Association of Low Serum 25OHD Levels with Abnormal Bone Microarchitecture in Well-Differentiated Thyroid Cancer
Abstract
:1. Introduction
2. Material and Methods
2.1. Design and Participants
2.2. Measurement and Biosamples
2.3. Bone Mineral Density and Trabecular Bone Scores Measurements
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sherman, S.I. Thyroid carcinoma. Lancet 2003, 361, 501–511. [Google Scholar] [CrossRef]
- Kim, D. The Role of Vitamin D in Thyroid Diseases. Int. J. Mol. Sci. 2017, 18, 1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidari, Z.; Nikbakht, M.; Mashhadi, M.A.; Jahantigh, M.; Mansournia, N.; Sheikhi, V.; Mansournia, M. Vitamin D Deficiency Associated with Differentiated Thyroid Carcinoma: A Case—Control Study. Asian Pac. J. Cancer Prev. 2017, 18, 3419–3422. [Google Scholar] [PubMed]
- Laney, N.; Meza, J.; Lyden, E.; Erickson, J.; Treude, K.; Goldner, W.S. The Prevalence of Vitamin D Deficiency Is Similar between Thyroid Nodule and Thyroid Cancer Patients. Int. J. Endocrinol. 2009, 2010, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Danilovic, D.L.S.; Ferraz-De-Souza, B.; Fabri, A.W.; Santana, N.O.; Kulcsar, M.A.; Cernea, C.R.; Marui, S.; Hoff, A.O. 25-Hydroxyvitamin D and TSH as Risk Factors or Prognostic Markers in Thyroid Carcinoma. PLoS ONE 2016, 11, 0164550. [Google Scholar] [CrossRef]
- Tabatabaizadeh, S.M.; Kachui, A.; Iraj, B.; Rezvanian, H.; Feizi, A. Evaluation of Bone Density, Serum Total and Ionized Calcium, Alkaline Phosphatase and 25-hydroxy Vitamin D in Papillary Thyroid Carcinoma, and their Relationship with TSH Suppression by Levothyroxine. Adv. Biomed. Res. 2017, 6, 94. [Google Scholar] [CrossRef]
- Roskies, M.; Dolev, Y.; Caglar, D.; Hier, M.P.; Mlynarek, A.M.; Majdan, A.; Payne, R.J. Vitamin D deficiency as a potentially modifiable risk factor for thyroid cancer. J. Otolaryngol. Head Neck Surg. 2012, 41, 160–163. [Google Scholar]
- Stepien, T.; Krupinski, R.; Sopinski, J.; Kuzdak, K.; Komorowski, J.; Lawnicka, H.; Stepien, H. Decreased 1-25 dihydroxyvitamin D3 concentration in peripheral blood serum of patients with thyroid cancer. Arch. Med. Res. 2010, 41, 190–194. [Google Scholar] [CrossRef]
- Hu, M.-J.; Zhang, Q.; Liang, L.; Wang, S.-Y.; Zheng, X.-C.; Zhou, M.-M.; Yang, Y.-W.; Zhong, Q.; Huang, F. Association between vitamin D deficiency and risk of thyroid cancer: A case–control study and a meta-analysis. J. Endocrinol. Investig. 2018, 41, 1199–1210. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Zhan, Z.; Zhou, X.; Yao, J.; Zhan, R.; Liao, L.; Dong, J. Vitamin D deficiency as a risk factor for thyroid cancer: A meta-analysis of case-control studies. Nutrition 2019, 5, 5–11. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Christopher Gallagher, A.J.; Gallo, R.L.; Jones, G.; Kovacs, C.S.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cellini, M.; Rotondi, M.; Tanda, M.L.; Piantanida, E.; Chiovato, L.; Beck-Peccoz, P.; Lania, A.G.; Mazziotti, G. Skeletal health in patients with differentiated thyroid carcinoma. J. Endocrinol. Investig. 2020. [Google Scholar] [CrossRef]
- Sherman, S.I.; Brierley, J.D.; Sperling, M.; Ain, K.B.; Bigos, S.T.; Cooper, D.S.; Haugen, B.R.; Ho, M.; Klein, I.; Ladenson, P.W.; et al. Prospective multicenter study of thyroid carcinoma treatment: Initial analysis of staging and outcome. National thyroid Cancer Treatment Cooperative Study Registry Group. Cancer 1998, 83, 1012–1021. [Google Scholar]
- Kanis, J.A.; Melton, L.J.; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The diagnosis of Osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef]
- Curiel, M.D.; De La Peña, J.L.C.; Perez, J.H.; Cano, R.P.; Rapado, A.; Martinez, I.R. Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre Research Project on Osteoporosis. Osteoporos. Int. 1997, 7, 59–64. [Google Scholar] [CrossRef]
- Martineau, P.; Leslie, W.D. Trabecular bone score (TBS): Method and applications. Bone 2017, 104, 66–72. [Google Scholar] [CrossRef]
- Silva, B.C.; Leslie, W.D.; Resch, H.; Lamy, O.; Lesnyak, O.; Binkley, N.; McCloskey, E.V.; Kanis, J.A.; Bilezikian, J.P. Trabecular bone score: A noninvasive analytical method based upon the DXA image. J. Bone Miner Res. 2014, 29, 518–530. [Google Scholar] [CrossRef]
- Clinckspoor, I.; Verlinden, L.; Mathieu, C.; Bouillon, R.; Verstuyf, A.; Decallonne, B. Vitamin D in thyroid tumorigenesis and development. Prog. Histochem. Cytochem. 2013, 48, 65–98. [Google Scholar] [CrossRef]
- Lamberg-Allardt, C.; Valtonen, E.; Polojarvi, M.; Stewen, P. Characterization of a 1,25 dihydroxy vitamin D3 receptor in FRTL 5 cells, Evidence for an inhibitory effect of 1,25 dihydroxy vitamin D3 on thyrotropin induced iodide uptake. Mol. Cell Endocrinol. 1991, 8, 125–131. [Google Scholar] [CrossRef]
- Clinckspoor, I.; Hauben, E.; Verlinden, L.; Bruel, A.V.D.; Vanwalleghem, L.; Poorten, V.V.; Delaere, P.; Mathieu, C.; Verstuyf, A.; Decallonne, B. Altered Expression of Key Players in Vitamin D Metabolism and Signaling in Malignant and Benign Thyroid Tumors. J. Histochem. Cytochem. 2012, 60, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonklaas, J.; Danielsen, M.; Wang, H. A Pilot Study of Serum Selenium, Vitamin D, and Thyrotropin Concentrations in Patients with Thyroid Cancer. Thyroid 2013, 23, 1079–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.R.; Kim, B.H.; Kim, S.-M.; Oh, M.Y.; Kim, W.J.; Jeon, Y.K.; Kim, S.S.; Lee, B.J.; Kim, I.J. Low Serum 25 Hydroxyvitamin D Is Associated with Poor Clinicopathologic Characteristics in Female Patients with Papillary Thyroid Cancer. Thyroid 2014, 24, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Sulibhavi, A.; Rohlfing, M.L.; Jalisi, S.; McAneny, D.; Doherty, G.; Holick, M.F.; Noordzij, J.P. Vitamin D deficiency and its relationship to cancer stage in patients who underwent thyroidectomy for papillary thyroid carcinoma. Am. J. Otolaryngol. 2019, 40, 536–541. [Google Scholar] [CrossRef]
- Olmos, J.M.; Hernández, J.L.H.; Velasco, P.G.; Martínez, J.M.O.; Llorca, J.; Macías, J.G. Serum 25-hydroxyvitamin D, parathyroid hormone, calcium intake, and bone mineral density in Spanish adults. Osteoporos. Int. 2016, 27, 105–113. [Google Scholar] [CrossRef]
- González-Molero, I.; Rojomartinez, G.; Morcillo, S.; Gutierrez, C.V.; Rubio, E.A.; Perezvalero, V.; Esteva, I.; De Adana, M.S.R.; Almaraz, M.C.; Colomo, N.; et al. Hypovitaminosis D and incidence of obesity: A prospective study. Eur. J. Clin. Nutr. 2013, 67, 680–682. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Lewis, J.R.; Sim, M.; Prince, R.L. Low Vitamin D Status Is Associated With Impaired Bone Quality and Increased Risk of Fracture-Related Hospitalization in Older Australian Women. J. Bone Miner. Res. 2019, 34, 2019–2027. [Google Scholar] [CrossRef]
- Brot, C.; Jørgensen, N.R.; Sørensen, O.H. The influence of smoking on vitamin D status and calcium metabolism. Eur. J. Clin. Nutr. 1999, 53, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Scragg, R.; Khaw, K.-T.; Murphy, S. Life-style Factors Associated with Winter Serum 25-Hydroxyvitamin D Levels in Elderly Adults. Age Ageing 1995, 24, 271–275. [Google Scholar] [CrossRef]
- Olza, J.; Aranceta-Bartrina, J.; Gross, M.M.G.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study &dagger. Nutrition 2017, 9, 168. [Google Scholar] [CrossRef]
Parameters | Data |
---|---|
N° | 134 |
Age (years) | 64.07 ± 10.8 |
Duration disease (years) | 12.25 + 6.19 |
BMI (kg/m2) | 28.62 + 5.5 |
Smoking status | |
Never | 118 (88.06%) |
Current | 16 (11.94%) |
Diet calcium ingestion (mg/daily) | 583.53 ± 294 |
Serum Calcium (mg/dL) | 9.08 ± 0.4 |
Serum Phosphate (mg/dL) | 3.35 ± 0.8 |
Serum Creatinine (mg/dL) | 0.76 ± 0.2 |
Serum TSH (IU/mL) | 0.92 ± 1.72 |
Serum fT4 (ng/dL) | 1.64 + 0.25 |
Serum PTH (pg/mL) | 51.14 ± 21.01 |
Serum Alkalione Phosphatase | 105.75 ± 44.9 |
Serum BAP (U/L) | 25.96 ± 11.9 |
Urinary calcium (mg/24 h) | 157.22 ± 139.4 |
Serum 25OHD (ng/dL) | 23.09 ± 7.97 |
LT4 dose/weight (µg/Kg per day) | 1.68 + 0.42 |
Bone parameters | |
L-BMD (g/cm2) | 0.88 ± 0.13 |
FN-BMD (g/cm2) | 0.70 ± 0.12 |
TH-BMD (g/cm2) | 0.85 ± 0.13 |
UDR-BMD (g/cm2) | 0.39 ± 0.06 |
MIDR-BMD (g/cm2) | 0.51 ± 0.07 |
1/3 DR-BMD (g/cm2) | 0.62 ± 0.07 |
TR-BMD (g/cm2) | 0.49 ± 0.06 |
L-T-score | −1.45 ± 1.15 |
FN-T-score | −1.38 ± 1.04 |
TH-T-score | −0.71 ± 1.03 |
UDR-T-score | −0.87 ± 1.05 |
MIDR-T-score | −1.84 ± 1.28 |
1/3 DR-T-score | −1.24 ± 1.23 |
TR-T-score | −1.58 ± 1.20 |
TBS | 1.27 ± 0.13 |
Group Serum 25OHD Levels | <20 ng/mL (a) | 20–29 ng/mL (b) | >30 ng/mL (c) |
---|---|---|---|
Anthropometric parameters | |||
N° | 58 | 48 | 28 |
Age (years) | 66.5 ± 10 | 60.6 ± 10.6 * | 64.9 ± 11.4 ≠ |
Duration of disease (years) | 13 ± 0.5 | 11.2 ± 5.7 | 12.4 ± 6.9 |
BMI (kg/m2) | 29.6 ± 5.5 | 28.8 ± 5.9 | 26.3 ± 3.9 |
Smoking status | |||
Never | 51 (87.93%) | 42 (87.5%) | 25 (89.29%) |
Current | 7 (12.07%) | 5 (12.5%) | 3 (10.7%) |
Diet calcium (mg/daily) | 535.95 ± 338.4 | 609.43 ± 262.9 | 626.25 ± 258.22 |
Serum calcium (mg/dL) | 9.09 ± 0.44 | 9.01 | 9.2 ± 0.3 |
Serum phosphate (mg/dL) | 3.31 ± 0.69 | 3.32 ± 0.9 | 3.5 ± 0.6 |
Serum creatinine (mg/dL) | 0.78 ± 0.21 | 0.71 ± 0.20 | 0.77 ± 0.16 |
Serum TSH (µU/mL) | 0.78 ± 0.21 | 0.88 ± 1.96 | 1.27 ± 1.8 ≠ |
Serum fT4 (ng/dL) | 1.67 ± 0.24 | 1.68 ± 0.27 | 1.53 ± 0.2 ∆ |
Serum BAP (U/L) | 29.50 ± 14.04 | 23.47 ± 8.87 ¥ | 22.14 ± 9.7 ≠£ |
Serum PTH (pg/mL) | 57.65 ± 22.68 | 45.88 ± 19.8 * | 47.13 ± 16.0 ∆ |
Urinary calcium (mg/dL) | 129.36 ± 94.16 | 159.21 ± 92.21 | 220.3 ± 250 |
Serum 25OHD (ng/mL) | 15.64 ± 2.98 | 25.27 ± 2.69 | 34.78 ± 3.62 |
LT4 dose/weight (µg/kg/d) | 1.68 ± 0.38 | 1.74 ± 0.34 | 1.59 ± 0.61 |
L-BMD (g/cm2) | 0.89 ± 0.14 | 0.91 ± 0.11 ¥ | 0.83 ± 0.11 ∆ |
FN-BMD (g/cm2) | 0.70 ± 0.11 | 0.72 ± 0.12 ¥ | 0.64 ± 0.10 ∆ |
TH-BMD (g/cm2) | 0.86 ± 0.14 | 0.88 ± 0.13 * | 0.78 ± 0.11 ∆ |
UDR-BMD (g/cm2) | 0.39 ± 0.07 | 0.41 ± 0.06 | 0.37 ± 0.04 ≠ |
MIDR-BMD (g/cm2) | 0.49 ± 0.07 | 0.53 ± 0.06 ¥ | 0.49 ± 0.07 ≠£ |
1/3 DR-BMD (g/cm2) | 0.60 ± 0.07 | 0.65 ± 0.07 | 0.60 ± 0.08 ≠€ |
TR-BMD (g/cm2) | 0.48 ± 0.07 | 0.52 ± 0.06 | 0.48 ± 0.06 £ |
L-T score | −1.33 ± 1.26 | −1.28 ± 1.03 | −1.97 ± 1.00 ∆£ |
FN-T score | −1.34 ± 0.98 | −1.17 ± 1.11 | −1.85 ± 0.90 ∆£ |
TH-T score | −0.62 ± 0.98 | −0.49 ± 1.04 | −1.32 ± 0.89 ∆£ |
UDR-T score | −0.95 ± 1.18 | −0.59 ± 0.97 | −1.20 ± 0.75 ≠ |
MIDR-T score | −2.14 ± 1.30 | −1.35 ± 1.16 ¥ | −2.07 ± 1.22 |
1/3 DR-T score | −1.51 ± 1.19 | −0.78 ± 1.15 ¥ | −1.52 ± 1.28 ≠ |
TR-T score | −1.82 ± 1.22 | −1.15 ± 1.11 ¥ | −1.86 ± 1.12 |
TBS | 1.24 ± 0.13 | 1.27 ± 0.13 ¥ | 1.31 ± 0.11 £ |
Serum 25 OHD ng/mL | Osteoporosis | Osteopenia | Normal |
---|---|---|---|
<20 ng/mL | 3 (2.2%) | 47 (35%) | 8 (6%) |
20–29 ng/mL | 0 | 39 (29%) | 9 (6.7%) |
>30 ng/mL | 1 (0.8%) | 18 (13.4) | 9 (6.7%) |
Total | 4 (3%) | 104 (77.6%) | 26 (19.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawkins Carranza, F.; Guadalix Iglesias, S.; De Mingo Dominguez, M.L.; Allo Miguel, G.; Arroba, C.M.-A.; Alvares, B.L.; Martínez Diaz-Guerra, G. Association of Low Serum 25OHD Levels with Abnormal Bone Microarchitecture in Well-Differentiated Thyroid Cancer. Med. Sci. 2020, 8, 49. https://doi.org/10.3390/medsci8040049
Hawkins Carranza F, Guadalix Iglesias S, De Mingo Dominguez ML, Allo Miguel G, Arroba CM-A, Alvares BL, Martínez Diaz-Guerra G. Association of Low Serum 25OHD Levels with Abnormal Bone Microarchitecture in Well-Differentiated Thyroid Cancer. Medical Sciences. 2020; 8(4):49. https://doi.org/10.3390/medsci8040049
Chicago/Turabian StyleHawkins Carranza, Federico, Sonsoles Guadalix Iglesias, María Luisa De Mingo Dominguez, Gonzalo Allo Miguel, Cristina Martín-Arriscado Arroba, Begoña López Alvares, and Guillermo Martínez Diaz-Guerra. 2020. "Association of Low Serum 25OHD Levels with Abnormal Bone Microarchitecture in Well-Differentiated Thyroid Cancer" Medical Sciences 8, no. 4: 49. https://doi.org/10.3390/medsci8040049
APA StyleHawkins Carranza, F., Guadalix Iglesias, S., De Mingo Dominguez, M. L., Allo Miguel, G., Arroba, C. M. -A., Alvares, B. L., & Martínez Diaz-Guerra, G. (2020). Association of Low Serum 25OHD Levels with Abnormal Bone Microarchitecture in Well-Differentiated Thyroid Cancer. Medical Sciences, 8(4), 49. https://doi.org/10.3390/medsci8040049