Preoperative Osteoporosis Treatment Reduces Stress Shielding in Total Hip Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Parameters
2.3. Radiographic Assessments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
THA | total hip arthroplasty |
HOA | hip osteoarthritis |
JOA | Japanese Orthopaedic Association |
JHEQ | Japanese Hip Society Evaluation Questionnaire |
HHS | Harris Hip Score |
References
- Tsuchiya, M.; Fukushima, K.; Ohashi, Y.; Mamorita, N.; Saito, H.; Uchida, K.; Uchiyama, K.; Takahira, N.; Takaso, M. Is the increase in the number of total hip arthroplasties in Japan due to an aging society? J. Orthop. Sci. 2024, in press. [CrossRef] [PubMed]
- Kulkarni, P.; Harsulkar, A.; Martson, A.G.; Suutre, S.; Martson, A.; Koks, S. Mast Cells Differentiated in Synovial Fluid and Resident in Osteophytes Exalt the Inflammatory Pathology of Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 541. [Google Scholar] [CrossRef]
- Engh, C.A., Jr.; Mohan, V.; Nagowski, J.P.; Sychterz Terefenko, C.J.; Engh, C.A., Sr. Influence of stem size on clinical outcome of primary total hip arthroplasty with cementless extensively porous-coated femoral components. J. Arthroplast. 2009, 24, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.B.; Rorabeck, C.H.; Patterson, J.J.; Guerin, J. Tapered titanium cementless total hip replacements: A 10- to 13-year followup study. Clin. Orthop. Relat. Res. 2001, 393, 112–120. [Google Scholar] [CrossRef]
- Capello, W.N.; D’Antonio, J.A.; Jaffe, W.L.; Geesink, R.G.; Manley, M.T.; Feinberg, J.R. Hydroxyapatite-coated femoral components: 15-year minimum followup. Clin. Orthop. Relat. Res. 2006, 453, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Van Rietbergen, B.; Huiskes, R.; Weinans, H.; Sumner, D.R.; Turner, T.M.; Galante, J.O. The mechanism of bone remodeling and resorption around press-fitted THA stems. J. Biomech. 1993, 26, 369–382. [Google Scholar] [CrossRef]
- Xiao, P.L.; Hsu, C.J.; Ma, Y.G.; Liu, D.; Peng, R.; Xu, X.H.; Lu, H.D. Prevalence and treatment rate of osteoporosis in patients undergoing total knee and hip arthroplasty: A systematic review and meta-analysis. Arch. Osteoporos. 2022, 17, 16. [Google Scholar] [CrossRef]
- Anderson, P.A.; Morgan, S.L.; Krueger, D.; Zapalowski, C.; Tanner, B.; Jeray, K.J.; Krohn, K.D.; Lane, J.P.; Yeap, S.S.; Shuhart, C.R.; et al. Use of Bone Health Evaluation in Orthopedic Surgery: 2019 ISCD Official Position. J. Clin. Densitom. 2019, 22, 517–543. [Google Scholar] [CrossRef]
- Maier, G.S.; Kolbow, K.; Lazovic, D.; Maus, U. The Importance of Bone Mineral Density in Hip Arthroplasty: Results of a Survey Asking Orthopaedic Surgeons about Their Opinions and Attitudes Concerning Osteoporosis and Hip Arthroplasty. Adv. Orthop. 2016, 2016, 8079354. [Google Scholar] [CrossRef]
- Mori, Y.; Tarasawa, K.; Tanaka, H.; Mori, N.; Fushimi, K.; Fujimori, K.; Aizawa, T. Surgery on admission and following day reduces hip fracture complications: A Japanese DPC study. J. Bone Miner. Metab. 2024, 42, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Tarasawa, K.; Tanaka, H.; Mori, N.; Fushimi, K.; Fujimori, K.; Aizawa, T. Does total hip arthroplasty in elderly patients with femoral neck fractures reduce complications? A Japanese DPC study. J. Orthop. Sci. 2024, in press. [CrossRef] [PubMed]
- Alm, J.J.; Makinen, T.J.; Lankinen, P.; Moritz, N.; Vahlberg, T.; Aro, H.T. Female patients with low systemic BMD are prone to bone loss in Gruen zone 7 after cementless total hip arthroplasty. Acta Orthop. 2009, 80, 531–537. [Google Scholar] [CrossRef]
- Tapaninen, T.S.; Venesmaa, P.K.; Jurvelin, J.S.; Miettinen, H.J.; Kroger, H.P. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty—A 5-year follow-up of 16 patients. Scand. J. Surg. 2010, 99, 32–37. [Google Scholar] [CrossRef]
- Chiba, D.; Yamada, N.; Mori, Y.; Oyama, M.; Ohtsu, S.; Kuwahara, Y.; Baba, K.; Tanaka, H.; Aizawa, T.; Hanada, S.; et al. Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young’s modulus. BMC Musculoskelet. Disord. 2021, 22, 987. [Google Scholar] [CrossRef] [PubMed]
- Baba, K.; Mori, Y.; Chiba, D.; Kuwahara, Y.; Kurishima, H.; Tanaka, H.; Kogure, A.; Kamimura, M.; Yamada, N.; Ohtsu, S.; et al. TiNbSn stems with gradient changes of Young’s modulus and stiffness reduce stress shielding compared to the standard fit-and-fill stems. Eur. J. Med. Res. 2023, 28, 214. [Google Scholar] [CrossRef]
- Nystrom, A.; Kiritopoulos, D.; Ullmark, G.; Sorensen, J.; Petren-Mallmin, M.; Milbrink, J.; Hailer, N.P.; Mallmin, H. Denosumab Prevents Early Periprosthetic Bone Loss After Uncemented Total Hip Arthroplasty: Results from a Randomized Placebo-Controlled Clinical Trial. J. Bone Miner. Res. 2020, 35, 239–247. [Google Scholar] [CrossRef]
- Nakura, N.; Hirakawa, K.; Takayanagi, S.; Mihara, M. Denosumab prevented periprosthetic bone resorption better than risedronate after total hip arthroplasty. J. Bone Miner. Metab. 2023, 41, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Koks, S.; Wood, D.J.; Reimann, E.; Awiszus, F.; Lohmann, C.H.; Bertrand, J.; Prans, E.; Maasalu, K.; Martson, A. The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty. J. Arthroplast. 2020, 35, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, R. [Classification of coxarthrosis as the basis of operative joint salvage therapy. Biomechanics of cranial-lateral hip arthrosis; aim and technique of extension-valgisation osteotomy; aim and technique of extension-varus osteotomy, results]. Orthopade 1979, 8, 245–263. [Google Scholar]
- Engh, C.A.; McGovern, T.F.; Schmidt, L.M. Roentgenographic densitometry of bone adjacent to a femoral prosthesis. Clin. Orthop. Relat. Res. 1993, 292, 177–190. [Google Scholar] [CrossRef]
- Raisz, L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Investig. 2005, 115, 3318–3325. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Z.; Quarles, L.D.; Li, W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr. Med. Chem. 2021, 28, 1489–1507. [Google Scholar] [CrossRef] [PubMed]
- Tantavisut, S.; Tanavalee, A.; Thanakit, V.; Ngarmukos, S.; Wilairatana, V.; Wangroongsub, Y. Spontaneous acetabular periprosthetic fracture in a patient continuously having zoledronic acid. Clin. Orthop. Surg. 2014, 6, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gao, C.; Li, H.; Wang, G.S.; Xu, C.; Ran, J. Effect of zoledronic acid on reducing femoral bone mineral density loss following total hip arthroplasty: A meta-analysis from randomized controlled trails. Int. J. Surg. 2017, 47, 116–126. [Google Scholar] [CrossRef]
- Li, X.; Han, J.; Shi, X.; Bi, Z.; Liu, J. Zoledronic acid and denosumab for periprosthetic bone mineral density loss after joint arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Arch. Osteoporos. 2023, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Izumiyama, T.; Kurishima, H.; Kamimura, M.; Baba, K.; Mori, N.; Itoi, E. Effect of denosumab switched from bisphosphonates in preventing joint destruction in postmenopausal rheumatoid arthritis patients with anti-cyclic citrullinated peptide antibodies. J. Orthop. Surg. Res. 2021, 16, 107. [Google Scholar] [CrossRef]
- Zebaze, R.M.; Libanati, C.; Austin, M.; Ghasem-Zadeh, A.; Hanley, D.A.; Zanchetta, J.R.; Thomas, T.; Boutroy, S.; Bogado, C.E.; Bilezikian, J.P.; et al. Differing effects of denosumab and alendronate on cortical and trabecular bone. Bone 2014, 59, 173–179. [Google Scholar] [CrossRef]
- Matsumoto, T.; Ito, M.; Hayashi, Y.; Hirota, T.; Tanigawara, Y.; Sone, T.; Fukunaga, M.; Shiraki, M.; Nakamura, T. A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures—A randomized, active comparator, double-blind study. Bone 2011, 49, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Saito, S.; Ohzono, K.; Ono, K. The osteoblastic response to osteoarthritis of the hip. Its influence on the long-term results of arthroplasty. J. Bone Jt. Surg. Br. 1987, 69, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Conrozier, T.; Merle-Vincent, F.; Mathieu, P.; Richard, M.; Favret, H.; Piperno, M.; Caton, J.; Vignon, E. Epidemiological, clinical, biological and radiological differences between atrophic and hypertrophic patterns of hip osteoarthritis: A case-control study. Clin. Exp. Rheumatol. 2004, 22, 403–408. [Google Scholar] [PubMed]
- Nishii, T.; Sugano, N.; Masuhara, K.; Shibuya, T.; Ochi, T.; Tamura, S. Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin. Orthop. Relat. Res. 1997, 339, 121–131. [Google Scholar] [CrossRef]
- Rahmy, A.I.; Gosens, T.; Blake, G.M.; Tonino, A.; Fogelman, I. Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: A 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos. Int. 2004, 15, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Miyatake, K.; Takada, R.; Ogawa, T.; Amano, Y.; Jinno, T.; Koga, H.; Yoshii, T.; Okawa, A. The prevalence and treatment of osteoporosis in patients undergoing total hip arthroplasty and the levels of biochemical markers of bone turnover. Bone Jt. Res. 2022, 11, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, J.W.; Li, M.Y.; Wu, L.M.; Zeng, Y.; Shen, B. Zoledronic Acid for Periprosthetic Bone Mineral Density Changes in Patients With Osteoporosis After Hip Arthroplasty—An Updated Meta-Analysis of Six Randomized Controlled Trials. Front. Med. 2021, 8, 801282. [Google Scholar] [CrossRef]
Clinical Parameter | Treatment Group (n = 31) | Non-Treatment Group (n = 76) | p-Value |
---|---|---|---|
mean age (years) | 74.9 ± 7.1 | 71.8 ± 6.8 | p = 0.033 |
BMI (kg/m2) | 24.9 ± 4.5 | 24.2 ± 3.8 | p = 0.459 |
bone metabolism markers | |||
BAP (μg/L) | 12 ± 4.3 | 17.7 ± 6.3 | p < 0.0001 |
total P1NP (ng/mL) | 44.6 ± 21.6 | 75.2 ± 25.1 | p < 0.0001 |
TRACP-5b (mU/dL) | 384.0 ± 200.4 | 586.6 ± 174.6 | p < 0.0001 |
Bombelli classification (hips) | |||
atrophic type | 17 | 33 | p = 0.129 |
normotrophic type | 19 | 56 | |
hypertrophic type | 0 | 5 |
Treatment Group (n = 31) | Non-Treatment Group (n = 76) | p-Value | |
---|---|---|---|
Stress shielding (hips) | |||
Grade 0 | 12 | 6 | 0.001 |
Grade 1 | 10 | 28 | |
Grade 2 | 12 | 46 | |
Grade 3 | 2 | 11 | |
Grade 4 | 0 | 3 | |
Postoperative scores | |||
JOA | 77.9 ± 10.3 | 81.6 ± 11.0 | 0.087 |
HHS | 81.5 ± 9.0 | 84 ± 11.1 | 0.246 |
JHEQ | 50.5 ± 14.5 | 55.2 ± 17.2 | 0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanabuchi, R.; Mori, Y.; Baba, K.; Tanaka, H.; Kuriyama, Y.; Fukuchi, H.; Kawamata, H.; Aizawa, T. Preoperative Osteoporosis Treatment Reduces Stress Shielding in Total Hip Arthroplasty. Med. Sci. 2025, 13, 10. https://doi.org/10.3390/medsci13010010
Kanabuchi R, Mori Y, Baba K, Tanaka H, Kuriyama Y, Fukuchi H, Kawamata H, Aizawa T. Preoperative Osteoporosis Treatment Reduces Stress Shielding in Total Hip Arthroplasty. Medical Sciences. 2025; 13(1):10. https://doi.org/10.3390/medsci13010010
Chicago/Turabian StyleKanabuchi, Ryuichi, Yu Mori, Kazuyoshi Baba, Hidetatsu Tanaka, Yasuaki Kuriyama, Hideki Fukuchi, Hiroki Kawamata, and Toshimi Aizawa. 2025. "Preoperative Osteoporosis Treatment Reduces Stress Shielding in Total Hip Arthroplasty" Medical Sciences 13, no. 1: 10. https://doi.org/10.3390/medsci13010010
APA StyleKanabuchi, R., Mori, Y., Baba, K., Tanaka, H., Kuriyama, Y., Fukuchi, H., Kawamata, H., & Aizawa, T. (2025). Preoperative Osteoporosis Treatment Reduces Stress Shielding in Total Hip Arthroplasty. Medical Sciences, 13(1), 10. https://doi.org/10.3390/medsci13010010