Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses
Abstract
:1. Introduction
2. Evolution of mRNA Technology for Vaccine Research for Infectious Diseases and Virus-Induced Cancers (Figure 1)
2.1. mRNA Vaccines in Infectious Diseases
2.2. mRNA Vaccine in Melanoma
2.3. Personalized mRNA Vaccine
3. Vector Optimization for Efficient Delivery of mRNA Vaccine
4. Recent Advances in mRNA Vaccines
5. Improving the Stability of mRNA Vaccines for Infectious Diseases and Virus-Induced Cancers
6. Formulation and Delivery of mRNA Vaccines
- Injection of naked mRNA:
- b.
- Liposomal complexes:
- c.
- Lipid Nanoparticles:
- d.
- Modification of LNPs:
- e.
- Stimulus-responsive liposomes:
- f.
- Polymer-based delivery systems:
7. Limitations of mRNA Technology
8. Conclusions
9. Further Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Eygeris, Y.; Gupta, M.; Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 2021, 170, 83–112. [Google Scholar] [CrossRef]
- Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J.B.; Yu, D. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol. Ther. 2019, 27, 757–772. [Google Scholar]
- Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; Wu, X.; Liu, J.; Zhao, D.; Li, Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 2022, 7, 94. [Google Scholar] [CrossRef]
- Firdessa-Fite, R.; Creusot, R.J. Nanoparticles versus dendritic cells as vehicles to deliver mRNA encoding multiple epitopes for immunotherapy. Mol. Ther. Methods Clin. Dev. 2020, 16, 50–62. [Google Scholar] [CrossRef]
- Xu, S.; Yang, K.; Li, R.; Zhang, L. Mrna vaccine era—Mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci. 2020, 21, 6582. [Google Scholar] [CrossRef]
- Cagigi, A.; Loré, K. Immune responses induced by mRNA vaccination in mice, monkeys and humans. Vaccines 2021, 9, 61. [Google Scholar] [CrossRef]
- Pascolo, S. Vaccination with Messenger RNA (mRNA). In Toll-Like Receptors (TLRs) and Innate Immunity; Springer: Berlin/Heidelberg, Germany, 2008; pp. 221–235. [Google Scholar]
- Khalid, K.; Padda, J.; Khedr, A.; Ismail, D.; Zubair, U.; Al-Ewaidat, O.A.; Padda, S.; Cooper, A.C.; Jean-Charles, G. HIV and Messenger RNA (mRNA) Vaccine. Cureus 2021, 13, e16197. [Google Scholar]
- Rogers, J. NIH Launches Clinical Trial of Three mRNA HIV Vaccines [Internet]. National Institutes of Health (NIH). 2022. Available online: https://www.nih.gov/news-events/news-releases/nih-launches-clinical-trial-three-mrna-hiv-vaccines (accessed on 16 November 2023).
- Tabak, L. Encouraging First-in-Human Results for a Promising HIV Vaccine [Internet]. NIH Director’s Blog. 2023. Available online: https://directorsblog.nih.gov/2023/06/06/encouraging-first-in-human-results-for-a-promising-hiv-vaccine (accessed on 16 November 2023).
- Essink, B.; Chu, L.; Seger, W.; Barranco, E.; Le Cam, N.; Bennett, H.; Faughnan, V.; Pajon, R.; Paila, Y.D.; Bollman, B.; et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: The results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 2023, 23, 621–633. [Google Scholar] [CrossRef]
- Hu, X.; Karthigeyan, K.P.; Herbek, S.; Valencia, S.M.; Jenks, J.A.; Webster, H.; Miller, I.G.; Connors, M.; Pollara, J.; Andy, C.; et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. J. Infect Dis. 2024, jiad593. [Google Scholar] [CrossRef]
- Scarpini, S.; Morigi, F.; Betti, L.; Dondi, A.; Biagi, C.; Lanari, M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines 2021, 9, 551. [Google Scholar] [CrossRef]
- Aldrich, C.; Leroux-Roels, I.; Huang, K.B.; Bica, M.A.; Loeliger, E.; Schoenborn-Kellenberger, O.; Walz, L.; Leroux-Roels, G.; von Sonnenburg, F.; Oostvogels, L. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine 2021, 39, 1310–1318. [Google Scholar] [CrossRef]
- Heiser, A.; Coleman, D.; Dannull, J.; Yancey, D.; Maurice, M.A.; Lallas, C.D.; Dahm, P.; Niedzwiecki, D.; Gilboa, E.; Vieweg, J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Investig. 2002, 109, 409–417. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L.; Wang, X.; Jin, H. RNA-based therapeutics: An overview and prospectus. Cell Death Dis. 2022, 13, 644. [Google Scholar] [CrossRef]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020, 585, 107–112. [Google Scholar] [CrossRef]
- Khattak, A.; Weber, J.S.; Meniawy, T.; Taylor, M.H.; Ansstas, G.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; Faries, M.B.; et al. Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. J. Clin. Oncol. 2023, 41 (Suppl. 17), LBA9503–3. [Google Scholar] [CrossRef]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef]
- MSK mRNA Pancreatic Cancer Vaccine Trial Shows Promising Results|Memorial Sloan Kettering Cancer Center [Internet]. www.mskcc.org. Available online: https://www.mskcc.org/news/can-mrna-vaccines-fight-pancreatic-cancer-msk-clinical-researchers-are-trying-find-out (accessed on 16 November 2023).
- Jin, L.; Han, Z.; Zhao, P.; Sun, K. Perspectives and Prospects on mRNA Vaccine Development for COVID-19. Curr. Med. Chem. 2022, 29, 3991. [Google Scholar] [CrossRef]
- A Study of mRNA-1345 Vaccine Targeting Respiratory Syncytial Virus (RSV) in Adults ≥50 Years of Age—Full Text View—ClinicalTrials.gov [Internet]. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05330975 (accessed on 21 November 2023).
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Lee, S.-S. From COVID-19 to Cancer mRNA Vaccines: Moving from Bench to Clinic in the Vaccine Landscape. Front. Immunol. 2021, 12, 679344. [Google Scholar] [CrossRef]
- Park, J.W.; Lagniton, P.N.P.; Liu, Y.; Xu, R.H. mRNA vaccines for COVID-19: What, why and how. Int. J. Biol. Sci. 2021, 17, 1446. [Google Scholar] [CrossRef]
- Wilson, E.; Goswami, J.; Baqui, A.H.; Doreski, P.A.; Perez-Marc, G.; Zaman, K.; ConquerRSV Study Group. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults. N. Engl. J. Med. 2023, 389, 2233–2244. [Google Scholar] [CrossRef]
- Amanpour, S. The Rapid Development and Early Success of Covid 19 Vaccines Have Raised Hopes for Accelerating the Cancer Treatment Mechanism. Arch. Razi Inst. 2021, 76, 1. [Google Scholar]
- Provine, N.M.; Klenerman, P. Adenovirus vector and mRNA vaccines: Mechanisms regulating their immunogenicity. Eur. J. Immunol. 2022, 53, 2250022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Zhang, L.; Lin, A.; Xu, C.; Li, Z.; Liu, K.; Liu, B.; Ma, X.; Zhao, F.; Jiang, H.; et al. Algorithm for Optimized mRNA Design Improves Stability and Immunogenicity. Nature 2023, 621, 396–403. [Google Scholar] [CrossRef]
- Brito, L.A.; Chan, M.; Shaw, C.A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G.R.; Beard, C.W.; et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014, 22, 2118–2129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Démoulins, T.; Milona, P.; Englezou, P.C.; Ebensen, T.; Schulze, K.; Suter, R.; Pichon, C.; Midoux, P.; Guzmán, C.A.; Ruggli, N.; et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 2016, 12, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Chatzikleanthous, D.; Lou, G.; Giusti, F.; Bonci, A.; Taccone, M.; Brazzoli, M.; Gallorini, S.; Ferlenghi, I.; Berti, F.; et al. Mannosylation of LNP Results in Improved Potency for Self-Amplifying RNA (SAM) Vaccines. ACS Infect. Dis. 2019, 5, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Kim, S.C.; Sekhon, S.S.; Shin, W.-R.; Ahn, G.; Cho, B.-K.; Ahn, J.-Y.; Kim, Y.-H. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol. 2022, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [Google Scholar] [CrossRef]
- Swetha, K.; Kotla, N.G.; Tunki, L.; Jayaraj, A.; Bhargava, S.K.; Hu, H.; Bonam, S.R.; Kurapati, R. Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines 2023, 11, 658. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Weissman, D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020, 65, 14–20. [Google Scholar] [CrossRef]
- Granados-Riveron, J.T.; Aquino-Jarquin, G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed. Pharmacother. 2021, 142, 111953. [Google Scholar] [CrossRef]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef]
- Pollard, C.; De Koker, S.; Saelens, X.; Vanham, G.; Grooten, J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol. Med. 2013, 19, 705–713. [Google Scholar] [CrossRef]
- Weng, Y.; Huang, Y. Advances of mRNA vaccines for COVID-19: A new prophylactic revolution begins. Asian J. Pharm. Sci. 2021, 16, 263–264. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Xie, C.; Xia, X. Advances in mRNA vaccines. Int. Rev. Cell Mol. Biol. 2022, 372, 295–316. [Google Scholar]
- Yang, L.; Tang, L.; Zhang, M.; Liu, C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front. Immunol. 2022, 13, 896958. [Google Scholar] [CrossRef]
- da Silva, M.K.; Campos, D.M.O.; Akash, S.; Akter, S.; Yee, L.C.; Fulco, U.L.; Oliveira, J.I.N. Advances of Reverse Vaccinology for mRNA Vaccine Design against SARS-CoV-2: A Review of Methods and Tools. Viruses 2023, 15, 2130. [Google Scholar] [CrossRef]
- Lorentzen, C.L.; Haanen, J.B.; Met, O.; Svane, I.M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022, 23, e450–e458. [Google Scholar] [CrossRef]
- Szabo, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. 2022, 30, 1850–1868. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Ura, T.; Yamashita, A.; Mizuki, N.; Okuda, K.; Shimada, M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2021, 39, 197. [Google Scholar] [CrossRef]
- Hussain, A.; Yang, H.; Zhang, M.; Liu, Q.; Alotaibi, G.; Irfan, M.; He, H.; Chang, J.; Liang, X.-J.; Weng, Y.; et al. mRNA vaccines for COVID-19 and diverse diseases. J. Control. Release 2022, 345, 314–333. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T. Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives. Pharm. Res. 2021, 38, 473–478. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Guevara, M.L.; Persano, S.; Persano, F. RNA therapeutics: Advances and challenges in the development of nucleic acid drugs. AAPS PharmSciTech 2022, 23, 51. [Google Scholar]
- Li, Y.; Zhang, S. Overcoming the stability challenge of mRNA vaccines. Drug Discov. Today 2022, 27, 1260–1267. [Google Scholar]
- Zhang, Y.; Yu, J.S.; Hu, Y. Engineering lipid nanoparticles for mRNA delivery. Nano Today 2022, 40, 101260. [Google Scholar]
- Allen, C.; Mout, R. Stable mRNA vaccine delivery using lipids. J. Control. Release 2022, 342, 83–96. [Google Scholar]
- Chen, Y.H.; Kim, J. Improving the thermostability of mRNA vaccines. J. Control. Release 2022, 341, 166–177. [Google Scholar]
- Lallana, E.; Rincón-López, C. Stability and delivery challenges of mRNA vaccines: A review. Pharmaceutics 2022, 14, 263. [Google Scholar]
- Li, C.; Yin, X.; Wang, Q.; Zhang, Y.; Chen, D. Strategies to improve mRNA stability and translation efficiency for efficient protein synthesis. J. Control. Release 2022, 337, 491–501. [Google Scholar]
- Loomis, K.H.; Pradhan, S.; Mitragotri, S. Challenges and opportunities in mRNA vaccine delivery. J. Control. Release 2022, 345, 183–201. [Google Scholar]
- Feng, J.; Hu, Y.; Zhang, Y. Rational design of modified nucleosides for enhancing mRNA stability. Curr. Opin. Chem. Biol. 2023, 66, 29–37. [Google Scholar]
- Kaczmarek, J.C.; Patel, A.K.; Kauffman, K.J.; Fenton, O.S.; Webber, M.J.; Anderson, D.G. Development and clinical translation of approved mRNA vaccines. Curr. Opin. Biotechnol. 2022, 73, 252–261. [Google Scholar]
- Vogel, A.B.; Sterzynska, K. Towards stable and efficient mRNA vaccines—Successes and challenges. Vaccines 2022, 10, 92. [Google Scholar]
- Riedmann, E.M.; Cooney, C.L. Stability challenges and formulation strategies for RNA therapeutics. AAPS PharmSciTech 2022, 23, 57. [Google Scholar]
- Reichmuth, A.M.; Oberli, M.A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipids with innate immune-activating potential. Nano Lett. 2022, 22, 91–99. [Google Scholar]
- Chen, Q.; Peng, Z.; Zhang, Y. Strategies to improve the stability of mRNA vaccines: From formulation design to delivery systems. Adv. Drug Deliv. Rev. 2022, 189, 114427. [Google Scholar]
- Liu, T.; Liang, Y.; Huang, L. Development and Delivery Systems of mRNA Vaccines. Front. Bioeng. Biotechnol. 2021, 9, 718753. [Google Scholar]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247 Pt 1, 1465–1468. [Google Scholar] [CrossRef]
- Kutzler, M.A.; Weiner, D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008, 9, 776–788. [Google Scholar] [CrossRef]
- Wang, Y.S.; Kumari, M.; Chen, G.H.; Hong, M.H.; Yuan, J.P.; Tsai, J.L.; Wu, H.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023, 30, 84. [Google Scholar] [CrossRef]
- Lin, F.; Lin, E.Z.; Anekoji, M.; Ichim, T.E.; Hu, J.; Marincola, F.M.; Jones, L.D.; Kesari, S.; Ashili, S. Advancing personalized medicine in brain cancer: Exploring the role of mRNA vaccines. J. Transl. Med. 2023, 21, 830. [Google Scholar] [CrossRef]
- Eljilany, I.; Castellano, E.; Tarhini, A.A. Adjuvant Therapy for High-Risk Melanoma: An In-Depth Examination of the State of the Field. Cancers 2023, 15, 4125. [Google Scholar] [CrossRef]
- Palmer, D.; Webber, B.; Patel, Y.; Johnson, M.; Kariya, C.; Lahr, W.; Parkhurs, M.; Gartner, J.; Prickett, T.; Lowery, F.; et al. 333 Targeting the apical intracellular checkpoint CISH unleashes T cell neoantigen reactivity and effector program. J. ImmunoTherapy Cancer 2020, 14, 682. [Google Scholar]
- Nakabembe, E.; Cooper, J.; Amaral, K.; Tusubira, V.; Hsia, Y.; Abu-Raya, B.; Sekikubo, M.; Nakimuli, A.; Sadarangani, M.; Le Doare, K. The safety and immunogenicity of vaccines administered to pregnant women living with HIV: A systematic review and meta-analysis. EClinicalMedicine 2024, 69, 102448. [Google Scholar] [CrossRef]
- Woolsey, C.; Borisevich, V.; Fears, A.C.; Agans, K.N.; Deer, D.J.; Prasad, A.N.; O’toole, R.; Foster, S.L.; Dobias, N.S.; Geisbert, J.B.; et al. Recombinant vesicular stomatitis virus-vectored vaccine induces long-lasting immunity against Nipah virus disease. J. Clin. Investig. 2023, 133, e164946. [Google Scholar] [CrossRef]
- Chen, H.; Yang, G.; Xiao, J.; Zheng, L.; You, L.; Zhang, T. Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Lett. 2020, 490, 12. [Google Scholar] [CrossRef]
- Sharma, A.; Young, A.; Carroll, Y.; Darji, H.; Li, Y.; Mandrell, B.N.; Nelson, M.N.; Owens, C.L.; Irvine, M.; Caples, M.; et al. Gene therapy in sickle cell disease: Attitudes and informational needs of patients and caregivers. Pediatr. Blood Cancer 2023, 70, e30319. [Google Scholar] [CrossRef]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef]
- Geall, A.J.; Verma, A.; Otten, G.R.; Shaw, C.A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C.W.; Brito, L.A.; Krucker, T.; et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609. [Google Scholar] [CrossRef]
- Nitika; Wei, J.; Hui, A.-M. The delivery of mRNA vaccines for therapeutics. Life 2022, 12, 1254. [Google Scholar] [CrossRef]
- Miao, J.; Gao, P.; Li, Q.; He, K.; Zhang, L.; Wang, J.; Huang, L. Advances in Nanoparticle Drug Delivery Systems for Anti-Hepatitis B Virus Therapy: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 11227. [Google Scholar] [CrossRef]
- Sriwidodo; Umar, A.K.; Wathoni, N.; Zothantluanga, J.H.; Das, S.; Luckanagul, J.A. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022, 8, e08934. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Wilson, B.; Geetha, K.M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 2022, 74, 103553. [Google Scholar] [CrossRef]
- Ahmad, S.; Yuson, C.; Le, A.; Hissaria, P. Myopericarditis following both BNT162b2 and NVX-CoV2373. Allergy Asthma Clin. Immunol. 2022, 18, 109. [Google Scholar] [CrossRef]
- Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Almatroudi, A.; Rahmani, A.H. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech 2020, 10, 163. [Google Scholar] [CrossRef]
- Yang, W.; Mixich, L.; Boonstra, E.; Cabral, H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv. Healthc. Mater. 2023, 12, 2202688. [Google Scholar] [CrossRef]
- Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Dewitte, H. Three decades of messenger RNA vaccine development. Nano Today 2019, 28, 100766. [Google Scholar] [CrossRef]
Clinical Trial ID | Study Type | Phase | Population | Groups | Primary Outcomes |
---|---|---|---|---|---|
NCT05968326 | Multicenter randomized | II | Patients (n = 260) with resected pancreatic ductal adenocarcinoma |
| Disease-free survival |
NCT03897881 | Randomized | III | Patients after complete resection of high-risk melanoma |
| Recurrence-free survival (RFS), assessed using radiological imaging |
NCT05198752 | Open label | I | Patients with advanced malignant solid tumours | SW1115C3 (mRNA) | Dose-limiting toxicity incidence |
NCT04382898 | Randomized multicenter four-arm | I/II | Patients with high-risk, localized prostate cancer |
| Dose-limiting toxicity, adverse events, objective response rate |
NCT05192460 | Single-center, single-arm | Not applicable | Patients with advanced gastric cancer, esophageal cancer, and liver cancer |
| Adverse events, objective response rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutikuppala, L.V.S.; Kourampi, I.; Kanagala, R.S.D.; Bhattacharjee, P.; Boppana, S.H. Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses. Med. Sci. 2024, 12, 28. https://doi.org/10.3390/medsci12020028
Kutikuppala LVS, Kourampi I, Kanagala RSD, Bhattacharjee P, Boppana SH. Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses. Medical Sciences. 2024; 12(2):28. https://doi.org/10.3390/medsci12020028
Chicago/Turabian StyleKutikuppala, Lakshmi Venkata Simhachalam, Islam Kourampi, Ramya S. D. Kanagala, Priyadarshini Bhattacharjee, and Sri Harsha Boppana. 2024. "Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses" Medical Sciences 12, no. 2: 28. https://doi.org/10.3390/medsci12020028
APA StyleKutikuppala, L. V. S., Kourampi, I., Kanagala, R. S. D., Bhattacharjee, P., & Boppana, S. H. (2024). Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses. Medical Sciences, 12(2), 28. https://doi.org/10.3390/medsci12020028