Quantum Computing in Medicine
Abstract
:1. Introduction
2. Historical Overview
2.1. Evolution of QC
2.2. Key Breakthroughs in Medicine
2.3. Timeline of QC in Medicine
3. QC Techniques in Medical Research
3.1. Quantum Algorithms for Drug Discovery
3.2. QML in Healthcare
3.3. Quantum Imaging Techniques
3.4. Quantum-Optimized Treatment Plans
4. Practical Applications of QC in Healthcare
4.1. Drug Design and Molecular Simulation
4.2. Genomics and Personalized Medicine
4.3. Medical Diagnostics
4.4. AI in Healthcare Enhanced by QC
4.5. Monte Carlo Simulation in Radiotherapy
5. Challenges and Current Limitations
6. Future Directions
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flöther, F.F.; Griffin, P.F. How can quantum technologies be applied in healthcare, medicine and the life sciences? Res. Dir. Quantum Technol. 2023, 1, e7. [Google Scholar] [CrossRef]
- Ur Rasool, R.; Ahmad, H.F.; Rafique, W.; Qayyum, A.; Qadir, J.; Anwar, Z. Quantum computing for healthcare: A review. Future Internet 2023, 15, 94. [Google Scholar] [CrossRef]
- Flöther, F.F. The state of quantum computing applications in health and medicine. Res. Dir. Quantum Technol. 2023, 1, e10. [Google Scholar] [CrossRef]
- Wang, P.H.; Chen, J.H.; Yang, Y.Y.; Lee, C.; Tseng, Y.J. Recent advances in quantum computing for drug discovery and development. IEEE Nanotechnol. Mag. 2023, 17, 26–30. [Google Scholar] [CrossRef]
- Sarkar, A.; Al-Ars, Z.; Bertels, K. Estimating algorithmic information using quantum computing for genomics applications. Appl. Sci. 2021, 11, 2696. [Google Scholar] [CrossRef]
- Sharma, M.; Mahajan, Y.; Alzahrani, A. Personalized Medicine Through Quantum Computing: Tailoring Treatments in Healthcare. In Quantum Innovations at the Nexus of Biomedical Intelligence; IGI Global: Hershey, PA, USA, 2024; pp. 147–166. [Google Scholar]
- Pakela, J.M.; Tseng, H.H.; Matuszak, M.M.; Ten Haken, R.K.; McShan, D.L.; El Naqa, I. Quantum-inspired algorithm for radiotherapy planning optimization. Med. Phys. 2020, 47, 5–18. [Google Scholar] [CrossRef]
- Ceperley, D.; Alder, B. Quantum monte carlo. Science 1986, 231, 555–560. [Google Scholar] [CrossRef]
- Doga, H.; Bose, A.; Sahin, M.E.; Bettencourt-Silva, J.; Pham, A.; Kim, E.; Andress, A.; Saxena, S.; Parida, L.; Robertus, J.L.; et al. How can quantum computing be applied in clinical trial design and optimization? Trends Pharmacol. Sci. 2024, 45, 880–891. [Google Scholar] [CrossRef]
- Sharma, P. Quantum Computing in Drug Design: Enhancing Precision and Efficiency in Pharmaceutical Development. Sage Sci. Rev. Appl. Mach. Learn. 2024, 7, 1–9. [Google Scholar]
- Niraula, D.; Jamaluddin, J.; Matuszak, M.M.; Haken, R.K.; Naqa, I.E. Quantum deep reinforcement learning for clinical decision support in oncology: Application to adaptive radiotherapy. Sci. Rep. 2021, 11, 23545. [Google Scholar] [CrossRef]
- Enad, H.G.; Mohammed, M.A. A review on artificial intelligence and quantum machine learning for heart disease diagnosis: Current techniques, challenges and issues, recent developments, and future directions. Fusion Pract. Appl. (FPA) 2023, 11, 08–25. [Google Scholar] [CrossRef]
- Jayanthi, P.; Rai, B.K.; Muralikrishna, I. The potential of quantum computing in healthcare. In Technology Road Mapping for Quantum Computing and Engineering; IGI Global: Hershey, PA, USA, 2022; pp. 81–101. [Google Scholar]
- Cavinato, S.; Felser, T.; Fusella, M.; Paiusco, M.; Montangero, S. Optimizing radiotherapy plans for cancer treatment with Tensor Networks. Phys. Med. Biol. 2021, 66, 125015. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C. A performance evaluation on Monte Carlo simulation for radiation dosimetry using cell processor. J. Comput. Methods Sci. Eng. 2011, 11, 1–12. [Google Scholar] [CrossRef]
- Ekert, A.; Hayden, P.M.; Inamori, H. Basic concepts in quantum computation. In Coherent Atomic Matter Waves, 27 July–27 August 1999; Springer: Berlin/Heidelberg, Germany, 2001; pp. 661–701. [Google Scholar]
- Feynman, R. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 1985, 400, 97–117. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: Piscataway, NJ, USA; pp. 124–134. [Google Scholar]
- Shor, P.W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 1995, 52, R2493. [Google Scholar] [CrossRef]
- Strubell, E. An Introduction to Quantum Algorithms; COS498 Chawathe; Springer: Berlin/Heidelberg, Germany, 2011; Volume 13, p. 19. [Google Scholar]
- Ollitrault, P.J.; Miessen, A.; Tavernelli, I. Molecular quantum dynamics: A quantum computing perspective. Acc. Chem. Res. 2021, 54, 4229–4238. [Google Scholar] [CrossRef]
- Courtland, R. Google aims for quantum computing supremacy [news]. IEEE Spectr. 2017, 54, 9–10. [Google Scholar] [CrossRef]
- Steffen, M.; DiVincenzo, D.P.; Chow, J.M.; Theis, T.N.; Ketchen, M.B. Quantum computing: An IBM perspective. IBM J. Res. Dev. 2011, 55, 13:1–13:11. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Lamata, L. Quantum machine learning and quantum biomimetics: A perspective. Mach. Learn. Sci. Technol. 2020, 1, 033002. [Google Scholar] [CrossRef]
- Grimsley, H.R.; Economou, S.E.; Barnes, E.; Mayhall, N.J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 2019, 10, 3007. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Nifosì, R.; Martelli, P.L.; Da Pozzo, E.; Cappello, V.; Banterle, F.; Trincavelli, M.L.; Martini, C.; D’Elia, M. Quantum computing algorithms: Getting closer to critical problems in computational biology. Brief. Bioinform. 2022, 23, bbac437. [Google Scholar] [CrossRef] [PubMed]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, N.; Jeyaraman, M.; Yadav, S.; Ramasubramanian, S.; Balaji, S. Revolutionizing Healthcare: The Emerging Role of Quantum Computing in Enhancing Medical Technology and Treatment. Cureus 2024, 16, e67486. [Google Scholar] [CrossRef]
- Ullah, U.; Garcia-Zapirain, B. Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications. IEEE Access 2024, 12, 11423–11450. [Google Scholar] [CrossRef]
- Rahimi, M.; Asadi, F. Oncological Applications of Quantum Machine Learning. Technol. Cancer Res. Treat. 2023, 22, 15330338231215214. [Google Scholar] [CrossRef]
- Hevia, J.L.; Murina, E.; Martínez, A.; Peterssen, G. Quantum Software Engineering and Programming Applied to Personalized Pharmacogenomics. In Quantum Software: Aspects of Theory and System Design; Springer: Cham, Switzerland, 2024; pp. 285–330. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef]
- Singh, H.; Majumder, S.; Mishra, S. SHARC-VQE: Simplified Hamiltonian Approach with Refinement and Correction enabled Variational Quantum Eigensolver for Molecular Simulation. arXiv 2024, arXiv:2407.12305. [Google Scholar]
- Siddique, S.; Chow, J.C. Machine learning in healthcare communication. Encyclopedia 2021, 1, 220–239. [Google Scholar] [CrossRef]
- Wei, L.; Liu, H.; Xu, J.; Shi, L.; Shan, Z.; Zhao, B.; Gao, Y. Quantum machine learning in medical image analysis: A survey. Neurocomputing 2023, 525, 42–53. [Google Scholar] [CrossRef]
- Goyal, R. 83. Quantum lattices for early cancer detection through machine learning. Cancer Genet. 2022, 268, 27. [Google Scholar] [CrossRef]
- Prajapati, J.B.; Paliwal, H.; Prajapati, B.G.; Saikia, S.; Pandey, R. Quantum machine learning in prediction of breast cancer. In Quantum Computing: A Shift from Bits to Qubits; Springer: Singapore, 2023; pp. 351–382. [Google Scholar]
- Chow, J.C. Magnetic nanoparticles in magnetic resonance imaging: Principles and applications. In Magnetic Nanoparticles in Nanomedicine; Woodhead Publishing: Sawston, UK, 2024; pp. 371–399. [Google Scholar]
- Wang, X. Quantum-enhanced MRI Sensitivity: Dissolution-dynamic Nuclear and Parahydrogen-induced Polarization. Highlights Sci. Eng. Technol. 2023, 38, 423–430. [Google Scholar] [CrossRef]
- Aslam, N.; Zhou, H.; Urbach, E.K.; Turner, M.J.; Walsworth, R.L.; Lukin, M.D.; Park, H. Quantum sensors for biomedical applications. Nat. Rev. Phys. 2023, 5, 157–169. [Google Scholar] [CrossRef]
- Chen, G.T.; Kung, J.H. Treatment planning. In Clinical Radiation Oncology: Indications, Techniques, and Results; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 62–82. [Google Scholar]
- Aggarwal, L.; Sachdeva, S.; Goswami, P. Quantum healthcare computing using precision based granular approach. Appl. Soft Comput. 2023, 144, 110458. [Google Scholar] [CrossRef]
- Bonde, B.; Patil, P.; Choubey, B. The future of drug development with quantum computing. In High Performance Computing for Drug Discovery and Biomedicine; Humana: New York, NY, USA, 2023; pp. 153–179. [Google Scholar]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.; et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef]
- Cao, Y.; Romero, J.; Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 2018, 62, 6:1–6:20. [Google Scholar] [CrossRef]
- Unkefer, H.; Granstra, C. Accenture Labs and 1QBit Work with Biogen to Apply Quantum Computing to Accelerate Drug Discovery. 2017. Available online: https://newsroom.accenture.com/news/2017/accenture-labs-and-1qbit-work-with-biogen-to-apply-quantum-computing-to-accelerate-drug-discovery (accessed on 3 November 2024).
- Constantino, A.K. Moderna Teams up with IBM to Put A.I., Quantum Computing to Work on mRNA Technology Used in Vaccines. 2023. Available online: https://www.cnbc.com/2023/04/20/moderna-and-ibm-to-use-ai-quantum-computing-on-mrna-vaccines.html (accessed on 3 November 2024).
- Zinner, M.; Dahlhausen, F.; Boehme, P.; Ehlers, J.; Bieske, L.; Fehring, L. Quantum computing’s potential for drug discovery: Early stage industry dynamics. Drug Discov. Today 2021, 26, 1680–1688. [Google Scholar] [CrossRef]
- Gepp, A.; Stocks, P. A review of procedures to evolve quantum algorithms. Genet. Program. Evolvable Mach. 2009, 10, 181–228. [Google Scholar] [CrossRef]
- Vashisth, S.; Dhall, I.; Aggarwal, G. Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis. J. Intell. Syst. 2021, 30, 998–1013. [Google Scholar] [CrossRef]
- A Quantum Leap: Mapping DNA Diversity with Quantum Computing. 2024. Available online: https://www.maths.cam.ac.uk/features/quantum-leap-mapping-dna-diversity-quantum-computing (accessed on 3 November 2024).
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Bao, T.Y.; Huang, H.L. Quantum-inspired support vector machine. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7210–7222. [Google Scholar] [CrossRef] [PubMed]
- Alhudhaif, A. A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: Random subspace ensemble classifier based on deep hybrid features with a super-resolution image. PeerJ Comput. Sci. 2024, 10, e1862. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, P.; Basaky, F.; Osaghae, E. Developing a Model for Predicting Lung Cancer Using Variational Quantum-Classical Algorithm: A Survey. J. Appl. Artif. Intell. 2022, 3, 47–60. [Google Scholar] [CrossRef]
- Hu, F.; Wang, B.N.; Wang, N.; Wang, C. Quantum machine learning with D-wave quantum computer. Quantum Eng. 2019, 1, e12. [Google Scholar] [CrossRef]
- Sohail, A.; Fahmy, M.A.; Khan, U.A. XAI hybrid multi-staged algorithm for routine & quantum boosted oncological medical imaging. Comput. Part. Mech. 2023, 10, 209–219. [Google Scholar]
- Rani, K.S.; Priyadharsheni, J.M.; Karthikeyan, B.; Pugalendhi, G.S. Applications of quantum AI for healthcare. In Quantum Computing and Artificial Intelligence: Training Machine and Deep Learning Algorithms on Quantum Computers; De Gruyter: Berlin, Germany, 2023; Volume 271. [Google Scholar]
- How, M.L.; Cheah, S.M. Forging the future: Strategic approaches to quantum ai integration for industry transformation. AI 2024, 5, 290–323. [Google Scholar] [CrossRef]
- Andreo, P. Monte Carlo simulations in radiotherapy dosimetry. Radiat. Oncol. 2018, 13, 121. [Google Scholar] [CrossRef]
- Bortfeld, T. IMRT: A review and preview. Phys. Med. Biol. 2006, 51, R363. [Google Scholar] [CrossRef]
- Mohan, R.; Grosshans, D. Proton therapy–present and future. Adv. Drug Deliv. Rev. 2017, 109, 26–44. [Google Scholar] [CrossRef]
- Chow, J.C.; Leung, M.K.; Van Dyk, J. Variations of lung density and geometry on inhomogeneity correction algorithms: A Monte Carlo dosimetric evaluation. Med. Phys. 2009, 36, 3619–3630. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Owrangi, A.M. Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: A Monte Carlo study. Med. Dosim. 2012, 37, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Owrangi, A.M. Monte Carlo study on mucosal dose in oral and naval cavity using photon beams with small field. J. Radiother. Pract. 2011, 10, 261–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Sun, J.; Lv, D.; Yuan, X. Quantum computing quantum monte carlo. arXiv 2022, arXiv:2206.10431. [Google Scholar]
- Nachman, B.; Provasoli, D.; De Jong, W.A.; Bauer, C.W. Quantum algorithm for high energy physics simulations. Phys. Rev. Lett. 2021, 126, 062001. [Google Scholar] [CrossRef]
- Cheng, B.; Deng, X.H.; Gu, X.; He, Y.; Hu, G.; Huang, P.; Li, J.; Lin, B.C.; Lu, D.; Lu, Y.; et al. Noisy intermediate-scale quantum computers. Front. Phys. 2023, 18, 21308. [Google Scholar]
- Knill, E. Scalable quantum computing in the presence of large detected-error rates. Phys. Rev. A—At. Mol. Opt. Phys. 2005, 71, 042322. [Google Scholar] [CrossRef]
- Humble, T.S.; McCaskey, A.; Lyakh, D.I.; Gowrishankar, M.; Frisch, A.; Monz, T. Quantum computers for high-performance computing. IEEE Micro 2021, 41, 15–23. [Google Scholar] [CrossRef]
- Kumar, A.; Bhushan, B.; Shriti, S.; Nand, P. Quantum computing for health care: A review on implementation trends and recent advances. In Multimedia Technologies in the Internet of Things Environment; Springer: Singapore, 2022; Volume 3, pp. 23–40. [Google Scholar]
- Pulipeti, S.; Kumar, A. Secure quantum computing for healthcare sector: A short analysis. Secur. Priv. 2023, 6, e293. [Google Scholar] [CrossRef]
- Cavaliere, F.; Mattsson, J.; Smeets, B. The security implications of quantum cryptography and quantum computing. Netw. Secur. 2020, 2020, 9–15. [Google Scholar] [CrossRef]
- Saurabh, K.; Rustagi, V. Ethical and sustainable quantum computing: Conceptual model and implications. J. Contemp. Issues Bus. Gov. 2022, 28, 225–239. [Google Scholar]
- Chow, J.C.; Li, K. Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots through Large Language Models. JMIR Bioinform. Biotechnol. 2024, 5, e64406. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technol. Anal. Strateg. Manag. 2024, 36, 1733–1748. [Google Scholar] [CrossRef]
- Tovino, S.A. The HIPAA privacy rule and the EU GDPR: Illustrative comparisons. Seton Hall Law Rev. 2016, 47, 973. [Google Scholar]
- Roffe, J. Quantum error correction: An introductory guide. Contemp. Phys. 2019, 60, 226–245. [Google Scholar] [CrossRef]
- Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. In Quantum Information Science and Its Contributions to Mathematics, Proceedings of the Symposia in Applied Mathematics; American Mathematical Society: Washington, DC, USA, 2010; Volume 68, pp. 13–58. [Google Scholar]
- Stern, A.; Lindner, N.H. Topological quantum computation—From basic concepts to first experiments. Science 2013, 339, 1179–1184. [Google Scholar] [CrossRef]
- Lubinski, T.; Granade, C.; Anderson, A.; Geller, A.; Roetteler, M.; Petrenko, A.; Heim, B. Advancing hybrid quantum–classical computation with real-time execution. Front. Phys. 2022, 10, 940293. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- Ding, Q.M.; Huang, Y.M.; Yuan, X. Molecular docking via quantum approximate optimization algorithm. Phys. Rev. Appl. 2024, 21, 034036. [Google Scholar] [CrossRef]
- Davids, J.; Lidströmer, N.; Ashrafian, H. Artificial intelligence in medicine using quantum computing in the future of healthcare. In Artificial Intelligence in Medicine; Springer International Publishing: Cham, Switzerland, 2022; pp. 423–446. [Google Scholar]
Aspect | Quantum Computing | Classical Computing |
---|---|---|
Data Processing Speed | Can process complex datasets exponentially faster due to superposition and parallelism. | Limited to sequential processing, leading to longer computation times for large datasets. |
Complex Problem Solving | Efficiently solves problems involving multiple variables and probabilities, such as molecular interactions. | Struggles with NP-hard problems, requiring extensive computational resources and time. |
Drug Discovery | Accelerates molecular simulations, enabling the identification of potential drug candidates more quickly. | Slower drug discovery processes, which are reliant on trial-and-error approaches and classical simulations. |
Genomic Analysis | Enhances the ability to analyze complex genetic data, improving understanding of genetic interactions. | Faces limitations in handling vast genomic datasets efficiently. |
Medical Imaging | Improves imaging techniques through quantum-enhanced methods, leading to higher resolution and better diagnostic capabilities. | Conventional imaging methods may not capture fine details or require extensive processing time. |
Personalized Medicine | Optimizes treatment plans by considering numerous factors simultaneously, leading to tailored therapies. | Typically utilizes standard treatment protocols, which may not account for individual patient variability. |
AI and Machine Learning | Enhances AI models through faster data training and improved pattern recognition in diagnostics. | Limited by classical computing power, which may slow down AI model training and analysis. |
Resource Efficiency | Potentially reduces the number of computational resources needed for complex simulations and analyses. | Often requires significant computational resources and time for complex healthcare tasks. |
Security and Encryption | Offers advanced encryption methods through quantum key distribution, enhancing data security. | Vulnerable to classical hacking methods, with standard encryption potentially susceptible to breaches. |
Challenges | Description | References |
---|---|---|
Limited Hardware Capabilities | Quantum computers are still in the NISQ (Noisy Intermediate-Scale Quantum) era, where qubits are highly susceptible to errors due to decoherence and noise from the environment, limiting scalability. | [72,73] |
Scalability Issues | Large-scale medical simulations (e.g., drug discovery, personalized medicine, and radiotherapy) require thousands to millions of fault-tolerant qubits, far beyond current capabilities. | [74] |
Specialized and Expensive Quantum Hardware | Quantum computers require highly controlled environments, such as extremely low temperatures and vacuum conditions, making them difficult and expensive to develop and maintain. | [72,80] |
Integration with Clinical Settings | Quantum computers need specialized environments that are not compatible with standard healthcare infrastructure. Quantum algorithms also face challenges integrating with classical healthcare IT systems. | [75] |
Workforce Training and Expertise | QC in healthcare requires a workforce skilled in both quantum mechanics and clinical applications, posing a challenge in training medical professionals. | [62] |
Regulatory and Reliability Issues | Ensuring the accuracy, reliability, and regulatory approval of quantum-driven healthcare tools is a key hurdle before clinical adoption. | [62] |
Data Privacy and Security Concerns | Quantum systems may break existing encryption methods, raising concerns over the security of sensitive patient data and necessitating quantum-safe encryption. | [76,77] |
Ethical Issues in Quantum-enhanced AI | Quantum-enhanced AI models could introduce issues like algorithmic bias and lack of explainability, raising ethical concerns in medical decision-making. | [78,79] |
High Cost of Quantum Hardware and Maintenance | The infrastructure and operational costs of quantum systems are significantly higher than classical computing, limiting adoption in resource-constrained healthcare institutions. | [13,80] |
Economic Inequality | Limited availability and high costs restrict access to quantum computers, leading to economic disparities in which only well-funded organizations can benefit. | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, J.C.L. Quantum Computing in Medicine. Med. Sci. 2024, 12, 67. https://doi.org/10.3390/medsci12040067
Chow JCL. Quantum Computing in Medicine. Medical Sciences. 2024; 12(4):67. https://doi.org/10.3390/medsci12040067
Chicago/Turabian StyleChow, James C. L. 2024. "Quantum Computing in Medicine" Medical Sciences 12, no. 4: 67. https://doi.org/10.3390/medsci12040067
APA StyleChow, J. C. L. (2024). Quantum Computing in Medicine. Medical Sciences, 12(4), 67. https://doi.org/10.3390/medsci12040067