Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications
Abstract
:1. Introduction
2. Antizyme Inhibitor 1
2.1. Structural Aspects
2.2. Tissue and Cellular Distribution
2.3. Synthesis and Degradation
2.4. Physiological Role
2.5. Antizyme Inhibitor 1: Overexpression and RNA Editing in Cancer
2.6. Antizyme Inhibitor 1 and Fibrogenesis
3. Antizyme Inhibitor 2
3.1. Structural and Functional Aspects
3.2. Antizyme Inhibitor 2 in the Central Nervous System
3.3. Antizyme Inhibitor 2 in Reproductive Tissues
3.4. Antizyme Inhibitor 2: Expression in Other Tissues
3.5. Gm853 as a New Paralogue of Odc/Azins with Leucine Decarboxylase Activity
4. Concluding Remarks, Controversies and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef] [PubMed]
- Miller-Fleming, L.; Olin-Sandoval, V.; Campbell, K.; Ralser, M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J. Mol. Biol. 2015, 427, 3389–3406. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988, 48, 759–774. [Google Scholar] [PubMed]
- Cason, A.L.; Ikeguchi, Y.; Skinner, C.; Wood, T.C.; Holden, K.R.; Lubs, H.A.; Martinez, F.; Simensen, R.J.; Stevenson, R.E.; Pegg, A.E.; et al. X-linked spermine synthase gene (SMS) defect: The first polyamine deficiency syndrome. Eur. J. Hum. Genet. 2003, 11, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Gerner, E.W.; Meyskens, F.L., Jr. Polyamines and cancer: Old molecules, new understanding. Nat. Rev. Cancer 2004, 4, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Murray-Stewart, T.; Casero, R.A., Jr. Inflammation and polyamine catabolism: The good, the bad and the ugly. Biochem. Soc. Trans. 2007, 35 Pt 2, 300–304. [Google Scholar] [CrossRef]
- Lewandowski, N.M.; Ju, S.; Verbitsky, M.; Ross, B.; Geddie, M.L.; Rockenstein, E.; Adame, A.; Muhammad, A.; Vonsattel, J.P.; Ringe, D.; et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc. Natl. Acad. Sci. USA 2010, 107, 16970–16975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minois, N.; Carmona-Gutierrez, D.; Madeo, F. Polyamines in aging and disease. Aging 2011, 3, 716–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, G.P.; Rubin, M.A.; Mello, C.F. Modulation of learning and memory by natural polyamines. Pharmacol. Res. 2016, 112, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Casero, R.A.; Jr Murray Stewart, T.; Pegg, A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer 2018. [CrossRef] [PubMed]
- Pegg, A.E. Mammalian polyamine metabolism and function. IUBMB Life 2009, 61, 880–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegg, A.E. Regulation of ornithine decarboxylase. J. Biol. Chem. 2006, 281, 14529–14532. [Google Scholar] [CrossRef] [PubMed]
- Coffino, P. Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell Biol. 2001, 2, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Shantz, L.M. Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem. J. 2004, 377 Pt 1, 257–264. [Google Scholar] [CrossRef]
- Kahana, C. Protein degradation, the main hub in the regulation of cellular polyamines. Biochem. J. 2016, 473, 4551–4558. [Google Scholar] [CrossRef] [PubMed]
- Kahana, C. Antizyme and antizyme inhibitor, a regulatory tango. Cell. Mol. Life Sci. 2009, 66, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Mangold, U. The antizyme family: Polyamines and beyond. IUBMB Life 2005, 57, 671–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, I.P.; Gesteland, R.F.; Atkins, J.F. A second mammalian antizyme: Conservation of programmed ribosomal frameshifting. Genomics 1998, 52, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lang, D.W.; Coffino, P. Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport. J. Biol. Chem. 1999, 274, 26425–26430. [Google Scholar] [CrossRef] [PubMed]
- Tosaka, Y.; Tanaka, H.; Yano, Y.; Masai, K.; Nozaki, M.; Yomogida, K.; Otani, S.; Nojima, H.; Nishimune, Y. Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: Expression in haploid germ cells and polyamine-induced frameshifting. Genes Cells 2000, 5, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Rohrwasser, A.; Terreros, D.A.; Gesteland, R.F.; Atkins, J.F. Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: Antizyme 3. Proc. Natl. Acad. Sci. USA 2000, 97, 4808–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murai, N.; Murakami, Y.; Matsufuji, S. Identification of nuclear export signals in antizyme-1. J. Biol. Chem. 2003, 278, 44791–44798. [Google Scholar] [CrossRef] [PubMed]
- Murai, N.; Shimizu, A.; Murakami, Y.; Matsufuji, S. Subcellular localization and phosphorylation of antizyme 2. J. Cell. Biochem. 2009, 108, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Snapir, Z.; Keren-Paz, A.; Bercovich, Z.; Kahana, C. Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem. J. 2009, 419, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Rom, E.; Kahana, C. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc. Natl. Acad. Sci. USA 1994, 91, 3959–3963. [Google Scholar] [CrossRef] [PubMed]
- Matsufuji, S.; Matsufuji, T.; Miyazaki, Y.; Murakami, Y.; Atkins, J.F.; Gesteland, R.F.; Hayashi, S.I. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 1995, 80, 51–60. [Google Scholar] [CrossRef]
- Murakami, Y.; Matsufuji, S.; Kameji, T.; Hayashi, S.I.; Igarashi, K.; Tamura, T.; Tanaka, K.; Ichihara, A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 1992, 360, 597–599. [Google Scholar] [CrossRef] [PubMed]
- Mamroud-Kidron, E.; Omer-Itsicovich, M.; Bercovich, Z.; Tobias, K.E.; Rom, E.; Kahana, C. A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme. Eur. J. Biochem. 1994, 226, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.L.; Judd, G.G.; Bareyal-Leyser, A.; Ling, S.Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem. J. 1994, 299 Pt 1, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, K.; Momiyama, E.; Yoshida, K.; Nishimura, K.; Sakai, S.; Toida, T.; Kashiwagi, K.; Igarashi, K. Polyamine transport by mammalian cells and mitochondria: Role of antizyme and glycosaminoglycans. J. Biol. Chem. 2005, 280, 42801–42808. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Lopez-Contreras, A.J.; Lambertos, A.; Dardonville, C.; Cremades, A.; Penafiel, R. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells. Amino Acids 2015, 47, 1025–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangold, U. Antizyme inhibitor: Mysterious modulator of cell proliferation. Cell. Mol. Life Sci. 2006, 63, 2095–2101. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Contreras, A.J.; Ramos-Molina, B.; Cremades, A.; Penafiel, R. Antizyme inhibitor 2: Molecular, cellular and physiological aspects. Amino Acids 2010, 38, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Contreras, A.J.; Ramos-Molina, B.; Cremades, A.; Penafiel, R. Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J. Biol. Chem. 2008, 283, 20761–20769. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Murakami, Y.; Hayashi, S. A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem. J. 1982, 204, 647–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitani, T.; Fujisawa, H. Purification and characterization of antizyme inhibitor of ornithine decarboxylase from rat liver. Biochim. Biophys. Acta 1989, 991, 44–49. [Google Scholar] [CrossRef]
- Murakami, Y.; Matsufuji, S.; Nishiyama, M.; Hayashi, S. Properties and fluctuations in vivo of rat liver antizyme inhibitor. Biochem. J. 1989, 259, 839–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, Y.; Ichiba, T.; Matsufuji, S.; Hayashi, S. Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J. Biol. Chem. 1996, 271, 3340–3342. [Google Scholar] [CrossRef] [PubMed]
- Koguchi, K.; Kobayashi, S.; Hayashi, T.; Matsufuji, S.; Murakami, Y.; Hayashi, S. Cloning and sequencing of a human cDNA encoding ornithine decarboxylase antizyme inhibitor. Biochim. Biophys. Acta 1997, 1353, 209–216. [Google Scholar] [CrossRef]
- Ivanov, I.P.; Firth, A.E.; Atkins, J.F. Recurrent emergence of catalytically inactive ornithine decarboxylase homologous forms that likely have regulatory function. J. Mol. Evol. 2010, 70, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Keren-Paz, A.; Bercovich, Z.; Porat, Z.; Erez, O.; Brener, O.; Kahana, C. Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 2006, 25, 5163–5172. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.L.; Thane, T.K.; Sequeira, J.M.; Marton, L.J.; Thokala, R. Antizyme and antizyme inhibitor activities influence cellular responses to polyamine analogs. Amino Acids 2007, 33, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Albeck, S.; Dym, O.; Unger, T.; Snapir, Z.; Bercovich, Z.; Kahana, C. Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein Sci. 2008, 17, 793–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, K.L.; Liao, Y.F.; Hung, H.C.; Liu, G.Y. Critical factors determining dimerization of human antizyme inhibitor. J. Biol. Chem. 2009, 284, 26768–26777. [Google Scholar] [CrossRef] [PubMed]
- Keren-Paz, A.; Bercovich, Z.; Kahana, C. Antizyme inhibitor: A defective ornithine decarboxylase or a physiological regulator of polyamine biosynthesis and cellular proliferation. Biochem. Soc. Trans. 2007, 35 Pt 2, 311–313. [Google Scholar] [CrossRef]
- Liu, Y.C.; Lee, C.Y.; Lin, C.L.; Chen, H.Y.; Liu, G.Y.; Hung, H.C. Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor. Oncotarget 2015, 6, 23917–23929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.C.; Liu, Y.L.; Su, J.Y.; Liu, G.Y.; Hung, H.C. Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PLoS ONE 2011, 6, e19253. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Chen, S.F.; Hsieh, J.Y.; Chou, F.; Wang, Y.H.; Lin, W.T.; Lee, P.Y.; Yu, Y.J.; Lin, L.Y.; Lin, T.S.; et al. Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc. Natl. Acad. Sci. USA 2015, 112, 11229–11234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, Y.; Lin, C.H.; Chan, T.H.; Chow, R.K.; Song, Y.; Liu, M.; Yuan, Y.F.; Fu, L.; Kong, K.L.; et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 2013, 19, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangold, U.; Leberer, E. Regulation of all members of the antizyme family by antizyme inhibitor. Biochem. J. 2005, 385 Pt 1, 21–28. [Google Scholar] [CrossRef]
- Kim, S.W.; Mangold, U.; Waghorne, C.; Mobascher, A.; Shantz, L.; Banyard, J.; Zetter, B.R. Regulation of cell proliferation by the antizyme inhibitor: Evidence for an antizyme-independent mechanism. J. Cell Sci. 2006, 119 Pt 12, 2583–2591. [Google Scholar] [CrossRef]
- Paris, A.J.; Snapir, Z.; Christopherson, C.D.; Kwok, S.Y.; Lee, U.E.; Ghiassi-Nejad, Z.; Kocabayoglu, P.; Sninsky, J.J.; Llovet, J.M.; Kahana, C.; et al. A polymorphism that delays fibrosis in hepatitis C promotes alternative splicing of AZIN1, reducing fibrogenesis. Hepatology 2011, 54, 2198–2207. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Ariki, K.; Ohkido, M.; Murakami, Y.; Matsufuji, S.; Li, Z.; Yamamura, K.I. Role of ornithine decarboxylase antizyme inhibitor in vivo. Genes Cells 2009, 14, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Molina, B.; Lopez-Contreras, A.J.; Cremades, A.; Penafiel, R. Differential expression of ornithine decarboxylase antizyme inhibitors and antizymes in rodent tissues and human cell lines. Amino Acids 2012, 42, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Grahn, B.; Heby, O. Antizyme inhibitor is rapidly induced in growth-stimulated mouse fibroblasts and releases ornithine decarboxylase from antizyme suppression. Biochem. J. 2000, 346 Pt 3, 699–704. [Google Scholar] [CrossRef]
- Murakami, Y.; Ohkido, M.; Takizawa, H.; Murai, N.; Matsufuji, S. Multiple forms of mouse antizyme inhibitor 1 mRNA differentially regulated by polyamines. Amino Acids 2014, 46, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Mangold, U.; Hayakawa, H.; Coughlin, M.; Munger, K.; Zetter, B.R. Antizyme, a mediator of ubiquitin-independent proteasomal degradation and its inhibitor localize to centrosomes and modulate centriole amplification. Oncogene 2008, 27, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Contreras, A.J.; Sanchez-Laorden, B.L.; Ramos-Molina, B.; de la Morena, M.E.; Cremades, A.; Penafiel, R. Subcellular localization of antizyme inhibitor 2 in mammalian cells: Influence of intrinsic sequences and interaction with antizymes. J. Cell. Biochem. 2009, 107, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Suzuki, J.I.; Samejima, K.; Kikuchi, K.; Hascilowicz, T.; Murai, N.; Matsufuji, S.; Oka, T. The change of antizyme inhibitor expression and its possible role during mammalian cell cycle. Exp. Cell Res. 2009, 315, 2301–2311. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Suzuki, J.; Samejima, K.; Oka, T. Developmental alterations in expression and subcellular localization of antizyme and antizyme inhibitor and their functional importance in the murine mammary gland. Amino Acids 2010, 38, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.; Cirenajwis, H.; Wallace, H.M.; Oredsson, S.; Persson, L. A role for antizyme inhibitor in cell proliferation. Amino Acids 2015, 47, 1341–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.P.; Lasbury, M.E.; Wang, S.H.; Zhang, C.; Durant, P.J.; Murakami, Y.; Matsufuji, S.; Lee, C.H. Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages. J. Biol. Chem. 2009, 284, 8174–8184. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Loughran, G.; Atkins, J.F. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc. Natl. Acad. Sci. USA 2008, 105, 10079–10084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightfoot, H.L.; Hagen, T.; Clery, A.; Allain, F.H.; Hall, J. Control of the polyamine biosynthesis pathway by G2-quadruplexes. Elife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chung, A.C.; Dong, Y.; Yang, W.; Zhong, X.; Lan, H.Y. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 2013, 84, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J.; Bae, D.H.; Siafakas, A.R.; Rahmanto, Y.S.; Al-Akra, L.; Jansson, P.J.; Casero, R.A., Jr.; Richardson, D.R. Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochim. Biophys. Acta 2018, 1864 Pt B, 2793–2813. [Google Scholar] [CrossRef]
- Bercovich, Z.; Kahana, C. Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J. Biol. Chem. 2004, 279, 54097–54102. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.R.; Zetter, B.R. Evidence of a role for antizyme and antizyme inhibitor as regulators of human cancer. Mol. Cancer Res. 2011, 9, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Suh, Y.H.; Kim, W.H.; Lee, T.H.; Jung, M.H. Stable siRNA-mediated silencing of antizyme inhibitor: Regulation of ornithine decarboxylase activity. Biochem. Biophys. Res. Commun. 2005, 328, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.R.; Chung, I.; Zetter, B.R. Knockdown of antizyme inhibitor decreases prostate tumor growth in vivo. Amino Acids 2012, 42, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.; Hu, Y.; Zhang, W.; Huang, A.; Yamamura, K.; Tang, H. Changes in liver gene expression of Azin1 knock-out mice. Z. Naturforsch. C 2010, 65, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.R.D.; Jain, S.; Banerjee, A. Expression of ODC1, SPD, SPM and AZIN1 in the hypothalamus, ovary and uterus during rat estrous cycle. Gen. Comp. Endocrinol. 2017, 246, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Jiang, D.; Kang, B.; Bai, L.; He, H.; Chen, Z.; Yi, Z. Molecular cloning and mRNA expression analysis of antizyme inhibitor 1 in the ovarian follicles of the Sichuan white goose. Gene 2015, 568, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, G.R.; Stankiewicz, A.M. Glucocorticoids, genes and brain function. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 82, 136–168. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, M.P.; Greenwood, M.; Paton, J.F.; Murphy, D. Control of Polyamine Biosynthesis by Antizyme Inhibitor 1 Is Important for Transcriptional Regulation of Arginine Vasopressin in the Male Rat Hypothalamus. Endocrinology 2015, 156, 2905–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.H.; Kim, S.C.; Jeon, G.A.; Kim, S.H.; Kim, Y.; Choi, K.S.; Park, S.I.; Joe, M.K.; Kimm, K. Identification of differentially expressed genes in normal and tumor human gastric tissue. Genomics 2000, 69, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.R.; Qiao, J.J.; Chan, T.H.; Zhu, Y.H.; Li, F.F.; Liu, H.; Fei, J.; Li, Y.; Guan, X.Y.; Chen, L. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res. 2014, 74, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, J.; Shi, X.; Feng, F.; Lau, K.W.; Chen, Y.; Chen, Y.; Jiang, L.; Cui, F.; Zhang, Y.; et al. RNA editing of AZIN1 induces the malignant progression of non-small-cell lung cancers. Tumour Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed]
- Shigeyasu, K.; Okugawa, Y.; Toden, S.; Miyoshi, J.; Toiyama, Y.; Nagasaka, T.; Takahashi, N.; Kusunoki, M.; Takayama, T.; Yamada, Y.; et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Liu, J.; Xing, F. Antizyme inhibitor 1: A potential carcinogenic molecule. Cancer Sci. 2017, 108, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Bianchi-Smiraglia, A.; Bagati, A.; Fink, E.E.; Affronti, H.C.; Lipchick, B.C.; Moparthy, S.; Long, M.D.; Rosario, S.R.; Lightman, S.M.; Moparthy, K.; et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J. Clin. Investig. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Guo, J.; Zhang, Z.; Liu, L.; Cao, Y.; Shi, H.; Wang, J.; Wang, J.; Friedman, S.L.; Sninsky, J.J. A candidate gene study for the association of host single nucleotide polymorphisms with liver cirrhosis risk in chinese hepatitis B patients. Genet. Test. Mol. Biomark. 2013, 17, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, L.; Cheng, L.; Ren, L.; Tang, J.; Sun, D. Pancreatic Kininogenase Ameliorates Renal Fibrosis in Streptozotocin Induced-Diabetic Nephropathy Rat. Kidney Blood Press Res. 2016, 41, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Contreras, A.J.; Lopez-Garcia, C.; Jimenez-Cervantes, C.; Cremades, A.; Penafiel, R. Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J. Biol. Chem. 2006, 281, 30896–30906. [Google Scholar] [CrossRef] [PubMed]
- Kanerva, K.; Makitie, L.T.; Pelander, A.; Heiskala, M.; Andersson, L.C. Human ornithine decarboxylase paralogue (ODCp) is an antizyme inhibitor but not an arginine decarboxylase. Biochem. J. 2008, 409, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Pitkanen, L.T.; Heiskala, M.; Andersson, L.C. Expression of a novel human ornithine decarboxylase-like protein in the central nervous system and testes. Biochem. Biophys. Res. Commun. 2001, 287, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Snapir, Z.; Keren-Paz, A.; Bercovich, Z.; Kahana, C. ODCp, a brain- and testis-specific ornithine decarboxylase paralogue, functions as an antizyme inhibitor, although less efficiently than AzI1. Biochem. J. 2008, 410, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Lambertos, A.; Lopez-Contreras, A.J.; Penafiel, R. Mutational analysis of the antizyme-binding element reveals critical residues for the function of ornithine decarboxylase. Biochim. Biophys. Acta 2013, 1830, 5157–5165. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Lambertos, A.; Lopez-Contreras, A.J.; Kasprzak, J.M.; Czerwoniec, A.; Bujnicki, J.M.; Cremades, A.; Peñafiel, R. Structural and degradative aspects of ornithine decarboxylase antizyme inhibitor 2. FEBS Open Bio 2014, 4, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Kanerva, K.; Makitie, L.T.; Back, N.; Andersson, L.C. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking. Exp. Cell Res. 2010, 316, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Kanerva, K.; Lappalainen, J.; Makitie, L.T.; Virolainen, S.; Kovanen, P.T.; Andersson, L.C. Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS ONE 2009, 4, e6858. [Google Scholar] [CrossRef] [PubMed]
- Makitie, L.T.; Kanerva, K.; Sankila, A.; Andersson, L.C. High expression of antizyme inhibitor 2, an activator of ornithine decarboxylase in steroidogenic cells of human gonads. Histochem. Cell Biol. 2009, 132, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Makitie, L.T.; Kanerva, K.; Polvikoski, T.; Paetau, A.; Andersson, L.C. Brain neurons express ornithine decarboxylase-activating antizyme inhibitor 2 with accumulation in Alzheimer’s disease. Brain Pathol. 2010, 20, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garcia, C.; Ramos-Molina, B.; Lambertos, A.; Lopez-Contreras, A.J.; Cremades, A.; Penafiel, R. Antizyme inhibitor 2 hypomorphic mice. New patterns of expression in pancreas and adrenal glands suggest a role in secretory processes. PLoS ONE 2013, 8, e69188. [Google Scholar] [CrossRef] [PubMed]
- Seiler, N.; Schmidt-Glenewinkel, T. Regional distribution of putrescine, spermidine and spermine in relation to the distribution of RNA and DNA in the rat nervous system. J. Neurochem. 1975, 24, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.G.; Muller, M. The cellular localization of the l-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems. Prog. Neurobiol. 1999, 57, 485–505. [Google Scholar] [CrossRef]
- Laitinen, P.H.; Hietala, O.A.; Pulkka, A.E.; Pajunen, A.E. Purification of mouse brain ornithine decarboxylase reveals its presence as an inactive complex with antizyme. Biochem. J. 1986, 236, 613–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilpelainen, P.; Rybnikova, E.; Hietala, O.; Pelto-Huikko, M. Expression of ODC and its regulatory protein antizyme in the adult rat brain. J. Neurosci. Res. 2000, 62, 675–685. [Google Scholar] [CrossRef]
- Iyo, A.H.; Zhu, M.Y.; Ordway, G.A.; Regunathan, S. Expression of arginine decarboxylase in brain regions and neuronal cells. J. Neurochem. 2006, 96, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-de-la-Torre, M.; Lambertos, A.; Penafiel, R.; Puelles, L. An exercise in brain genoarchitectonics: Analysis of AZIN2-Lacz expressing neuronal populations in the mouse hindbrain. J. Neurosci. Res. 2018, 96, 1490–1517. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.Y.; Iyo, A.; Piletz, J.E.; Regunathan, S. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim. Biophys. Acta 2004, 1670, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, C.S.; Hu, G.; Pegg, A.E. Putrescine biosynthesis in mammalian tissues. Biochem. J. 2004, 379 Pt 3, 849–855. [Google Scholar] [CrossRef]
- Wang, X.; Ying, W.; Dunlap, K.A.; Lin, G.; Satterfield, M.C.; Burghardt, R.C.; Wu, G.; Bazer, F.W. Arginine decarboxylase and agmatinase: An alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol. Reprod. 2014, 90, 84. [Google Scholar] [CrossRef] [PubMed]
- Elmetwally, M.A.; Halawa, A.A.; Lenis, Y.Y.; Tang, W.; Wu, G.; Bazer, F.W. Effects of Bisphenol-A on proliferation and expression of genes related to synthesis of polyamines, interferon tau and insulin-like growth factor 2 by ovine trophectoderm cells. Reprod. Toxicol. 2018, 78, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Elmetwally, M.A.; Lenis, Y.; Tang, W.; Wu, G.; Bazer, F.W. Effects of catecholamines on secretion of interferon tau and expression of genes for synthesis of polyamines and apoptosis by ovine trophectoderm. Biol. Reprod. 2018. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.; Berger, J.; Langnaese, K.; Derst, C.; Madai, V.I.; Krauss, M.; Fischer, K.D.; Veh, R.W.; Laube, G. Arginase and Arginine Decarboxylase—Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain? PLoS ONE 2013, 8, e66735. [Google Scholar] [CrossRef] [PubMed]
- Bokara, K.K.; Kwon, K.H.; Nho, Y.; Lee, W.T.; Park, K.A.; Lee, J.E. Retroviral expression of arginine decarboxylase attenuates oxidative burden in mouse cortical neural stem cells. Stem Cells Dev. 2011, 20, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Bokara, K.K.; Kim, J.H.; Kim, J.Y.; Lee, J.E. Transfection of arginine decarboxylase gene increases the neuronal differentiation of neural progenitor cells. Stem Cell Res. 2016, 17, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.U.; Kwon, K.H.; Kim, J.H.; Bokara, K.K.; Park, K.A.; Lee, W.T.; Lee, J.E. Recombinant hexahistidine arginine decarboxylase (hisADC) induced endogenous agmatine synthesis during stress. Mol. Cell. Biochem. 2010, 345, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, P.L.; Palin, M.F.; Murphy, B.D. Polyamines on the reproductive landscape. Endocr. Rev. 2011, 32, 694–712. [Google Scholar] [CrossRef] [PubMed]
- López-Contreras, A.J.; Ramos-Molina, B.; Martínez-de-la-Torre, M.; Peñafiel-Verdú, C.; Puelles, L.; Cremades, A.; Peñafiel, R. Expression of antizyme inhibitor 2 in male haploid germinal cells suggests a role in spermiogenesis. Int. J. Biochem. Cell Biol. 2009, 41, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Tokuhiro, K.; Isotani, A.; Yokota, S.; Yano, Y.; Oshio, S.; Hirose, M.; Wada, M.; Fujita, K.; Ogawa, Y.; Okabe, M.; et al. OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet. 2009, 5, e1000712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Zhou, Y.; Cao, Z.; Huang, P.; Lu, B. Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett. 2005, 579, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Cheng, M.; Ou, Y.; Oko, R.; van der Hoorn, F.A. Ornithine decarboxylase antizyme Oaz3 modulates protein phosphatase activity. J. Biol. Chem. 2011, 286, 29417–29427. [Google Scholar] [CrossRef] [PubMed]
- Lambertos, A.; Ramos-Molina, B.; Lopez-Contreras, A.J.; Cremades, A.; Peñafiel, R. New insights of polyamine metabolism in testicular physiology: A role of ornithine decarboxylase antizyme inhibitor 2 (AZIN2) in the modulation of testosterone levels and sperm motility. PLoS ONE 2018. under review. [Google Scholar]
- Kang, B.; Deng, T.; Chen, Z.; Wang, X.; Yi, Z.; Jiang, D. Molecular Cloning of AZIN2 and its Expression Profiling in Goose Tissues and Follicles. Folia Biol. 2018, 66, 25–31. [Google Scholar] [CrossRef]
- Levillain, O.; Ramos-Molina, B.; Forcheron, F.; Penafiel, R. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys. Amino Acids 2012, 43, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, X.; Wang, H.; Li, M.; Huang, S.; Chen, G.; Jing, Y.; Wang, S.; Chen, Y.; Liao, W.; et al. Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc. Res. 2018. [CrossRef] [PubMed]
- Acosta-Andrade, C.; Lambertos, A.; Urdiales, J.L.; Sanchez-Jimenez, F.; Penafiel, R.; Fajardo, I. A novel role for antizyme inhibitor 2 as a regulator of serotonin and histamine biosynthesis and content in mouse mast cells. Amino Acids 2016, 48, 2411–2421. [Google Scholar] [CrossRef] [PubMed]
- Rasila, T.; Lehtonen, A.; Kanerva, K.; Makitie, L.T.; Haglund, C.; Andersson, L.C. Expression of ODC Antizyme Inhibitor 2 (AZIN2) in Human Secretory Cells and Tissues. PLoS ONE 2016, 11, e0151175. [Google Scholar] [CrossRef] [PubMed]
- García-Faroldi, G.; Rodríguez, C.E.; Urdiales, J.L.; Pérez-Pomares, J.M.; Dávila, J.C.; Pejler, G.; Sánchez-Jiménez, F.; Fajardo, I. Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS ONE 2010, 5, e15071. [Google Scholar] [CrossRef] [PubMed]
- Poulin, R.; Casero, R.A.; Soulet, D. Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 2012, 42, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Lambertos, A.; Ramos-Molina, B.; Cerezo, D.; Lopez-Contreras, A.J.; Penafiel, R. The mouse Gm853 gene encodes a novel enzyme: Leucine decarboxylase. Biochim. Biophys. Acta 2018, 1862, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Gruendler, C.; Lin, Y.; Farley, J.; Wang, T. Proteasomal degradation of Smad1 induced by bone morphogenetic proteins. J. Biol. Chem. 2001, 276, 46533–46543. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Martin, J.; Gruendler, C.; Farley, J.; Meng, X.; Li, B.Y.; Lechleider, R.; Huff, C.; Kim, R.H.; Grasser, W.; et al. A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol. 2002, 3, 15. [Google Scholar] [CrossRef]
- Newman, R.M.; Mobascher, A.; Mangold, U.; Koike, C.; Diah, S.; Schmidt, M.; Finley, D.; Zetter, B.R. Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J. Biol. Chem. 2004, 279, 41504–41511. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.K.; Gopalan, G. Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 2007, 26, 6593–6603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasbek, C.; Yang, C.H.; Fisk, H.A. Antizyme restrains centrosome amplification by regulating the accumulation of Mps1 at centrosomes. Mol. Biol. Cell 2010, 21, 3878–3889. [Google Scholar] [CrossRef] [PubMed]
- Dulloo, I.; Gopalan, G.; Melino, G.; Sabapathy, K. The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 4902–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bercovich, Z.; Snapir, Z.; Keren-Paz, A.; Kahana, C. Antizyme affects cell proliferation and viability solely through regulating cellular polyamines. J. Biol. Chem. 2011, 286, 33778–33783. [Google Scholar] [CrossRef] [PubMed]
- Murai, N.; Murakami, Y.; Tajima, A.; Matsufuji, S. Novel ubiquitin-independent nucleolar c-Myc degradation pathway mediated by antizyme 2. Sci. Rep. 2018, 8, 3005. [Google Scholar] [CrossRef] [PubMed]
- Tajima, A.; Murai, N.; Murakami, Y.; Iwamoto, T.; Migita, T.; Matsufuji, S. Polyamine regulating protein antizyme binds to ATP citrate lyase to accelerate acetyl-CoA production in cancer cells. Biochem. Biophys. Res. Commun. 2016, 471, 646–651. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Molina, B.; Lambertos, A.; Peñafiel, R. Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications. Med. Sci. 2018, 6, 89. https://doi.org/10.3390/medsci6040089
Ramos-Molina B, Lambertos A, Peñafiel R. Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications. Medical Sciences. 2018; 6(4):89. https://doi.org/10.3390/medsci6040089
Chicago/Turabian StyleRamos-Molina, Bruno, Ana Lambertos, and Rafael Peñafiel. 2018. "Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications" Medical Sciences 6, no. 4: 89. https://doi.org/10.3390/medsci6040089
APA StyleRamos-Molina, B., Lambertos, A., & Peñafiel, R. (2018). Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications. Medical Sciences, 6(4), 89. https://doi.org/10.3390/medsci6040089