | 62 | 0.65 | A | 83 | 36.597 | 118.165 |
AH3 | Apatite | 63.8 ± 4.5 | 1494 | 13 | 62 | 0.71 | A | 83 | 36.596 | 118.135 |
AH4 | Apatite | 79.4 ± 4.8 | 1417 | 14 | 75 | 0.62 | A | 83 | 36.586 | 118.116 |
AH5 | Apatite | 64.7 ± 8.0 | 1316 | 13 | 65 | 0.67 | A | 83 | 36.587 | 118.101 |
AH6 | Apatite | 52.6 ± 1.8 | 1197 | 11 | 52 | 0.61 | A | 83 | 36.590 | 118.082 |
Inyo Mountains Transect∞ | ||||||||||
IM950 | Apatite | 51.4 ± 2.5 | 3015 (3015) | 20 | 69 | 0.64 | L | 183 | 36.757 | 118.001 |
IM900W | Apatite | 49.1 ± 8.2 | 2751 (2792) | 18 | 69 | 0.63 | L | 183 | 36.762 | 118.007 |
IM800W | Apatite | 54.1 ± 4.9 | 2457 (2612) | 32 | 81 | 0.67 | L | 183 | 36.761 | 118.017 |
IM700W | Apatite | 54.2 ± 2.1 | 2157 (2328) | 72 | 61 | 0.70 | L | 183 | 36.762 | 118.028 |
IM600W | Apatite | 59.4 ± 8.5 | 1813 (2092) | 52 | 57 | 0.61 | L | 183 | 36.760 | 118.038 |
IM500W | Apatite | 50.9 ± 4.4 | 1542 (1860) | 35 | 33 | 0.59 | L | 183 | 36.761 | 118.052 |
IM430W | Apatite | 52.9 ± 3.5 | 1317 (1646) | 23 | 29 | 0.65 | L | 183 | 36.753 | 118.054 |
IM950 | Zircon | 64.8 ± 2.4 | 3015 (3015) | 211 | 115 | 0.78 | L | 183 | 36.757 | 118.001 |
IM900W | Zircon | 65.5 ± 4.4 | 2751 (2792) | 324 | 187 | 0.76 | L | 183 | 36.762 | 118.007 |
IM800W | Zircon | 64.1 ± 6.4 | 2457 (2612) | 301 | 123 | 0.72 | L | 183 | 36.761 | 118.017 |
IM700W | Zircon | 70.1 ± 7.5 | 2157 (2328) | 307 | 193 | 0.75 | L | 183 | 36.762 | 118.028 |
IM600W | Zircon | 71.8 ± 4.7 | 1813 (2092) | 174 | 145 | 0.84 | L | 183 | 36.760 | 118.038 |
IM500W | Zircon | 76.5 ± 2.0 | 1542 (1860) | 200 | 156 | 0.77 | L | 183 | 36.761 | 118.052 |
IM430W | Zircon | 68.2 ± 4.2 | 1317 (1646) | 453 | 463 | 0.72 | L | 183 | 36.753 | 118.054 |
Mt Whitney | Inyo | |
---|---|---|
number of samples | 6 AHe * | 7 AHe *, 7 ZHe * |
elevation range | 1985–4280 | 1646–3015 |
time-temperature bounding box | 100–0 Ma 85 °C +/− 70 °C | 200–0 Ma 150 °C +/− 135 °C |
High-temperature constraints | 85 +/− 2 Ma 650 °C +/− 100 °C | 185 +/− 10 Ma 650 °C +/− 100 °C |
modern temperature constraints | 20 °C +/− 5 °C | 20 °C +/− 5 °C |
geothermal gradient | 30 °C/km +/− 20 °C/km | 30 °C/km +/− 20 °C/km |
data source | [9] | [11] |
pre-“burn in” iterations | ≥500,000 | ≥500,000 |
post-“burn in” iterations | 500,000 | 500,000 |
birthing parameter | uniform | uniform |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, F.J. Eocene Origin of Owens Valley, California. Geosciences 2019, 9, 194. https://doi.org/10.3390/geosciences9050194
Sousa FJ. Eocene Origin of Owens Valley, California. Geosciences. 2019; 9(5):194. https://doi.org/10.3390/geosciences9050194
Chicago/Turabian StyleSousa, Francis J. 2019. "Eocene Origin of Owens Valley, California" Geosciences 9, no. 5: 194. https://doi.org/10.3390/geosciences9050194
APA StyleSousa, F. J. (2019). Eocene Origin of Owens Valley, California. Geosciences, 9(5), 194. https://doi.org/10.3390/geosciences9050194