Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy)
Abstract
:1. Introduction
2. Study Area
2.1. Regional Setting
2.2. Geological and Geomorphological Features
3. Material and Methods
4. Results
4.1. Cliffs on Sandstones: The Cases of Torre Mucchia and Punta Lunga
4.1.1. Torre Mucchia
4.1.2. Punta Lunga
4.2. Cliffs on Conglomerates: The Case of Punta Ferruccio and Punta Aderci
4.2.1. Punta Ferruccio
4.2.2. Punta Aderci
5. Discussion
- Cliffs on conglomerates with a notch frequently reach the failure conditions in the numerical modelling. The notch morphology, as well as the major joints’ orientation and spacing, specifically when they are roughly parallel to the cliff scarp or intersecting to form wedges on the cliff, control the location, geometry, landslide mechanisms and distribution of the failure and landslides. Two different landslide mechanisms affect and are expected on these cliffs: (i) the rockfall and/or collapse of the outer rock wedges of the cliffs where the joints are closely spaced; (ii) the topple of the main wedges bounded by major joints, where the joints are more widely spaced. The rockfalls of the outer wedges can be followed or combined with the topple of the inner wedges.
- Cliffs on sandstone are generally in no failure conditions in the numerical modelling. In these cases, the retreat of the active cliffs is still related to gravity-induced processes connected to the local coastal undercutting of the cliffs, the local variability of the lithological features and possibly the weathering of the rocks along the cliffs. This can induce a worsening of the geotechnical parameters of the rocks, which was roughly simulated by the shear strength reduction method. The main expected landslides are connected to translational slide failure mechanisms, occasionally combined with rockfalls. The major joints show a minor control of the cliff failure mechanisms. Occasionally, they can define critical areas in the wedges at the intersections of the main joints or at the outermost joints that affect the cliffs.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sunamura, T. Geomorphology of Rocky Coasts; John Wiley and Sons: Chichester, UK, 1992; p. 302. [Google Scholar]
- Sunamura, T. Rocky coast processes: With special reference to the recession of soft rock cliffs. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2015, 91, 481–500. [Google Scholar] [CrossRef] [PubMed]
- Trenhaile, A.S. The Geomorphology of Rock Coasts; Clarendon Press: Oxford, UK, 1987; p. 384. [Google Scholar]
- Griggs, G.B.; Trenhaile, A.S. Coastal cliffs and platforms. In Coastal Evolution; Carter, R.W.G., Woodroffe, C.D., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 425–450. [Google Scholar]
- Sherman, D.J.; Gares, P.A. The geomorphology of coastal environments. Geomorphology 2002, 48, 1–6. [Google Scholar] [CrossRef]
- Furlani, S.; Pappalardo, M.; Gómez-Pujol, L.; Chelli, A. The rock coast of theMediterranean and Black seas. Geol. Soc. Lond. Mem. 2014, 40, 89–123. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Ricci, F.; Piacentini, T. Geomorphology of soft clastic rock coasts in the mid-western Adriatic Sea (Abruzzo, Italy). Geomorphology 2019, 324, 82–94. [Google Scholar] [CrossRef]
- Davies, D.S.; Axelrod, E.W.; O’Conner, J.S. Erosion of the North Shore of Long Island; Center, State University of New York: Stony Brook, NY, USA, 1972; pp. 1–101. [Google Scholar]
- Griggs, G.; Savoy, L. Sea cliff erosion. In Living with the California Coast; Griggs, G., Savoy, L., Eds.; Duke University Press: Durham, NC, USA, 1985; pp. 29–34. [Google Scholar]
- Sunamura, T. Rock control in coastal geomorphic processes. Trans. Jpn. Geomorphol. Union 1994, 15, 253–272. [Google Scholar]
- D’Alessandro, L.; Genevois, R.; Marino, A. Dinamica recente della costa alta fra Ortona e Vasto (Abruzzo centro-meridionale). Mem. Soc. Geol. Ital. 2001, 56, 53–60. [Google Scholar]
- Colantoni, P.; Mencucci, D.; Nesci, O. Coastal processes and cliff recession between Gabicce and Pesaro (northern Adriatic Sea): A case history. Geomorphology 2004, 62, 257–268. [Google Scholar] [CrossRef]
- Quinn, J.D.; Philip, L.K.; Murphy, W. Understanding the recession of the Holderness Coast, east Yorkshire, UK: A new presentation of temporal and spatial patterns. Q. J. Eng. Geol. Hydrogeol. 2009, 42, 165–178. [Google Scholar] [CrossRef]
- Young, A.P. Decadal-scale coastal cliff retreat in southern and central California. Geomorphology 2018, 300, 164–175. [Google Scholar] [CrossRef]
- Prémaillon, M.; Regard, V.; Dewez, T.J.; Auda, Y. GlobR2C2 (Global Recession Rates of Coastal Cliffs): A global relational database to investigate coastal rocky cliff erosion rate variations. Earth Surf. Dyn. 2018, 6, 651–668. [Google Scholar] [CrossRef]
- Richards, K.S.; Lorriman, N.R. Basal erosion and mass movement. In Slope Stability; Anderson, M.G., Richards, K.S., Eds.; Wiley: Chichester, UK, 1987; pp. 331–357. [Google Scholar]
- Dornbusch, U.; Robinson, D.A.; Moses, C.A.; Williams, R.B.G. Temporal and spatial variations of chalk cliff retreat in East Sussex, 1873 to 2001. Mar. Geol. 2008, 249, 271–282. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK. Geomorphology 2010, 124, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Itasca, F.L. Fast Lagrangian Analysis of Continua in 3-Dimension (FLAC3D V 5.01); Itasca Consulting Group: Minneapolis, MN, USA, 2012. [Google Scholar]
- Calista, M.; Miccadei, E.; Piacentini, T.; Sciarra, N. Morphostructural, Meteorological and Seismic Factors Controlling Landslides in Weak Rocks: The Case Studies of Castelnuovo and Ponzano (North East Abruzzo, Central Italy). Geosciences 2019, 9, 122. [Google Scholar] [CrossRef]
- Marchetti, D.; D’Amato Avanzi, G.; Pochini, A.; Puccinelli, A.; Sciarra, N.; Calista, M. Geomechanical characterization and 3d numerical modelling of complex rock masses: A study case in Italy. In Proceedings of the ISRM International Symposium on Rock Mechanics-SINOROCK 2009-“Rock Characterization, Modelling and Engineering Design Methods, International Society for Rock Mechanics and Rock Engineering, Hong Kong, China, 19–22 May 2009; pp. 216–220. [Google Scholar]
- Aringoli, D.; Calista, M.; Gentili, B.; Pambianchi, G.; Sciarra, N. Geomorphological features and 3d modelling of Montelparo mass movement (Central Italy). Eng. Geol. 2008, 99, 70–84. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Buccolini, M. Long-term geomorphological evolution in the Abruzzo area (Central Apennines, Italy): Twenty years of research. Geol. Carpathica 2017, 68, 19–28. [Google Scholar] [CrossRef]
- Cantalamessa, G.; Di Celma, C. Sequence Response to Syndepositional Regional Uplift: Insights from High-Resolution Sequence Stratigraphy of Late Early Pleistocene Strata, Periadriatic Basin, Central Italy. Sediment. Sediment. Geol. 2004, 164, 283–309. [Google Scholar] [CrossRef]
- Ori, G.G.; Roveri, M.; Vannoni, F. Plio—Pleistocene sedimentation in the Apenninic foredeep (Central Adriatic Sea, Italy). In Foreland Basins; Allen, P.A., Homewood, P., Eds.; IAS Special Publication 8 Blackwell: Oxford, UK, 1986; pp. 183–198. [Google Scholar]
- Bigi, S.; Conti, A.; Casero, P.; Ruggiero, L.; Recanati, R.; Lipparini, L. Geological model of the central Periadriatic basin (Apennines, Italy). Mar. Pet. Geol. 2013, 42, 107–121. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Piacentini, T. Quaternary geomorphological evolution of the Tremiti Islands (Puglia, Italy). Quat. Int. 2011, 232, 3–15. [Google Scholar] [CrossRef]
- Calista, M.; Miccadei, E.; Pasculli, A.; Piacentini, T.; Sciarra, M.; Sciarra, N. Geomorphological features of the Montebello sul Sangro large landslide (Abruzzo, Central Italy). J. Maps 2016, 12, 882–891. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphostructural elements of central-eastern Abruzzi: Contributions to the study of the role of tectonics on the morphogenesis of the Apennine chain. Quat. Int. 2003, 101, 115–124. [Google Scholar] [CrossRef]
- Demangeot, J. Geomorphologie des Abruzzes Adriatiques; Memoires et Documentes; Centre de Reserches et Documentation Cartografiques et Geographiques: The Hague, The Netherlands, 1965; p. 403. [Google Scholar]
- Dramis, F. Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. Studi Geol. Camerti 1993, 1992/1, 9–15. [Google Scholar]
- Ascione, A.; Cinque, A.; Miccadei, E.; Villani, F.; Berti, C. The Plio-Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy. Geomorphology 2008, 102, 105–118. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphotectonic study of the lower Sangro River valley (Abruzzi, Central Italy). Geomorphology 2008, 102, 145–158. [Google Scholar] [CrossRef]
- Buccolini, M.; Gentili, B.; Materazzi, M.; Piacentini, T. Late Quaternary geomorphological evolution and erosion rates in the clayey peri-Adriatic belt (central Italy). Geomorphology 2010, 116, 145–161. [Google Scholar] [CrossRef]
- Piacentini, T.; Miccadei, E. The role of drainage systems and intermontane basins in the Quaternary landscape of the Central Apennines chain (Italy). Rend. Lincei Sci. Fis. Nat. 2014, 25, 139–150. [Google Scholar] [CrossRef]
- Parlagreco, L.; Mascioli, F.; Miccadei, E.; Antonioli, F.; Gianolla, D.; Devoti, S.; Leoni, G. New data on Holocene Relative Sea Level along the Abruzzo coast (central Adriatic, Italy). Quat. Int. 2011, 232, 179–186. [Google Scholar] [CrossRef]
- Antonioli, F. Sea level change in Western-Central Mediterranean since 300 Kyr: Comparing global sea level curves with observed data. Alp. Mediterr. Quat. 2012, 25, 15–23. [Google Scholar]
- The Ecoregions of Italy, Ministry of the Environment, Land and Sea Protection, Nature Protection Directorate. 2010. Available online: https://www.minambiente.it/sites/default/files/archivio/biblioteca/protezione_natura/ecoregioni_italia_eng.pdf (accessed on 25 May 2019).
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo hills area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef]
- Region Abruzzo Hydrographic Service. 2011. Available online: https://www.regione.abruzzo.it/content/idrografico-mareografico (accessed on 15 September 2018).
- GNRAC (Gruppo Nazionale pel la Ricerca sull’Ambiente Costiero). Lo stato dei litorali italiani. Studi Costieri. 2006, 10, 3–113. [Google Scholar]
- ISPRA. RON, Rete Ondametrica Nazionale. ISPRA, Dipartimento Difesa del Suolo, Servizio Geologico d’Italia. 2018. Available online: http://www.mareografico.it (accessed on 10 May 2018).
- Chiocchini, U.; Barbieri, M.; Madonna, S.; Di Stefano, A.P.M. I depositi del Pleistocene tra Ortona e la stazione ferroviaria di Casalbordino (provincia di Chieti). Soc. Geol. Ital. 2006, 2, 3–14. [Google Scholar]
- ISPRA. Carta Geologica d’Italia, alla scala 1:50.000—Foglio 351 “Pescara”; ISPRA, Dipartimento Difesa del Suolo, Servizio Geologico d’Italia: Rome, Italy, 2012. [Google Scholar]
- ISPRA. Carta Geologica d’Italia, alla scala 1:50.000—Foglio 361 “Chieti”; ISPRA, Dipartimento Difesa del Suolo, Servizio Geologico d’Italia: Rome, Italy, 2012. [Google Scholar]
- ISPRA. Carta Geologica d’Italia, alla scala 1:50.000—Foglio 372 “Vasto”; ISPRA, Dipartimento Difesa del Suolo, Servizio Geologico d’Italia: Rome, Italy, 2012. [Google Scholar]
- Di Celma, C.; Ragaini, L.; Caffau, M. Marine and nonmarine deposition in a longterm low-accommodation setting: An example from the middle Pleistocene Qm2 unit, eastern central Italy. Mar. Pet. Geol. 2016, 72, 234–253. [Google Scholar] [CrossRef]
- C.N.R. (Consiglio Nazionale delle Ricerche). Neotectonic Map of Italy—Carta Neotettonica d’Italia. Progetto Finalizzato Geodinamica (Consiglio Nazionale delle Ricerche). Quad. Ric. Sci. 1983, 114. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Dal Pozzo, A.; La Corte, M.; Sciarra, M. Morphotectonic map of the Aventino-Lower Sangro valley (Abruzzo, Italy), scale 1:50,000. J. Maps 2013, 9, 390–409. [Google Scholar] [CrossRef] [Green Version]
- Miccadei, E.; Piacentini, T.; Gerbasi, F.; Daverio, F. Morphotectonic map of the Osento River basin (Abruzzo, Italy), scale 1:30,000. J. Maps 2012, 8, 62–73. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Piacentini, T.; Ricci, F. Geomorphological features of coastal dunes along the central Adriatic coast (Abruzzo, Italy). J. Coast. Res. 2011, 277, 1122–1136. [Google Scholar] [CrossRef]
- National Geoportal of the Italian Ministry of Environment. 2011. Available online: http://www.pcn.minambiente.it/ (accessed on 10 September 2018).
- Calista, M.; Di Giandomenico, B.; Mangifesta, M. Modellazione numerica finalizzata allo studio del comportamento meccanico delle terre: Applicazioni 3D per l’analisi della stabilità dell’area orientale dell’Abitato di Ortona (CH). G. Geol. Appl. 2007, 6, 81–91. [Google Scholar]
- Microzonazione Sismica Regione Abruzzo, Dipartimento di Protezione Civile, Comune di Ortona. 2016. Available online: http://hosting.soluzionipa.it/ortona/trasparenza/pagina.php?id=108 (accessed on 15 October 2018).
- Microzonazione Sismica Regione Abruzzo, Dipartimento di Protezione Civile, Comune di Vasto. Available online: http://www.comune.vasto.ch.it/index.php/strumenti-urbanistici (accessed on 15 October 2018).
- Chelli, A.; Aringoli, D.; Aucelli, P.; Baldassarre, M.A.; Bellotti, P.; Bini, M.; Biolchi, S.; Bontempi, S.; Brandolini, P.; Davoli, L.; et al. Coastal morphodynamics AIGeo-WG: The new geomorphological legend of the Italian coast. In Proceedings of the 88° Congresso della Società Geologica Italiana, Napoli, Italy, 7–9 September 2016. [Google Scholar]
- Miccadei, E.; Orrù, P.; Piacentini, T.; Mascioli, F.; Puliga, G. Geomorphological map of Tremiti Islands Archipelago (Puglia, Southern Adriatic Sea, Italy), scale 1:15.000. J. Maps 2012, 8, 74–87. [Google Scholar] [CrossRef]
- Microzonazione Sismica Regione Abruzzo, Dipartimento di Protezione Civile, Comune di Chieti. 2014. Available online: http://ww2.gazzettaamministrativa.it/opencms/export/sites/default/_gazzetta_amministrativa/amministrazione_trasparente/_abruzzo/_chieti/190_pia_gov_ter/2016/2016_Documenti_1462183255712/1462183258625_relazione_illustrativa.pdf (accessed on 15 October 2018).
- Naylor, D.J. Finite elements and slope stability. In Numerical Methods in Geomechanics; Martins, J.B., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1982; pp. 229–244. [Google Scholar]
- Zienkiewicz, O.C.; Humpheson, C.; Lewis, R.W. Associated and non-associated viscoplasticity and plasticity in soil mechanics. Géotechnique 1975, 25, 671–689. [Google Scholar] [CrossRef]
Lithotype | Conglomerate | Sandstone | Sand | Clay |
---|---|---|---|---|
γ (kg/m3) | 2100 | 2100 | 2080 | 2050 |
φ’ (°) | 45 | 38 | 34 | 24 |
K (Pa) | 2.00 × 108 | 4.94 × 107 | 5.56 × 106 | 1.60 × 107 |
G (Pa) | 1.20 × 108 | 3.25 × 107 | 1.85 × 106 | 9.60 × 106 |
c’ (Pa) | 3.80 × 105 | 2.00 × 105 | 1.67 × 104 | 3.68 × 104 |
Ϭtmax (Pa) | 3.80 × 105 | 2.56 × 105 | 2.48 × 104 | 8.27 × 104 |
jkn = jks (Pa/m) | 1.20 × 108 | 3.09 × 107 | 2.67 × 106 | |
jc’ (Pa) | 1.00 × 104 | 1.00 × 104 | 1.00 × 104 | |
Jφ’ (°) | 30 | 30 | 30 |
Feature | Torre Mucchia (TM) | Punta Lunga (PL) | Punta Ferruccio (PF) | Punta Aderci (PA) |
---|---|---|---|---|
Morphological Features | ||||
Hc | > 25 m | < 25 m | > 25 m | > 25m |
Hs | 60 m | 60 m | 60 m | --- |
Sty | Vertical | Vertical | Vertical and Vertical + concave convex | Undulated concave–convex Vertical |
Lithological Features | ||||
Lf | Sand | Silty sands | Conglomerate Silty sands | Conglomerate |
Le | Sandstone | Silty sands | Conglomerate | Conglomerate |
Structural features | ||||
G | Sub-horizontal | Sub-horizontal | Sub-horizontal | Sub-horizontal |
Fr | N60°E, 75° NW N90°E, 75°N N40°W, 80°NE N50°W, 50°NE N10°E, 80°ESE | N60°E, 90° N70°W, 70° NNE N20°W, 90° | N20°E, 80°WNW N60°E, 80°NW N90°E, 90° N60°W, 85°SW N60°W, 85°NE N20°W, 80°ENE | N60°W, 90° N50°W, 80°NE N20°W, 90° |
Geomorphological features | ||||
L | Rockfalls, translational sliding, wave erosion | Rockfalls, translational sliding, wave erosion | Rockfalls, translational sliding, wave erosion, notch | Rockfalls, rainwash, notch, shore platform |
SP | -- | -- | -- | Horizontal |
N | -- | -- | On silty sand | On conglomerate |
R | 0.63 m/yr | 0.76 m/yr | 0.85 m/yr | 0.15 m/yr |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calista, M.; Mascioli, F.; Menna, V.; Miccadei, E.; Piacentini, T. Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geosciences 2019, 9, 309. https://doi.org/10.3390/geosciences9070309
Calista M, Mascioli F, Menna V, Miccadei E, Piacentini T. Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geosciences. 2019; 9(7):309. https://doi.org/10.3390/geosciences9070309
Chicago/Turabian StyleCalista, Monia, Francesco Mascioli, Valeria Menna, Enrico Miccadei, and Tommaso Piacentini. 2019. "Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy)" Geosciences 9, no. 7: 309. https://doi.org/10.3390/geosciences9070309
APA StyleCalista, M., Mascioli, F., Menna, V., Miccadei, E., & Piacentini, T. (2019). Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geosciences, 9(7), 309. https://doi.org/10.3390/geosciences9070309