Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results
4. Discussion
4.1. Pathophysiology of AVN
4.1.1. Ischemia
4.1.2. Regeneration
4.1.3. Cell and Tissue Necrosis
4.2. Management
4.2.1. Non-Surgical Management
4.2.2. Pharmacological Treatment
4.2.3. Bisphosphonates
4.2.4. Statins and Vasodilators
4.2.5. Other Therapies
4.2.6. Hyperbaric Oxygen Therapy
4.2.7. Cellular Therapies
4.3. Growth Factor Therapies
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, G.; Lane, J.M. Osteonecrosis of the Femoral Head. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2022, 6, e21.00176. [Google Scholar] [CrossRef]
- Konarski, W.; Poboży, T.; Śliwczyński, A.; Kotela, I.; Krakowiak, J.; Hordowicz, M.; Kotela, A. Avascular Necrosis of Femoral Head-Overview and Current State of the Art. Int. J. Envron. Res. Public Health 2022, 19, 7348. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.; Jones, L.C.; Goodman, S.B.; Koo, K.H.; Cui, Q. Early-stage osteonecrosis of the femoral head: Where are we and where are we going in year 2018? Int. Orthop. 2018, 42, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Nazal, M.R.; Parsa, A.; Martin, S.D. Mid-term outcomes of arthroscopic-assisted Core decompression of Precollapse osteonecrosis of femoral head-minimum of 5 year follow-up. BMC Musculoskelet. Disord. 2019, 20, 448. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.S.; Ai, Z.S.; Zhu, Z.H.; Yu, X.W.; Zhang, C.Q. Injury-to-surgery interval does not affect postfracture osteonecrosis of the femoral head in young adults: A systematic review. Eur. J. Orthop. Surg. Traumatol. 2013, 23, 203–209. [Google Scholar] [CrossRef]
- Gasbarra, E.; Perrone, F.L.; Baldi, J.; Bilotta, V.; Moretti, A.; Tarantino, U. Conservative surgery for the treatment of osteonecrosis of the femoral head: Current options. Clin. Cases Min. Bone Metab. 2015, 12 (Suppl. S1), 43–50. [Google Scholar] [CrossRef] [PubMed]
- Moya-Angeler, J.; Gianakos, A.L.; Villa, J.C.; Ni, A.; Lane, J.M. Current concepts on osteonecrosis of the femoral head. World J. Orthop. 2015, 6, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Sai Krishna, M.L.V.; Kar, S.; Kumar, R.; Singh, H.; Mittal, R.; Digge, V.K. The Role of Conservative Management in the Avascular Necrosis of the Femoral Head: A Review of Systematic Reviews. Indian. J. Orthop. 2023, 57, 410–420. [Google Scholar] [CrossRef]
- Alves, E.M.; Angrisani, A.T.; Santiago, M.B. The use of extracorporeal shock waves in the treatment of osteonecrosis of the femoral head: A systematic review. Clin. Rheumatol. 2009, 28, 1247–1251. [Google Scholar] [CrossRef]
- Hong, C.; Zhong, M.; Lin, T.; Shi, B. Comparison of core decompression and conservative treatment for avascular necrosis of femoral head at early stage: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 5207–5216. [Google Scholar]
- Castro, F.P., Jr.; Barrack, R.L. Core decompression and conservative treatment for avascular necrosis of the femoral head: A meta-analysis. Am. J. Orthop. 2000, 29, 187–194. [Google Scholar] [PubMed]
- Mont, M.A.; Carbone, J.J.; Fairbank, A.C. Core decompression versus nonoperative management for osteonecrosis of the hip. Clin. Orthop. Relat. Res. 1996, 1, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Aaron, R.K.; Lennox, D.; Bunce, G.E.; Ebert, T. The conservative treatment of osteonecrosis of the femoral head. A comparison of core decompression and pulsing electromagnetic fields. Clin. Orthop. Relat. Res. 1989, 2, 209–218. [Google Scholar]
- Wang, C.; Peng, J.; Lu, S. Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. Exp. Ther. Med. 2014, 8, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Ding, C.; Wang, Y.; Zhang, H. Comparison of core decompression and porous tantalum rod implantation with conservative treatment for avascular necrosis of the femoral head: A minimum 18 month follow-up study. Exp. Ther. Med. 2020, 20, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Wang, F.S.; Yang, K.D.; Lee, M.S.; Chan, Y.S.; Wang, J.W.; Ko, J.Y. Treatment of osteonecrosis of the hip: Comparison of extracorporeal shockwave with shockwave and alendronate. Arch. Orthop. Trauma Surg. 2008, 128, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Hsu, S.L.; Wong, T.; Chou, W.Y.; Wang, C.J.; Wang, F.S. Functional outcomes of bilateral hip necrosis: Total hip arthroplasty versus extracorporeal shockwave. Arch. Orthop. Trauma Surg. 2009, 129, 837–841. [Google Scholar] [CrossRef]
- Kusz, D.; Franek, A.; Wilk, R.; Dolibog, P.; Błaszczak, E.; Wojciechowski, P.; Król, P.; Dolibog, P.; Kusz, B. The effects of treatment the avascular necrosis of the femoral head with extracorporeal focused shockwave therapy. Ortop. Traumatol. Rehabil. 2012, 14, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Lebouvier, A.; Poignard, A.; Cavet, M.; Amiaud, J.; Leotot, J.; Hernigou, P.; Rahmouni, A.; Bierling, P.; Layrolle, P.; Rouard, H.; et al. Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: Study of their biodistribution in the early time points after injection. Stem Cell Res. Ther. 2015, 6, 68. [Google Scholar] [CrossRef]
- Shankar, A.N.; Jayakumar, T.; Pranav, N.G.; Jeyaraman, M. Biological Therapy for Avascular Necrosis of Femoral Head—A Case Report. J. Orthop. Case Rep. 2023, 13, 27–31. [Google Scholar] [CrossRef]
- Yang, F.; Xue, F.; Guan, J.; Zhang, Z.; Yin, J.; Kang, Q. Stromal-Cell-Derived Factor (SDF) 1-Alpha Overexpression Promotes Bone Regeneration by Osteogenesis and Angiogenesis in Osteonecrosis of the Femoral Head. Cell Physiol. Biochem. 2018, 46, 2561–2575. [Google Scholar] [CrossRef] [PubMed]
- Moghamis, I.; Alhammoud, A.A.; Kokash, O.; Alhaneedi, G.A. The outcome of hyperbaric oxygen therapy versus core decompression in the non-traumatic avascular necrosis of the femoral head: Retrospective Cohort Study. Ann. Med. Surg. 2021, 62, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Salameh, M.; Moghamis, I.S.; Kokash, O.; Ahmed, G.O. Hyperbaric oxygen therapy for the treatment of Steinberg I and II avascular necrosis of the femoral head: A report of fifteen cases and literature review. Int. Orthop. 2021, 45, 2519–2523. [Google Scholar] [CrossRef]
- Montemurro, N.; Cocciaro, A.; Liberti, G.; Cosottini, M.; Perrini, P. The internal trabecular bone structure of the odontoid process of the axis. A retrospective single-center comparative study in patients following cervical trauma. J. Neurol. Surg. A Central Eur. Neurosurg. 2022, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Scarola, R.; Montemurro, N.; Ferrara, E.; Corsalini, M.; Converti, I.; Rapone, B. Temporomandibular Disorders and Fibromyalgia: A Narrative Review. Open Access Maced. J. Med. Sci. 2021, 9, 106–112. [Google Scholar] [CrossRef]
- Guerado, E.; Caso, E. The physiopathology of avascular necrosis of the femoral head: An update. Injury 2016, 47, S16–S26. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, R.G.; Bleck, E.E. Increased Blood Viscosity in Patients with Legg-Perthes Disease. J. Pediatr. Orthop. 1981, 1, 131–136. [Google Scholar] [CrossRef]
- Tsao, A.K.; Dias, L.S.; Conway, J.J.; Straka, P. The Prognostic Value and Significance of Serial Bone Scintigraphy in Legg-Calvé-Perthes Disease. J. Pediatr. Orthop. 1997, 17, 230–239. [Google Scholar] [CrossRef]
- de Sanctis, N.; Rondinella, F. Prognostic Evaluation of Legg–Calvé–Perthes Disease by MRI Part II: Pathomorphogenesis and New Classification. J. Pediatr. Orthop. 2000, 20, 463–470. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.; Tracy, T.; Stroop, D.; Wang, P. Thrombophilia and Hypofibrinolysis; Pathophysiologies of Osteonecrosis. Clin. Orthop. Relat. Res. 1997, 334, 43–56. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, S.H.; Xiao, B.J.; Xu, W.H.; Ye, S.N.; Xia, T.; Zheng, D.; Liu, X.Z.; Liao, Y.F. Decreased in the number and function of circulation endothelial progenitor cells in patients with avascular necrosis of the femoral head. Bone 2010, 46, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Song, H.J. Peripheral Blood Stem Cell Transplantation for Ischemic Femoral Head Necrosis. Transplant. Proc. 2010, 42, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Zhang, X.P.; Xiao, G.Y.; Hou, Y.; Cheng, L.; Si, M.; Wang, S.S.; Li, Y.H.; Nie, L. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head. Mater. Sci. Eng. C 2016, 60, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.K.; Harrison, J.A.; Jacobs, P.; Hilditch, T.E.; Catto, M.; Hendry, W.T. The significance of bone islands, cystic areas and sclerotic areas in dysbaric osteonecrosis. Clin. Radiol. 1977, 28, 381–393. [Google Scholar] [CrossRef]
- Callaghan, J.J.; Rosenburg, A.G.; Rubash, H.E. Osteonecrosis: Etiology, Natural History, Pathophysiology, and Diagnosis. In The Adult Hip; Lippincot, Williams & Wilkins: Baltimore, MD, USA, 2007. [Google Scholar]
- James, J.; Steijn-Myagkaya, G. Death of osteocytes. Electron microscopy after in vitro ischaemia. J. Bone Jt. Surg. Br. Vol. 1986, 68-B, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, M.J.; Kenzora, J.E. The biology of osteonecrosis of the human femoral head and its clinical implication: I. Tissue biology. Clin. Orthop. Relat. Res. 1979, 138, 284–309. [Google Scholar]
- Brown, T.D.; Baker, K.J.; Brand, R.A. Structural consequences of subchondral bone involvement in segmental osteonecrosis of the femoral head. J. Orthop. Res. 1992, 10, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.N.; Racine, J.; Jones, L.C.; Aaron, R.K. Pathophysiology and risk factors for osteonecrosis. Curr. Rev. Musculoskelet. Med. 2015, 8, 201–209. [Google Scholar]
- Wang, Y.; Ma, X.; Chai, W.; Tian, J. Multiscale Stem Cell Technologies for Osteonecrosis of the Femoral Head. Stem Cells Int. 2019, 2019, 8914569. [Google Scholar] [CrossRef]
- Montemurro, N.; Ortenzi, V.; Naccarato, G.A.; Perrini, P. Angioleiomyoma of the knee: An uncommon cause of leg pain. A systematic review of the literature. Interdiscip. Neurosurg. 2020, 22, 100877. [Google Scholar] [CrossRef]
- Gómez-García, F. Review of non-surgical treatment of avascular necrosis of the femoral head. Acta Ortop Mex. 2013, 27, 265–272. (In Spanish) [Google Scholar] [PubMed]
- Liu, N.; Zheng, C.; Wang, Q.; Huang, Z. Treatment of non-traumatic avascular necrosis of the femoral head (Review). Exp. Ther. Med. 2022, 23, 321. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.K. Management of avascular necrosis of femoral head at pre-collapse stage. Indian J. Orthop. 2009, 43, 6–16. [Google Scholar] [CrossRef]
- Lai, K.A.; Shen, W.J.; Yang, C.Y.; Shao, C.J.; Hsu, J.T.; Lin, R.M. The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. J. Bone Jt. Surg. Am. 2005, 87, 2155–2159. [Google Scholar]
- Chen, C.H.; Chang, J.K.; Lai, K.A.; Hou, S.M.; Chang, C.H.; Wang, G.J. Alendronate in the prevention of collapse of the femoral head in nontraumatic osteonecrosis: A two-year multicenter, prospective, randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 2012, 64, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Shabtai, L.; Drexler, M.; Blummberg, N. Biphosphonate in the treatment of avascular necrosis of the femoral head. Harefuah 2012, 151, 242–245, 252. [Google Scholar] [PubMed]
- Ajmal, M.; Matas, A.J.; Kuskowski, M.; Cheng, E.Y. Does statin usage reduce the risk of corticosteroid-related osteonecrosis in renal transplant population? Orthop. Clin. N. Am. 2009, 40, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, J.W. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin. Orthop. Relat. Res. 2001, 386, 173–178. [Google Scholar] [CrossRef]
- Claßen, T.; Becker, A.; Landgraeber, S.; Haversath, M.; Li, X.; Zilkens, C.; Krauspe, R.; Jäger, M. Long-term Clinical Results after Iloprost Treatment for Bone Marrow Edema and Avascular Necrosis. Orthop. Rev. 2016, 8, 6150. [Google Scholar]
- Glueck, C.J.; Freiberg, R.A.; Sieve, L.; Wang, P. Enoxaparin prevents progression of stages I and II osteonecrosis of the hip. Clin. Orthop. Relat. Res. 2005, 435, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Cheng, J.H.; Huang, C.C.; Yip, H.K.; Russo, S. Extracorporeal shockwave therapy for avascular necrosis of femoral head. Int. J. Surg. 2015, 24 Pt B, 184–187. [Google Scholar] [CrossRef]
- Russo, S.; Sadile, F.; Esposito, R.; Mosillo, G.; Aitanti, E.; Busco, G.; Wang, C.J. Italian experience on use of E.S.W. therapy for avascular necrosis of femoral head. Int. J. Surg. 2015, 24 Pt B, 188–190. [Google Scholar] [CrossRef]
- Khanuja, H.S.; Mont, M.A.; Etienne, G.; Hungerford, D.S. Treatment algorithm for osteonecrosis of the hip. Tech. Orthop. 2001, 16, 80–89. [Google Scholar] [CrossRef]
- Lang, P.; Jergesen, H.E.; Moseley, M.E.; Block, J.E.; Chafetz, N.I.; Genant, H.K. Avascular necrosis of the femoral head: High-field strength MR imaging with histologic correlation. Radiology 1988, 169, 517–524. [Google Scholar] [CrossRef]
- Mont, M.A.; Jones, L.C.; Hungerford, D.S. Non-traumatic osteonecrosis of the femoral head: Ten years later- current concepts review. J. Bone Jt. Surg. Am. 2006, 88, 1107–1129. [Google Scholar]
- Steinberg, M.E. Diagnostic imaging and role of stage and lesion size in determining outcome in osteonecrosis of the femoral head. Tech. Orthop. 2001, 16, 6–15. [Google Scholar] [CrossRef]
- Montemurro, N.; Pierozzi, E.; Inchingolo, A.M.; Pahwa, B.; De Carlo, A.; Palermo, A.; Scarola, R.; Dipalma, G.; Corsalini, M.; Inchingolo, A.D.; et al. New biograft solution, growth factors and bone regenerative approaches in neurosurgery, dentistry, and orthopedics: A review. Eur Rev Med Pharmacol Sci. 2023, 27, 7653–7664. [Google Scholar] [PubMed]
- Xia, T.W. New idea of tissue engineering technology in the treatment of osteonecrosis of femoral head. Chin. J. Tissue Eng. Res. 2020, 24, 2919–2925. [Google Scholar]
- Ramirez, M.; Nurmukhametov, R.; Musa, G.; Barrientos Castillo, R.E.; Encarnacion, V.L.A.; Soriano Sanchez, J.A.; Vazquez, C.A.; Efe, I.E. Three-Dimensional Plastic Modeling on Bone Frames for Cost-Effective Neuroanatomy Teaching. Cureus 2022, 14, e27472. [Google Scholar] [CrossRef]
- Goncharov, E.N.; Koval, O.A.; Igorevich, E.I.; Encarnacion Ramirez, M.J.; Nurmukhametov, R.; Valentinovich, K.K.; Montemurro, N. Analyzing the Clinical Potential of Stromal Vascular Fraction: A Comprehensive Literature Review. Medicina 2024, 60, 221. [Google Scholar] [CrossRef]
- Drescher, W.; Pufe, T.; Smeets, R. Hüftkopfnekrose—Diagnostik und Differenzialtherapie. Z. Orthop. Unfall. 2011, 149, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Sun, D.L.; Shu, Z.X.; Tian, S.; Pan, Q.; Wen, C.J.; Xi, J.Y.; Ye, S.N. Therapeutic Applications of Genes and Gene-Engineered Mesenchymal Stem Cells for Femoral Head Necrosis. Hum. Gene Ther. 2020, 31, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Andriolo, L.; Merli, G.; Tobar, C.; Altamura, S.A.; Kon, E.; Filardo, G. Regenerative therapies increase survivorship of avascular necrosis of the femoral head: A systematic review and meta-analysis. Int. Orthop. 2018, 42, 1689–1704. [Google Scholar] [CrossRef] [PubMed]
- Rosset, P.; Deschaseaux, F.; Layrolle, P. Cell therapy for bone repair. Orthop. Traumatol. Surg. Res. 2014, 100, S107–S112. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liao, W.; Zhao, Q.; Liu, M.; Xia, W.; Yang, Y.; Shao, N. Angiogenesis and bone regeneration by allogeneic mesenchymal stem cell intravenous transplantation in rabbit model of avascular necrotic femoral head. J. Surg. Res. 2012, 183, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Pak, J. Autologous Adipose Tissue-Derived Stem Cells Induce Persistent Bone-Like Tissue in Osteonecrotic Femoral Heads. Pain Physician 2012, 1, 75–85. [Google Scholar] [CrossRef]
- Agaverdiev, M.; Shamsov, B.; Mirzoev, S.; Vardikyan, A.; Ramirez, M.E.; Nurmukhametov, R.; Beilerli, A.; Zhang, B.; Gareev, I.; Pavlov, V. MiRNA regulated therapeutic potential of the stromal vascular fraction: Current clinical applications—A systematic review. Non-Coding RNA Res. 2023, 8, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Beylerli, O.; Encarnacion Ramirez, M.J.; Shumadalova, A.; Ilyasova, T.; Zemlyanskiy, M.; Beilerli, A.; Montemurro, N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics (Basel). 2023, 13, 2888. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, C.; Wu, J.; Han, Y.; Wu, C. Angiogenesis and bone regeneration by mesenchymal stem cell transplantation with danshen in a rabbit model of avascular necrotic femoral head. Exp. Ther. Med. 2019, 18, 163–171. [Google Scholar] [CrossRef]
- Peng, W.; Dong, W.; Zhang, F.; Wang, J.; Zhang, J.; Wu, J.; Wang, L.; Ye, C.; Li, Q.; Deng, J. Effects of transplantation of FGF-2- transfected MSCs and XACB on TNF-α expression with avascular necrosis of the femoral head in rabbits. Biosci. Rep. 2019, 39, BSR20180765. [Google Scholar] [CrossRef]
- Liao, H.; Zhong, Z.; Liu, Z.; Li, L.; Ling, Z.; Zou, X. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head. Exp. Ther. Med. 2017, 15, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.X.; Wang, L. Adenovirus-Mediated Expression of BMP-2 and BFGF in Bone Marrow Mesenchymal Stem Cells Combined with Demineralized Bone Matrix For Repair of Femoral Head Osteonecrosis in Beagle Dogs. Cell. Physiol. Biochem. 2017, 43, 1648–1662. [Google Scholar] [CrossRef] [PubMed]
- Abudusaimi, A.; Aihemaitijiang, Y.; Wang, Y.H.; Cui, L.; Maimaitiming, S.; Abulikemu, M. Adipose-Derived Stem Cells Enhance Bone Regeneration in Vascular Necrosis of the Femoral Head in the Rabbit. J. Int. Med. Res. 2011, 39, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Rackwitz, L.; Eden, L.; Reppenhagen, S.; Reichert, J.C.; Jakob, F.; Walles, H.; Pullig, O.; Tuan, R.S.; Rudert, M.; Nöth, U. Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head. Stem Cell Res. Ther. 2012, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, L.; Pucci, R.; Piazza, A.; Lofrese, G.; Scerrati, A.; Montemurro, N.; Raco, A.; Miscusi, M.; Ius, T.; Zeppieri, M. Role of stem cells-based in facial nerve reanimation: A meta-analysis of histological and neurophysiological outcomes. World J. Stem Cells 2022, 14, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Ma, L.; Chen, Y.P.; Yang, L.; Luo, W.; Wang, X.N. Treatment of avascular necrosis of the femoral head by hepatocyte growth factor-transgenic bone marrow stromal stem cells. Gene Ther. 2008, 15, 1523–1535. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, S.; Duan, D.; Liu, X.; Zhang, Y.; Wang, J.; Yang, C.; Jiang, S. A combination of granulocyte colony-stimulating factor and stem cell factor ameliorates steroid-associated osteonecrosis in rabbits. J. Rheumatol. 2008, 35, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yang, S.; Du, J.; Li, J.; Xu, W.; Xiong, Y. Vascular endothelial growth factor gene transfection to enhance the repair of avascular necrosis of the femoral head of rabbit. Chin. Med. J. 2003, 116, 1544–1548. [Google Scholar] [PubMed]
- Tang, T.T.; Lu, B.; Yue, B.; Xie, X.H.; Xie, Y.Z.; Dai, K.R.; Lu, J.X.; Lou, J.R. Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J. Bone Jt. Surg. Br. Vol. 2007, 89, 127–129. [Google Scholar] [CrossRef]
- Simank, H.G.; Manggold, J.; Sebald, W.; Ries, R.; Richter, W.; Ewerbeck, V.; Sergi, C. Bone Morphogenetic Protein-2 and Growth and Differentiation Factor-5 Enhance the Healing of Necrotic Bone in a Sheep Model. Growth Factors 2001, 19, 247–257. [Google Scholar] [CrossRef]
- Kuroda, Y.; Asada, R.; So, K.; Yonezawa, A.; Nankaku, M.; Mukai, K.; Ito-Ihara, T.; Tada, H.; Yamamoto, M.; Murayama, T.; et al. A pilot study of regenerative therapy using controlled release of recombinant human fibroblast growth factor for patients with pre-collapse osteonecrosis of the femoral head. Int. Orthop. 2015, 40, 1747–1754. [Google Scholar] [CrossRef]
- Cao, K.; Huang, W.; An, H.; Jiang, D.M.; Shu, Y.; Han, Z.M. Deproteinized bone with VEGF gene transfer to facilitate the repair of early avascular necrosis of femoral head of rabbit. Chin. J. Traumatol. 2009, 12, 269–274. [Google Scholar]
- Hang, D.; Wang, Q.; Guo, C.; Chen, Z.; Yan, Z. Treatment of Osteonecrosis of the Femoral Head with VEGF165Transgenic Bone Marrow Mesenchymal Stem Cells in Mongrel Dogs. Cells Tissues Organs 2012, 195, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Li, Z.; Gao, F.; Shi, Z.; Zhang, Q.; Guo, W. Recombinant Human Bone Morphogenetic Protein-2 in Debridement and Impacted Bone Graft for the Treatment of Femoral Head Osteonecrosis. PLoS ONE 2014, 9, e100424. [Google Scholar] [CrossRef] [PubMed]
- Papanagiotou, M.; Malizos, K.N.; Vlychou, M.; Dailiana, Z.H. Autologous (non-vascularised) fibular grafting with recombinant bone morphogenetic protein-7 for the treatment of femoral head osteonecrosis. Bone Jt. J. 2014, 96, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Vandermeer, J.S.; Kamiya, N.; Aya-Ay, J.; Garces, A.; Browne, R.; Kim, H.K. Local Administration of Ibandronate and Bone Morphogenetic Protein-2 After Ischemic Osteonecrosis of the Immature Femoral Head. J. Bone Jt. Surg. Am. Vol. 2011, 93, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Zhou, L.; Zhou, C.; Zhou, M.; Luo, W.; Ma, L. Change in hepatocyte growth factor concentration promote mesenchymal stem cell-mediated osteogenic regeneration. J. Cell. Mol. Med. 2011, 16, 1260–1273. [Google Scholar] [CrossRef]
- Dailiana, Z.H.; Stefanou, N.; Khaldi, L.; Dimakopoulos, G.; Bowers, J.R.; Fink, C.; Urbaniak, J.R. Vascular endothelial growth factor for the treatment of femoral head osteonecrosis: An experimental study in canines. World J. Orthop. 2018, 9, 120–129. [Google Scholar] [CrossRef]
- Reynoso, J.P.; De Jesus Encarnacion, M.; Nurmukhametov, R.; Melchenko, D.; Efe, I.E.; Goncharov, E.; Taveras, A.A.; Ramirez Pena, I.J.; Montemurro, N. Anatomical Variations of the Sciatic Nerve Exit from the Pelvis and Its Relationship with the Piriformis Muscle: A Cadaveric Study. Neurol. Int. 2022, 14, 894–902. [Google Scholar] [CrossRef]
- Ma, X.W.; Cui, D.P.; Zhao, D.W. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head. Int. J. Clin. Exp. Med. 2015, 8, 15528–15534. [Google Scholar]
- Wilczyński, J.; Kasprzak, A. Dynamics of Changes in Isometric Strength and Muscle Imbalance in the Treatment of Women with Low back Pain. BioMed Res Int. 2020, 2020, 6139535. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Zhou, C.; Luo, W.; Zhou, M.; Ma, L. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells. J. Transl. Med. 2014, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, E.N.; Koval, O.A.; Nikolaevich Bezuglov, E.; Engelgard, M.; Igorevich, E.I.; Velentinovich Kotenko, K.; Encarnacion Ramirez, M.J.; Montemurro, N. Comparative Analysis of Stromal Vascular Fraction and Alternative Mechanisms in Bone Fracture Stimulation to Bridge the Gap between Nature and Technological Advancement: A Systematic Review. Biomedicines 2024, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, E.N.; Koval, O.A.; Nikolaevich Bezuglov, E.; Encarnacion Ramirez, M.J.; Engelgard, M.; Igorevich, E.I.; Saporiti, A.; Valentinovich Kotenko, K.; Montemurro, N. Stromal Vascular Fraction Therapy for Knee Osteoarthritis: A Systematic Review. Medicina 2023, 59, 2090. [Google Scholar] [CrossRef]
Author [Ref.] (Year) | Study Design | Participant | Details of Conservative Interventions Employed | Outcomes Measures | Duration of Follow-Up | Reported Adverse |
---|---|---|---|---|---|---|
Wang et al. [14] (2014) | Review | 160 hips | ACTH and VEGF | Conservative treatment may be a major focus for orthopedic studies in the future. The principle of the treatment is to provide mechanical support to prevent collapse of the femoral head, improve the speed and quality of repair at the molecular level, increase osteoclast apoptosis, and reduce osteoblast and osteocyte apoptosis. | 1–3 years | No adverse event |
Konarski [2] (2022) | Review | 46 hips | Anticoagulants, statins, vasodilators, bisphosphonates | Non-operative management should be performed in patients with early-stage disease, while surgical treatment is routinely used in more advanced stages. | 1–2 years | No adverse event |
Fang et al. [15] (2020) | Prospective study | 30 participants, 41 hips | Celecoxib, salvia miltiorrhiza, tetramethylypyrazine, and a reduction in weight-bearing activities | Final follow-up rates of femoral head survivorship were 4.9% in the non-surgical group and 36.7% in the surgical group. The Harris hip score was significantly improved following surgery when compared with non-surgical treatment (p < 0.05). The results indicated that core decompression and porous tantalum rod implantation are beneficial short- and mid-term treatment methods for AVN of the femoral head. | 18 months | No complications, including infection, delayed healing, or fractures, were reported. |
Wang et al. [16] (2008) | Prospective | 48 patients, 60 hips | All patients were treated with 6000 impulses of ESWT at 28 kV (equivalent to 0.62 mj/mm2) to the affected hip in a single session. Patients in group B also received alendronate 70 mg per week for 1 year, whereas patients in group A did not. | ESWT and alendronate produced comparable results as compared with ESWT without alendronate in early ONFH. ESWT is effective with or without the concurrent use of alendronate. The joint effects of alendronate over ESWT in early ONFH are not realized in the short term. | 1 year | No adverse event |
Chen et al. [17] (2009) | Prospective | 17 patients with bilateral hip necrosis | On the ESWT side, each hip received 6000 impulses of shockwave at 28 kV. | The evaluations included a pain score, a Harris hip score, radiographs, and MR images. The magnitudes of improvement in pain and function favored the ESWT side. Thirteen patients rated ESWT better than THA; four patients reported comparable results between THA and ESWT; and none graded THA better than ESWT. Better functional outcomes were observed after ESWT for early hip necrosis than THA for late cases in patients with bilateral hip disease. | 6 months | No adverse event |
Kusz et al. [18] (2012) | Prospective | 18 patients | Each spot received a dose of 1500 pulses at an energy flux density of 0.4 mj/mm2 and a frequency of 4 Hz. Each patient underwent 5 therapy sessions. | Extracorporeal focused shockwave therapy resulted in considerable improvement in the patients’ quality of life at 6 weeks’ follow-up. At 6 months, some patients reported intensified pain and worse hip function. | 12 months | Pain and worse hip function |
Lebouvier et al. [19] (2015) | Prospective | 10 pigs | Injection of osteoprogenitor cells like BMSCc | Intra-osseous injection of BMSCs in FH seems to be a good strategy for ONFH treatment, as the safety of the biodistribution of BMSCs is ensured. Moreover, the efficacy of BMSCs in natural ONFH seems to indicate that this is a promising approach. Altogether, these results constitute the preclinical data necessary for the setup of a clinical application with expanded BMSCs in the context of advanced therapeutic medicinal products. | 9 weeks | No adverse event |
Shankar et al. [20] (2023) | Case report | 44-year-old | Aalcos | Biological therapy with differentiated osteoblasts remains a viable option for AVN of the femoral head when compared with an undifferentiated BMAC cocktail. | 6 years | No adverse event |
Yang et al. [21] (2018) | Experimental research | 25 rats | BMSCs, GFP, stromal-cell-derived factor (SDF)-1 | SDF-1α overexpression in BMSCs promotes bone generation as indicated by osteogenesis and angiogenesis, suggesting SDF-1α may serve as a therapeutic drug target for ONFH treatment. | 6 weeks | No adverse event |
Moghamis et al. [22] (2021) | Retrospectively | 19 patients | HBO | Hyperbaric oxygen therapy could be used as an alternative, non-invasive treatment option. | 12 months | No adverse event |
Salameh et al. [23] (2021) | Case report | 15 patients | HBO | Hyperbaric oxygen treatment for pre-collapse AVN of the femoral head is considered a safe alternative with satisfactory clinical and radiological outcomes and a low complication rate. | 22 months | No complications were reported in all patients. |
Growth Factor | Associated Cells | Delivery Strategy | Regeneration Results |
---|---|---|---|
Hepatocyte growth factor (HGF) [76] | BMSCs | HGF transgenic BMSCs transplanted using core decompression (CD) with fibrinogen drug delivery mixture (FG) | Formation of new capillaries on the bone plates of the trabeculae. Bone marrow is rich in hematopoietic tissue. |
Granulocyte colony stimulating factor (G-CSF) and stem cell factor (SCF) [77] | G-CSF and SCF injected subcutaneously for 5 days, mobilizing BMSCs | Increase in osteocalcin protein expression. Vessel formation was 3.3 fold greater, and vessel density was 2.6 fold greater than the control. | |
Vascular endothelial growth factor (VEGF) [78] | Plasmid encoding VEGF immobilized on a cartilage carrier into the necrotic area of the femoral head | Increase in bone formation after 8 weeks. | |
Bone morphogenetic protein (BMP-2) [79] | BMSCs | Modified BMSCs loaded onto the β-TCP cylinder and implanted into the core tract from CD | Increased amounts of new bone and higher maximum compressive strength and bone density. |
BMP-2 and BMP-14 [80] | BMP-laden collagen scaffolds transplanted following CD | BMP-14-loaded scaffolds improved bony remodeling of the necrotic area. | |
VEGF [81] | VEGF injected continuously or through an osmotic micropump | Reversal of osteonecrosis. | |
Recombinant human fibroblast growth factor (rhFGF)-2 [82] | rhFFGF-2-impregnated gelatin hydrogel administered locally | Increased Harris hip score. Reduction in pain level. | |
VEGF [83] | Deproteinized bone (DPB) with the recombinant plasmid pcDNA3.1-hVEGF165 was implanted into the drilled tunnel of the necrotic femoral head | Increased bone formation and capillary vessel regeneration. | |
VEGF [84] | BMSCs | Transgenic autologous BMSCs implanted following CD | Enhanced bone reconstruction and blood vessel regeneration. |
rhBMP-2 [85] | Cavity was made using the light bulb technique, and an autologous cancellous bone combination of rhBMP-2 filled the cavity | May be effective in avoiding future THR in younger patients and improving the speed of bone repair (lack of statistical significance). | |
rhBMP-7 [86] | Fibular graft harvested from the femoral neck, sprinkled with rhBMP-7, and implanted in the tunnel | Increased Harris hip score. Decrease in pain. Retention in the sphericity of the femoral head. | |
BMP-2 [87] | Percutaneous intraosseous injection of BMP-2 and ibandronate | Decreased femoral head deformity and increased bone formation. | |
HGF [88] | MSCs | Transplantation of HGF-transgenic MSCs through the CD tunnel | Increased the number of MSCs and osteogenic differentiation of MSCs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncharov, E.N.; Koval, O.A.; Nikolaevich Bezuglov, E.; Aleksandrovich Vetoshkin, A.; Gavriilovich Goncharov, N.; Encarnación Ramirez, M.D.J.; Montemurro, N. Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review. Med. Sci. 2024, 12, 32. https://doi.org/10.3390/medsci12030032
Goncharov EN, Koval OA, Nikolaevich Bezuglov E, Aleksandrovich Vetoshkin A, Gavriilovich Goncharov N, Encarnación Ramirez MDJ, Montemurro N. Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review. Medical Sciences. 2024; 12(3):32. https://doi.org/10.3390/medsci12030032
Chicago/Turabian StyleGoncharov, Evgeniy Nikolaevich, Oleg Aleksandrovich Koval, Eduard Nikolaevich Bezuglov, Aleksandr Aleksandrovich Vetoshkin, Nikolay Gavriilovich Goncharov, Manuel De Jesus Encarnación Ramirez, and Nicola Montemurro. 2024. "Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review" Medical Sciences 12, no. 3: 32. https://doi.org/10.3390/medsci12030032
APA StyleGoncharov, E. N., Koval, O. A., Nikolaevich Bezuglov, E., Aleksandrovich Vetoshkin, A., Gavriilovich Goncharov, N., Encarnación Ramirez, M. D. J., & Montemurro, N. (2024). Conservative Treatment in Avascular Necrosis of the Femoral Head: A Systematic Review. Medical Sciences, 12(3), 32. https://doi.org/10.3390/medsci12030032