Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy
Abstract
:1. Introduction
2. Seaweeds as Anti-Obesity Weapons
2.1. Green Algae Carotenoid Siphonoxanthin and Neoxanthin
2.2. Brown Seaweed Phlorotannin
2.3. Brown Seaweed Fucoxanthin
2.4. Brown Seaweed Alginates
2.5. Brown Seaweed Fucoidans
2.6. Red Seaweed
2.7. Astaxanthin (ASX)
3. Seaweed Edible Product
3.1. Japanese Famous Edible Seaweed
- Mozuku
- Hijiki
- Wakame
- Nori
3.2. Preclinical and Clinical Evaluation on the Efficacy and Safety of Seaweed for Obesity Treatment
4. Conventional Treatment of Obesity
- Metreleptin
- Setmelanotide
- Phentermine/Topiramate
- Naltrexone/Bupropion
- Semaglutide
- Tirzepatide
4.1. Medicine That Interferes with Fat Absorption
4.1.1. Orlistat
4.1.2. Lipstatin
4.1.3. Sibutramine
4.2. Medicine That Increases Energy Expenditure and Thermogenesis
4.3. Medicine Suppressing Hunger and Satiety
4.3.1. Phentermine and Diethylpropion
4.3.2. Dexfenfluramine and Fenfluramine
4.3.3. Glucagon-like Peptide-1 (GLP-1)
4.3.4. Comparison of Seaweed and Conventional Medication on Obesity
Type of Seaweed | Bioactive Compounds | Mechanism of Action as Anti-Obesity | Similarity and Comparison with Conventional Drugs (FDA Approved) |
---|---|---|---|
Green seaweed (Caulerpa lentillifera) | Siphonoxanthin | Stimulates energy expenditure, prevents lipid accumulation and adipogenesis, decreases fat storage in white adipose tissue, altering gene expression, which can inhibit lipid synthesis in white adipose tissue (WAT) [20]. | Similar to the green algae bioactive compound (Siphonoxanthin), ephedrine also enhances energy expenditure by acting adrenergic receptors [100]. Statin enhances lipolysis and decreases lipid accumulation in mature adipocytes [101]. |
Brown seaweed | Fucoxanthin | Reduce the absorption of triglyceride. Modulates the transcription factors/regulators of adipocyte differentiation and development [28]. Upregulates the uncoupling protein1 (UCP1) in brown adipose tissue, increases fat oxidation in mitochondria in adipose tissue, and enhances thermogenesis. | Metformin (FDA-approved drug-2022) improves the acetyl-CoA carboxylase phosphorylation and decreases in triacylglycerol levels (triglycerides). It regulates lipogenic gene expression and decreases triglycerides [102]. Fibrates act as synthetic ligands for PPARα increasing fatty acids hepatic B-oxidation. |
Brown seaweed | Neoxanthin | Inhibits lipid accumulation and decreases gene expression of C/EBPα and PPARγ [22]. | Statin prevents adipocyte hypertrophy by increasing the number of small adipocytes and downregulating C/EBPα, PPARγ, SREBP1, leptin, FABP4, and adiponectin [101]. |
Brown seaweed | Phlorotannin | Inhibit the pancreatic lipase and reduce lipid absorption [24]. | Orlistat inhibits pancreatic lipase and reduces lipid absorption like phlorotannin. |
Brown seaweed | Alginate | Dietary fiber reduces body weight, gives the feeling of satiety, and reduces appetite by reducing lipid absorption and inhibiting pancreatic lipase [36,37]. | Similar to alginate, liraglutide also reduces appetite by downregulating AKT and PI3K pathways, upregulating AMPK, and decreasing lipogenesis in white adipose tissue [103]. |
Brown seaweeds | Fucoidans | May reduce obesity by either preventing the deposition of fat or promoting lipolysis [38]. | Similar to fucoidans, liraglutide shows pro-lipolytic effects in human mature adipocytes [104]. |
Red Seaweed | Whole red seaweed | It reduces body weight, decreases insulin resistance, and decreases adiponectin [41]. | Zepbound new FDA-approved medication (2023) acts on intestine (glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)) to reduce appetite and food intake. |
Green microalga (Haematococcus pluvialis) | Astaxanthin | Inhibits cholesterol synthesis and reduces the size of adipocytes and body weight [42] Acts as a potent antioxidant that neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), reduces low-grade inflammation in adipose tissue, and reduces obesity [46]. | Statins lower cholesterol by inhibiting the conversion of HMG-CoA to mevalonic acid [105]. |
5. Critical Analysis of Seaweed
Harmful Effect of Gold Algae
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yadav, R.; Swetanshu; Singh, P. The Molecular Mechanism of Obesity: The Science behind Natural Exercise Yoga and Healthy Diets in the Treatment of Obesity. Curr. Probl. Cardiol. 2024, 49, 102345. [Google Scholar] [CrossRef]
- Chung, N.; Park, H.-Y.; Park, M.-Y.; Hwang, Y.-Y.; Lee, C.-H.; Han, J.-S.; So, J.; Kim, J.; Park, J.; Lim, K. Association of Daily Physical Activity Level with Health-Related Factors by Gender and Age-Specific Differences among Korean Adults Based on the Sixth (2014–2015) Korea National Health and Nutrition Examination Survey. J. Exerc. Nutr. Biochem. 2017, 21, 30–38. [Google Scholar] [CrossRef]
- Ghusn, W.; Cifuentes, L.; Anazco, D.; Fansa, S.; Tama, E.; Campos, A.; Gala, K.; Hurtado, D.M.; Acosta, A. Cumulative Effect of Obesity Phenotypes on Body Weight and Body Mass Index. Int. J. Obes. 2024, 48, 884–890. [Google Scholar] [CrossRef]
- Veilleux, A.; Caron-Jobin, M.; Noël, S.; Laberge, P.Y.; Tchernof, A. Visceral Adipocyte Hypertrophy Is Associated with Dyslipidemia Independent of Body Composition and Fat Distribution in Women. Diabetes 2011, 60, 1504–1511. [Google Scholar] [CrossRef]
- Tewari, S.; Vargas, R.; Reizes, O. The Impact of Obesity and Adipokines on Breast and Gynecologic Malignancies. Ann. N. Y. Acad. Sci. 2022, 1518, 131–150. [Google Scholar] [CrossRef]
- Wilson, R.L.; Taaffe, D.R.; Newton, R.U.; Hart, N.H.; Lyons-Wall, P.; Galvão, D.A. Obesity and Prostate Cancer: A Narrative Review. Crit. Rev. Oncol. Hematol. 2022, 169, 103543. [Google Scholar] [CrossRef]
- Lee, K.; Kruper, L.; Dieli-Conwright, C.M.; Mortimer, J.E. The Impact of Obesity on Breast Cancer Diagnosis and Treatment. Curr. Oncol. Rep. 2019, 21, 41. [Google Scholar] [CrossRef]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef]
- Pereira, L. Therapeutic and Nutritional Uses of Algae; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15284-4. [Google Scholar]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary Fibre in Foods: A Review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Rocha, C.P.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweeds as Valuable Sources of Essential Fatty Acids for Human Nutrition. Int. J. Environ. Res. Public. Health 2021, 18, 4968. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ripon, M.A.R.; Begum, R.; Bhowmik, D.R.; Amin, M.T.; Islam, M.A.; Ahmed, F.; Hossain, M.S. Arachidonic Acid Supplementation Attenuates Adipocyte Inflammation but Not Adiposity in High Fat Diet Induced Obese Mice. Biochem. Biophys. Res. Commun. 2022, 608, 90–95. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Lim, S.Y. Fucoidans and Bowel Health. Mar. Drugs 2021, 19, 436. [Google Scholar] [CrossRef]
- Sharifuddin, Y.; Chin, Y.-X.; Lim, P.-E.; Phang, S.-M. Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar. Drugs 2015, 13, 5447–5491. [Google Scholar] [CrossRef]
- Bonetti, G.; Herbst, K.L.; Donato, K.; Dhuli, K.; Kiani, A.K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Dietary Supplements for Obesity. J. Prev. Med. Hyg. 2022, 63, E160–E168. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Zhang, S.; Yang, F.; Zhou, H.; Song, Y.; Wang, B.; Li, H. Sodium Alginate and Galactooligosaccharides Ameliorate Metabolic Disorders and Alter the Composition of the Gut Microbiota in Mice with High-Fat Diet-Induced Obesity. Int. J. Biol. Macromol. 2022, 215, 113–122. [Google Scholar] [CrossRef]
- El Khoury, D.; Goff, H.D.; Berengut, S.; Kubant, R.; Anderson, G.H. Effect of Sodium Alginate Addition to Chocolate Milk on Glycemia, Insulin, Appetite and Food Intake in Healthy Adult Men. Eur. J. Clin. Nutr. 2014, 68, 613–618. [Google Scholar] [CrossRef]
- Hicklin, D.J.; Ellis, L.M. Role of the Vascular Endothelial Growth Factor Pathway in Tumor Growth and Angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef]
- Li, Z.-S.; Noda, K.; Fujita, E.; Manabe, Y.; Hirata, T.; Sugawara, T. The Green Algal Carotenoid Siphonaxanthin Inhibits Adipogenesis in 3T3-L1 Preadipocytes and the Accumulation of Lipids in White Adipose Tissue of KK-Ay Mice. J. Nutr. 2015, 145, 490–498. [Google Scholar] [CrossRef]
- Giossi, C.; Cartaxana, P.; Cruz, S. Photoprotective Role of Neoxanthin in Plants and Algae. Molecules 2020, 25, 4617. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, M.; Suzuki, S.; Ushida, Y.; Suganuma, H. Neoxanthin in Young Vegetable Leaves Prevents Fat Accumulation in Differentiated Adipocytes. Biosci. Biotechnol. Biochem. 2021, 85, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Pinto, D.C.G.A. Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar. Drugs 2018, 16, 237. [Google Scholar] [CrossRef]
- Chater, P.I.; Wilcox, M.D.; Houghton, D.; Pearson, J.P. The Role of Seaweed Bioactives in the Control of Digestion: Implications for Obesity Treatments. Food Funct. 2015, 6, 3420–3427. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.-N.; Wu, T.-Y.; Chau, C.-F. Natural Dietary and Herbal Products in Anti-Obesity Treatment. Molecules 2016, 21, 1351. [Google Scholar] [CrossRef] [PubMed]
- Eeckhoute, J.; Oger, F.; Staels, B.; Lefebvre, P. Coordinated Regulation of PPARγ Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Res. 2012, 2012, 164140. [Google Scholar] [CrossRef]
- Lee, J.-E.; Schmidt, H.; Lai, B.; Ge, K. Transcriptional and Epigenomic Regulation of Adipogenesis. Mol. Cell. Biol. 2019, 39, e00601-18. [Google Scholar] [CrossRef]
- Guan, B.; Chen, K.; Tong, Z.; Chen, L.; Chen, Q.; Su, J. Advances in Fucoxanthin Research for the Prevention and Treatment of Inflammation-Related Diseases. Nutrients 2022, 14, 4768. [Google Scholar] [CrossRef]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Murakami-Funayama, K.; Miyashita, K. Anti-Obesity and Anti-Diabetic Effects of Fucoxanthin on Diet-Induced Obesity Conditions in a Murine Model. Mol. Med. Rep. 2009, 2, 897–902. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Peng, Z.; Liao, Y.; Li, D.; Xu, S.; Wen, Y.; Gao, J.; Qi, X.; Zhang, X.; Feng, L.; et al. Weight Reduction Effect of Alginate Associated with Gut Microbiota and Bile Acids: A Double-Blind and Randomized Trial. J. Funct. Foods 2023, 108, 105774. [Google Scholar] [CrossRef]
- Odunsi, S.T.; Vázquez-Roque, M.I.; Camilleri, M.; Papathanasopoulos, A.; Clark, M.M.; Wodrich, L.; Lempke, M.; McKinzie, S.; Ryks, M.; Burton, D.; et al. Effect of Alginate on Satiation, Appetite, Gastric Function, and Selected Gut Satiety Hormones in Overweight and Obesity. Obesity 2010, 18, 1579–1584. [Google Scholar] [CrossRef]
- Peters, H.P.F.; Koppert, R.J.; Boers, H.M.; Ström, A.; Melnikov, S.M.; Haddeman, E.; Schuring, E.A.H.; Mela, D.J.; Wiseman, S.A. Dose-Dependent Suppression of Hunger by a Specific Alginate in a Low-Viscosity Drink Formulation. Obesity 2011, 19, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Houghton, D.; Wilcox, M.D.; Brownlee, I.A.; Chater, P.I.; Seal, C.J.; Pearson, J.P. Acceptability of Alginate Enriched Bread and Its Effect on Fat Digestion in Humans. Food Hydrocoll. 2019, 93, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Duan, M.; Jia, J.; Song, S.; Ai, C. Low-Molecular Alginate Improved Diet-Induced Obesity and Metabolic Syndrome through Modulating the Gut Microbiota in BALB/c Mice. Int. J. Biol. Macromol. 2021, 187, 811–820. [Google Scholar] [CrossRef]
- Wu, L.; Sun, J.; Su, X.; Yu, Q.; Yu, Q.; Zhang, P. A Review about the Development of Fucoidan in Antitumor Activity: Progress and Challenges. Carbohydr. Polym. 2016, 154, 96–111. [Google Scholar] [CrossRef]
- Kim, M.-J.; Jeon, J.; Lee, J.-S. Fucoidan Prevents High-Fat Diet-Induced Obesity in Animals by Suppression of Fat Accumulation. Phytother. Res. 2014, 28, 137–143. [Google Scholar] [CrossRef]
- Park, M.-K.; Jung, U.; Roh, C. Fucoidan from Marine Brown Algae Inhibits Lipid Accumulation. Mar. Drugs 2011, 9, 1359–1367. [Google Scholar] [CrossRef]
- Murakami, S.; Hirazawa, C.; Yoshikawa, R.; Mizutani, T.; Ohya, T.; Ma, N.; Ikemori, T.; Ito, T.; Matsuzaki, C. Edible Red Seaweed Campylaephora hypnaeoides J. Agardh Alleviates Obesity and Related Metabolic Disorders in Mice by Suppressing Oxidative Stress and Inflammatory Response. Nutr. Metab. 2022, 19, 4. [Google Scholar] [CrossRef]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, H.; Guan, S.; Luo, T.; Zhao, C.; Cai, G.; Zheng, Y.; Jia, X.; Di, J.; Li, R.; et al. Astaxanthin from Haematococcus pluvialis Alleviates Obesity by Modulating Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Food Funct. 2021, 12, 9719–9738. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Guo, M.; Tan, M.; Su, W. Lipid-Lowering and Antioxidant Effects of Self-Assembled Astaxanthin-Anthocyanin Nanoparticles on High-Fat Caenorhabditis Elegans. Foods 2024, 13, 514. [Google Scholar] [CrossRef]
- Xia, W.; Tang, N.; Kord-Varkaneh, H.; Low, T.Y.; Tan, S.C.; Wu, X.; Zhu, Y. The Effects of Astaxanthin Supplementation on Obesity, Blood Pressure, CRP, Glycemic Biomarkers, and Lipid Profile: A Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2020, 161, 105113. [Google Scholar] [CrossRef]
- Bouillon, G.A.; Gåserød, O.; Rattray, F.P. Evaluation of the Inhibitory Effect of Alginate Oligosaccharide on Yeast and Mould in Yoghurt. Int. Dairy J. 2019, 99, 104554. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Waldron, D.S.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. An Examination of the Potential of Seaweed Extracts as Functional Ingredients in Milk. Int. J. Dairy Technol. 2014, 67, 182–193. [Google Scholar] [CrossRef]
- Lee, G.-H. A Salt Substitute with Low Sodium Content from Plant Aqueous Extracts. Food Res. Int. 2011, 44, 537–543. [Google Scholar] [CrossRef]
- Hell, A.; Labrie, S.; Beaulieu, L. Effect of Seaweed Flakes Addition on the Development of Bioactivities in Functional Camembert-type Cheese. Int. J. Food Sci. Technol. 2017, 53, 1054–1064. [Google Scholar] [CrossRef]
- Fradinho, P.; Raymundo, A.; Sousa, I.; Domínguez, H.; Torres, M.D. Edible Brown Seaweed in Gluten-Free Pasta: Technological and Nutritional Evaluation. Foods 2019, 8, 622. [Google Scholar] [CrossRef]
- Kadena, K.; Tomori, M.; Iha, M.; Nagamine, T. Absorption Study of Mozuku Fucoidan in Japanese Volunteers. Mar. Drugs 2018, 16, 254. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Saito, H.; Nakaji, S.; Yamada, M.; Ebine, N.; Tsushima, E.; Oka, E.; Kumeta, K.; Tsukamoto, T.; Tokunaga, S. Pattern of Dietary Fiber Intake among the Japanese General Population. Eur. J. Clin. Nutr. 2007, 61, 99–103. [Google Scholar] [CrossRef]
- Park, S.-Y.; Hwang, E.; Shin, Y.-K.; Lee, D.-G.; Yang, J.-E.; Park, J.-H.; Yi, T.-H. Immunostimulatory Effect of Enzyme-Modified Hizikia Fusiformein a Mouse Model In Vitro and Ex Vivo. Mar. Biotechnol. 2017, 19, 65–75. [Google Scholar] [CrossRef]
- Olsthoorn, S.E.M.; Wang, X.; Tillema, B.; Vanmierlo, T.; Kraan, S.; Leenen, P.J.M.; Mulder, M.T. Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences. Nutrients 2021, 13, 2613. [Google Scholar] [CrossRef]
- Ismail, A.; Tan, S. Antioxidant Activity of Selected Commercial Seaweeds. Malays. J. Nutr. 2002, 8, 167–177. [Google Scholar] [PubMed]
- Yoshinaga, K.; Mitamura, R. Effects of Undaria Pinnatifida (Wakame) on Postprandial Glycemia and Insulin Levels in Humans: A Randomized Crossover Trial. Plant Foods Hum. Nutr. 2019, 74, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, K.; Nakai, Y.; Izumi, H.; Nagaosa, K.; Ishijima, T.; Nakano, T.; Abe, K. Oral Administration of Edible Seaweed Undaria pinnatifida (Wakame) Modifies Glucose and Lipid Metabolism in Rats: A DNA Microarray Analysis. Mol. Nutr. Food Res. 2018, 62, e1700828. [Google Scholar] [CrossRef]
- Uchida, M.; Kurushima, H.; Ishihara, K.; Murata, Y.; Touhata, K.; Ishida, N.; Niwa, K.; Araki, T. Characterization of Fermented Seaweed Sauce Prepared from Nori (Pyropia yezoensis). J. Biosci. Bioeng. 2017, 123, 327–332. [Google Scholar] [CrossRef]
- Wada, K.; Tsuji, M.; Nakamura, K.; Oba, S.; Nishizawa, S.; Yamamoto, K.; Watanabe, K.; Ando, K.; Nagata, C. Effect of Dietary Nori (Dried Laver) on Blood Pressure in Young Japanese Children: An Intervention Study. J. Epidemiol. 2021, 31, 37–42. [Google Scholar] [CrossRef]
- Song, J.-H.; Kang, H.-B.; Park, S.-H.; Jeong, J.-H.; Park, J.; You, Y.; Lee, Y.-H.; Lee, J.; Kim, E.; Choi, K.-C.; et al. Extracts of Porphyra tenera (Nori Seaweed) Activate the Immune Response in Mouse RAW264.7 Macrophages via NF-κB Signaling. J. Med. Food 2017, 20, 1152–1159. [Google Scholar] [CrossRef]
- Snow, V.; Barry, P.; Fitterman, N.; Qaseem, A.; Weiss, K. Clinical Efficacy Assessment Subcommittee of the American College of Physicians Pharmacologic and Surgical Management of Obesity in Primary Care: A Clinical Practice Guideline from the American College of Physicians. Ann. Intern. Med. 2005, 142, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.; Haber, R.; Ghezzawi, M.; Rhayem, C.; Tcheroyan, R.; Mantzoros, C.S. Pharmacotherapy of Obesity: An Update on the Available Medications and Drugs under Investigation. eClinicalMedicine 2023, 58, 101882. [Google Scholar] [CrossRef]
- Patel, D.K.; Stanford, F.C. Safety and Tolerability of New-Generation Anti-Obesity Medications: A Narrative Review. Postgrad. Med. 2018, 130, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Billes, S.K.; Sinnayah, P.; Cowley, M.A. Naltrexone/Bupropion for Obesity: An Investigational Combination Pharmacotherapy for Weight Loss. Pharmacol. Res. 2014, 84, 1–11. [Google Scholar] [CrossRef]
- Sun, B.; Willard, F.S.; Feng, D.; Alsina-Fernandez, J.; Chen, Q.; Vieth, M.; Ho, J.D.; Showalter, A.D.; Stutsman, C.; Ding, L.; et al. Structural Determinants of Dual Incretin Receptor Agonism by Tirzepatide. Proc. Natl. Acad. Sci. USA 2022, 119, e2116506119. [Google Scholar] [CrossRef]
- Almaliti, J.; Alzweiri, M.; Alhindy, M.; Al-Helo, T.; Daoud, I.; Deknash, R.; Naman, C.B.; Abu-Irmaileh, B.; Bustanji, Y.; Hamad, I. Discovery of Novel Epoxyketone Peptides as Lipase Inhibitors. Molecules 2022, 27, 2261. [Google Scholar] [CrossRef] [PubMed]
- Guerciolini, R. Mode of Action of Orlistat. Int. J. Obes. Relat. Metab. Disord. 1997, 21 (Suppl. 3), S12–S23. [Google Scholar]
- Khushboo; Pinki; Kumar, P.; Tripathi, A.; Luthra, U.; Dubey, K.K. Enhanced Production of Lipstatin from Mutant of Streptomyces toxytricini and Fed-Batch Strategies under Submerged Fermentation. 3 Biotech 2020, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Azmy Harahap, I.; Suthar, P.; Wu, Y.S.; Ghosh, N.; Castro-Muñoz, R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023, 12, 3610. [Google Scholar] [CrossRef]
- Take, K.; Mochida, T.; Maki, T.; Satomi, Y.; Hirayama, M.; Nakakariya, M.; Amano, N.; Adachi, R.; Sato, K.; Kitazaki, T.; et al. Pharmacological Inhibition of Monoacylglycerol O-Acyltransferase 2 Improves Hyperlipidemia, Obesity, and Diabetes by Change in Intestinal Fat Utilization. PLoS ONE 2016, 11, e0150976. [Google Scholar] [CrossRef]
- Beck-da-Silva, L.; Higginson, L.; Fraser, M.; Williams, K.; Haddad, H. Effect of Orlistat in Obese Patients with Heart Failure: A Pilot Study. Congest. Heart Fail. 2005, 11, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.K.; Hadvary, P.; Hochuli, E.; Kupfer, E.; Lengsfeld, H. Lipstatin, an Inhibitor of Pancreatic Lipase, Produced by Streptomyces toxytricini. I. Producing Organism, Fermentation, Isolation and Biological Activity. J. Antibiot. 1987, 40, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting Obesity with Plant-Derived Pancreatic Lipase Inhibitors: A Comprehensive Review. Pharmacol. Res. 2020, 155, 104681. [Google Scholar] [CrossRef]
- McNeely, W.; Goa, K.L. Sibutramine. A Review of Its Contribution to the Management of Obesity. Drugs 1998, 56, 1093–1124. [Google Scholar] [CrossRef]
- Tziomalos, K.; Krassas, G.E.; Tzotzas, T. The Use of Sibutramine in the Management of Obesity and Related Disorders: An Update. Vasc. Health Risk Manag. 2009, 5, 441–452. [Google Scholar]
- Gonzalez-Hurtado, E.; Lee, J.; Choi, J.; Wolfgang, M.J. Fatty Acid Oxidation Is Required for Active and Quiescent Brown Adipose Tissue Maintenance and Thermogenic Programing. Mol. Metab. 2018, 7, 45–56. [Google Scholar] [CrossRef]
- Lim, S.; Park, J.; Um, J.-Y. Ginsenoside Rb1 Induces Beta 3 Adrenergic Receptor-Dependent Lipolysis and Thermogenesis in 3T3-L1 Adipocytes and Db/Db Mice. Front. Pharmacol. 2019, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Genchi, V.A.; Palma, G.; Sorice, G.P.; D’Oria, R.; Caccioppoli, C.; Marrano, N.; Biondi, G.; Caruso, I.; Cignarelli, A.; Natalicchio, A.; et al. Pharmacological Modulation of Adaptive Thermogenesis: New Clues for Obesity Management? J. Endocrinol. Investig. 2023, 46, 2213–2236. [Google Scholar] [CrossRef]
- González-Muniesa, P.; Mártinez-González, M.-A.; Hu, F.B.; Després, J.-P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Prim. 2017, 3, 17034. [Google Scholar] [CrossRef]
- Bray, G.A. Drug Insight: Appetite Suppressants. Nat. Rev. Gastroenterol. Hepatol. 2005, 2, 89–95. [Google Scholar] [CrossRef]
- Li, M.; Cheung, B.M.Y. Pharmacotherapy for Obesity. Br. J. Clin. Pharmacol. 2009, 68, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Vallé-Jones, J.C.; Brodie, N.H.; O’Hara, H.; O’Hara, J.; McGhie, R.L. A Comparative Study of Phentermine and Diethylpropion in the Treatment of Obese Patients in General Practice. Pharmatherapeutica 1983, 3, 300–304. [Google Scholar] [PubMed]
- Vivero, L.E.; Anderson, P.O.; Clark, R.F. A Close Look at Fenfluramine and Dexfenfluramine. J. Emerg. Med. 1998, 16, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.; Bloom, S. The Obesity Pipeline: Current Strategies in the Development of Anti-Obesity Drugs. Nat. Rev. Drug Discov. 2006, 5, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Meier, J.J. Incretin Hormones: Their Role in Health and Disease. Diabetes Obes. Metab. 2018, 20 (Suppl. 1), 5–21. [Google Scholar] [CrossRef]
- Palamara, K.L.; Mogul, H.R.; Peterson, S.J.; Frishman, W.H. Obesity: New Perspectives and Pharmacotherapies. Cardiol. Rev. 2006, 14, 238–258. [Google Scholar] [CrossRef]
- Garber, A.; Henry, R.; Ratner, R.; Garcia-Hernandez, P.A.; Rodriguez-Pattzi, H.; Olvera-Alvarez, I.; Hale, P.M.; Zdravkovic, M.; Bode, B.; LEAD-3 (Mono) Study Group. Liraglutide versus Glimepiride Monotherapy for Type 2 Diabetes (LEAD-3 Mono): A Randomised, 52-Week, Phase III, Double-Blind, Parallel-Treatment Trial. Lancet 2009, 373, 473–481. [Google Scholar] [CrossRef]
- Ejtahed, H.-S.; Soroush, A.-R.; Siadat, S.-D.; Hoseini-Tavassol, Z.; Larijani, B.; Hasani-Ranjbar, S. Targeting Obesity Management through Gut Microbiota Modulation by Herbal Products: A Systematic Review. Complement. Ther. Med. 2019, 42, 184–204. [Google Scholar] [CrossRef]
- Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D.; Endocrine Society Pharmacological Management of Obesity. An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015, 100, 342–362. [Google Scholar] [CrossRef]
- Drug Insight: Appetite Suppressants|Nature Reviews Gastroenterology & Hepatology. Available online: https://www.nature.com/articles/ncpgasthep0092 (accessed on 14 March 2024).
- Sherman, M.M.; Ungureanu, S.; Rey, J.A. Naltrexone/Bupropion ER (Contrave): Newly Approved Treatment Option for Chronic Weight Management in Obese Adults. Pharm. Ther. 2016, 41, 164–172. [Google Scholar]
- Antel, J.; Hebebrand, J. Weight-Reducing Side Effects of the Antiepileptic Agents Topiramate and Zonisamide. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 433–466. [Google Scholar] [CrossRef]
- Astrup, A.; Rössner, S.; Van Gaal, L.; Rissanen, A.; Niskanen, L.; Al Hakim, M.; Madsen, J.; Rasmussen, M.F.; Lean, M.E.J.; NN8022-1807 Study Group. Effects of Liraglutide in the Treatment of Obesity: A Randomised, Double-Blind, Placebo-Controlled Study. Lancet 2009, 374, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Nawaz, A.; Evans, M. Drug Therapy in Obesity: A Review of Current and Emerging Treatments. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2020, 11, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla, E.P.; Iwasaki, S.; Moss, J.A.; Chang, J.; Otsuji, J.; Inoue, K.; Meijler, M.M.; Janda, K.D. Vaccination against Weight Gain. Proc. Natl. Acad. Sci. USA 2006, 103, 13226–13231. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, H.; Kim, S.; Park, J.; Ha, T. The Anti-Obesity Effect of Quercetin Is Mediated by the AMPK and MAPK Signaling Pathways. Biochem. Biophys. Res. Commun. 2008, 373, 545–549. [Google Scholar] [CrossRef]
- Rains, T.M.; Agarwal, S.; Maki, K.C. Antiobesity Effects of Green Tea Catechins: A Mechanistic Review. J. Nutr. Biochem. 2011, 22, 1–7. [Google Scholar] [CrossRef]
- Badimon, L.; Vilahur, G.; Padro, T. Nutraceuticals and Atherosclerosis: Human Trials. Cardiovasc. Ther. 2010, 28, 202–215. [Google Scholar] [CrossRef]
- Loh, R.K.C.; Kingwell, B.A.; Carey, A.L. Human Brown Adipose Tissue as a Target for Obesity Management; beyond Cold-Induced Thermogenesis. Obes. Rev. 2017, 18, 1227–1242. [Google Scholar] [CrossRef]
- Elfakhani, M.; Torabi, S.; Hussein, D.; Mills, N.; Verbeck, G.F.; Mo, H. Mevalonate Deprivation Mediates the Impact of Lovastatin on the Differentiation of Murine 3T3-F442A Preadipocytes. Exp. Biol. Med. 2014, 239, 293–301. [Google Scholar] [CrossRef]
- LaMoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef]
- Shao, Y.; Yuan, G.; Zhang, J.; Guo, X. Liraglutide Reduces Lipogenetic Signals in Visceral Adipose of Db/Db Mice with AMPK Activation and Akt Suppression. Drug Des. Devel Ther. 2015, 9, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Manning, P.; Munasinghe, P.E.; Bellae Papannarao, J.; Gray, A.R.; Sutherland, W.; Katare, R. Acute Weight Loss Restores Dysregulated Circulating MicroRNAs in Individuals Who Are Obese. J. Clin. Endocrinol. Metab. 2019, 104, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Paredes, S.; Ribeiro, L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int. J. Endocrinol. 2018, 2018, 2637418. [Google Scholar] [CrossRef] [PubMed]
- Allsopp, P.; Crowe, W.; Bahar, B.; Harnedy, P.A.; Brown, E.S.; Taylor, S.S.; Smyth, T.J.; Soler-Vila, A.; Magee, P.J.; Gill, C.I.R.; et al. The Effect of Consuming Palmaria palmata-Enriched Bread on Inflammatory Markers, Antioxidant Status, Lipid Profile and Thyroid Function in a Randomised Placebo-Controlled Intervention Trial in Healthy Adults. Eur. J. Nutr. 2016, 55, 1951–1962. [Google Scholar] [CrossRef]
- Desideri, D.; Cantaluppi, C.; Ceccotto, F.; Meli, M.A.; Roselli, C.; Feduzi, L. Essential and Toxic Elements in Seaweeds for Human Consumption. J. Toxicol. Environ. Health A 2016, 79, 112–122. [Google Scholar] [CrossRef]
- Ronan, J.M.; Stengel, D.B.; Raab, A.; Feldmann, J.; O’Hea, L.; Bralatei, E.; McGovern, E. High Proportions of Inorganic Arsenic in Laminaria digitata but Not in Ascophyllum nodosum Samples from Ireland. Chemosphere 2017, 186, 17–23. [Google Scholar] [CrossRef]
- Taylor, V.F.; Jackson, B.P. Concentrations and Speciation of Arsenic in New England Seaweed Species Harvested for Food and Agriculture. Chemosphere 2016, 163, 6–13. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Battuello, M.; Nurra, N.; Sartor, R.M.; Benedetto, A.; Pessani, D.; Abete, M.C. A First Report of Rare Earth Elements in Northwestern Mediterranean Seaweeds. Mar. Pollut. Bull. 2017, 122, 236–242. [Google Scholar] [CrossRef]
- Koedrith, P.; Kim, H.; Weon, J.-I.; Seo, Y.R. Toxicogenomic Approaches for Understanding Molecular Mechanisms of Heavy Metal Mutagenicity and Carcinogenicity. Int. J. Hyg. Environ. Health 2013, 216, 587–598. [Google Scholar] [CrossRef]
- Hernández-Corona, D.M.; Martínez-Abundis, E.; González-Ortiz, M. Effect of Fucoidan Administration on Insulin Secretion and Insulin Resistance in Overweight or Obese Adults. J. Med. Food 2014, 17, 830–832. [Google Scholar] [CrossRef]
- Committees on Toxicity, Mutagenicity, Carcinogenicity of Chemicals in Food, Consumer Products and the Environment: Joint Annual Report. Available online: https://www.gov.uk/government/publications/committee-on-toxicity-of-chemicals-in-food-consumer-products-and-the-environment-annual-report (accessed on 4 October 2024).
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Yasumoto, T. The Structure Elucidation and Biological Activities of High Molecular Weight Algal Toxins: Maitotoxin, Prymnesins and Zooxanthellatoxins. Nat. Prod. Rep. 2000, 17, 293–314. [Google Scholar] [CrossRef]
- Sobieraj, J.; Metelski, D. Insights into Toxic Prymnesium parvum Blooms as a Cause of the Ecological Disaster on the Odra River. Toxins 2023, 15, 403. [Google Scholar] [CrossRef]
- Berger, R.; Liaaen-Jensen, S.; McAlister, V.; Guillard, R.R.L. Carotenoids of Prymnesiophyceae (Haptophyceae). Biochem. Syst. Ecol. 1977, 5, 71–75. [Google Scholar] [CrossRef]
- Marinho, G.S.; Holdt, S.L.; Jacobsen, C.; Angelidaki, I. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture. Mar. Drugs 2015, 13, 4357–4374. [Google Scholar] [CrossRef] [PubMed]
- Van Ginneken, V.J.T.; Helsper, J.P.F.G.; de Visser, W.; van Keulen, H.; Brandenburg, W.A. Polyunsaturated Fatty Acids in Various Macroalgal Species from North Atlantic and Tropical Seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Fleming, J.; Kris-Etherton, P.; Ros, E. Impact of α-Linolenic Acid, the Vegetable ω-3 Fatty Acid, on Cardiovascular Disease and Cognition. Adv. Nutr. 2022, 13, 1584–1602. [Google Scholar] [CrossRef]
- Elagizi, A.; Lavie, C.J.; O’Keefe, E.; Marshall, K.; O’Keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13, 204. [Google Scholar] [CrossRef]
- Okada, T.; Mizuno, Y.; Sibayama, S.; Hosokawa, M.; Miyashita, K. Antiobesity Effects of Undaria Lipid Capsules Prepared with Scallop Phospholipids. J. Food Sci. 2011, 76, H2–H6. [Google Scholar] [CrossRef]
- Gressler, V.; Fujii, M.T.; Martins, A.P.; Colepicolo, P.; Mancini-Filho, J.; Pinto, E. Biochemical Composition of Two Red Seaweed Species Grown on the Brazilian Coast. J. Sci. Food Agric. 2011, 91, 1687–1692. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Shaleh, S.R.M.; Zuldin, W.H.; Gnanaraj, C.; Yong, Y.S. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar. Drugs 2022, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.O.; Kim, Y.N.; Lee, D.-C. Effects of Gelidium Elegans on Weight and Fat Mass Reduction and Obesity Biomarkers in Overweight or Obese Adults: A Randomized Double-Blinded Study. Nutrients 2019, 11, 1513. [Google Scholar] [CrossRef] [PubMed]
Serial No. | Drug Class | Mechanism of Action | Examples |
---|---|---|---|
1 | Stimulants | Increase norepinephrine and dopamine levels, increasing energy expenditure and suppressing appetite [91]. | Phentermine |
2 | Lipase Inhibitors | Block the absorption of dietary fat by inhibiting pancreatic lipase [67]. | Orlistat |
3 | Opioid antagonist | It blocks opioid receptors and produces the appetite-suppressing hormone proopiomelanocortin (POMC) [92]. | Naltrexone |
4 | Antiepileptic drug | Topiramate is a medication primarily used to treat seizures and migraines. It also has the side effect of reducing appetite. While the precise mechanism is not fully understood, it is believed to involve the modulation of certain neurotransmitters, such as the inhibition of sodium channels and glutamate receptors [93]. | Topiramate |
5 | Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists | Mimic the effects of GLP-1, a hormone that promotes satiety and slows gastric emptying [94]. | Liraglutide, semaglutide |
6 | MC4R agonist | It works on the lateral hypothalamic area to suppress the appetite [95]. | Setmelanotide |
7 | Ghrelin Receptor Antagonists/Ghrelin Vaccine | Block the effects of ghrelin, a hormone that stimulates appetite [96]. | Praltibetide (currently in development) |
8 | Combination drugs | Selectively inhibits the reuptake of dopamine and noradrenaline. In combination with Naltrexone medication, it increases feelings of fullness by stimulating the hypothalamus to produce more melanocyte-stimulating hormone (MSH), which helps reduce appetite and burn more calories [92]. | Bupropion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, R.; Nigam, A.; Mishra, R.; Gupta, S.; Chaudhary, A.A.; Khan, S.-U.-D.; almuqri, E.A.; Ahmed, Z.H.; Rustagi, S.; Singh, D.P.; et al. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med. Sci. 2024, 12, 55. https://doi.org/10.3390/medsci12040055
Yadav R, Nigam A, Mishra R, Gupta S, Chaudhary AA, Khan S-U-D, almuqri EA, Ahmed ZH, Rustagi S, Singh DP, et al. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Medical Sciences. 2024; 12(4):55. https://doi.org/10.3390/medsci12040055
Chicago/Turabian StyleYadav, Rajesh, Ankita Nigam, Richa Mishra, Saurabh Gupta, Anis Ahmad Chaudhary, Salah-Ud-Din Khan, Eman Abdullah almuqri, Zakir Hassain Ahmed, Sarvesh Rustagi, Deependra Pratap Singh, and et al. 2024. "Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy" Medical Sciences 12, no. 4: 55. https://doi.org/10.3390/medsci12040055
APA StyleYadav, R., Nigam, A., Mishra, R., Gupta, S., Chaudhary, A. A., Khan, S.-U.-D., almuqri, E. A., Ahmed, Z. H., Rustagi, S., Singh, D. P., & Kumar, S. (2024). Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Medical Sciences, 12(4), 55. https://doi.org/10.3390/medsci12040055