Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR?
Abstract
:1. Preamble
2. Impact of Antimicrobial Resistance
3. Role of Animal Health Communities
4. Global Undertakings for Threat of Antimicrobial Resistance
5. US Commitments on Mitigation of Antimicrobial Resistance
6. Perception of Regulations Regarding the Use of Antimicrobials and Awareness of Antimicrobial Resistance in the Field
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cully, M. Public health: The politics of antibiotics. Nature 2014, 509, 16–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushton, J. Anti-microbial Use in Animals: How to Assess the Trade-offs. Zoonoses Publ. Health 2015, 62, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol. 2002, 13, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014, 19, 37–44. [Google Scholar] [CrossRef]
- Sheikh, A.A.; Checkley, S.; Avery, B.; Chalmers, G.; Bohaychuk, V.; Boerlin, P.; Reid-Smith, R.; Aslam, M. Antimicrobial resistance and resistance genes in Escherichia coli isolated from retail meat purchased in Alberta, Canada. Foodborne Pathog. Dis. 2012, 9, 625–631. [Google Scholar] [CrossRef]
- Nhung, N.T.; Van, N.T.B.; Cuong, N.V.; Duong, T.T.Q.; Nhat, T.T.; Hang, T.T.T.; Nhi, N.T.H.; Kiet, B.T.; Hien, V.B.; Ngoc, P.T.; et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int. J. Food Microbiol. 2018, 266, 301–309. [Google Scholar] [CrossRef]
- Baazize-Ammi, D.; Dechicha, A.S.; Tassist, A.; Gharbi, I.; Hezil, N.; Kebbal, S.; Morsli, W.; Beldjoudi, S.; Saadaoui, M.R.; Guetarni, D. Screening and quantification of antibiotic residues in broiler chicken meat and milk in the central region of Algeria. Rev. Sci. Tech. 2019, 38, 863–877. [Google Scholar] [CrossRef]
- Ali, R.; Saleem, S. Identification, and quantification of antimicrobial activity in commercially available chicken meat in a large urban center in Pakistan. Curr. Res. Food Sci. 2020, 3, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Naderi Beni, N.; Snow, D.D.; Berry, E.D.; Mittelstet, A.R.; Messer, T.L.; Bartelt-Hunt, S. Measuring the occurrence of antibiotics in surface water adjacent to cattle grazing areas using passive samplers. Sci. Total Environ. 2020, 726, 138296. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilán, R.E. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules 2020, 25, 3265. [Google Scholar] [CrossRef]
- Topi, D.; Spahiu, J. Presence of veterinary antibiotics in livestock manure in two Southeastern Europe countries, Albania, and Kosovo. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef]
- Van den Meersche, T.; Rasschaert, G.; Vanden Nest, T.; Haesebrouck, F.; Herman, L.; Van Coillie, E.; Van Weyenberg, S.; Daeseleire, E.; Heyndrickx, M. Longitudinal screening of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in soils fertilized with pig manure. Environ. Sci. Pollut. Res. Int. 2020, 27, 28016–28029. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F.O.; Ling, W. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 2020, 255, 127006. [Google Scholar] [CrossRef] [PubMed]
- Pham-Duc, P.; Nguyen-Viet, H.; Luu-Quoc, T.; Cook, M.A.; Trinh-Thi-Minh, P.; Payne, D.; Dao-Thu, T.; Grace, D.; Dang-Xuan, S. Understanding Antibiotic Residues and Pathogens Flow in Wastewater from Smallholder Pig Farms to Agriculture Field in Ha Nam Province, Vietnam. Environ. Health Insights 2020, 14, 1178630220943206. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Antibiotic/Antimicrobial Resistance. Available online: https://www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 2 October 2020).
- Arya, S.C. Global response to antimicrobial resistance. Bull. World Health Organ. 2002, 80, 420. [Google Scholar]
- de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, J.; Contreras-Moreno, F.J.; Marcos-Torres, F.J.; Moraleda-Muñoz, A.; Muñoz-Dorado, J. The antibiotic crisis: How bacterial predators can help. Comput. Struct. Biotechnol. J. 2020, 18, 2547–2555. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A. Overview: The Ongoing Threat of Antimicrobial Resistance. Infect. Dis. Clin. North. A 2020. [Google Scholar] [CrossRef]
- Ebrahim, M.; Gravel, D.; Thabet, C.; Abdesselam, K.; Paramalingam, S.; Hyson, C. Antimicrobial use, and antimicrobial resistance trends in Canada: 2014. Can. Commun. Dis. Rep. 2016, 42, 227–231. [Google Scholar] [CrossRef]
- Schwartz, K.L.; Morris, S.K. Travel, and the Spread of Drug-Resistant Bacteria. Curr. Infect. Dis. Rep. 2018, 20, 29. [Google Scholar] [CrossRef]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019, 26, taz036. [Google Scholar] [CrossRef]
- Agunos, A.; Gow, S.P.; Léger, D.F.; Carson, C.A.; Deckert, A.E.; Bosman, A.L.; Loest, D.; Irwin, R.J.; Reid-Smith, R.J. Antimicrobial Use and Antimicrobial Resistance Indicators-Integration of Farm-Level Surveillance Data from Broiler Chickens and Turkeys in British Columbia, Canada. Front. Vet. Sci. 2019, 6, 131. [Google Scholar] [CrossRef] [PubMed]
- Health for Animals. Global Animal Health Association. Antibiotic Commitment. Available online: https://healthforanimals.org/resources-and-events/antibiotics-commitment.html (accessed on 20 September 2020).
- Fairles, J. The veterinarian’s role in antimicrobial stewardship. Can. Vet. J. 2013, 54, 207–210. [Google Scholar]
- Weese, J.S.; Giguère, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J. Vet. Intern. Med. 2015, 29, 487–498. [Google Scholar] [CrossRef]
- Coyne, L.A.; Latham, S.M.; Williams, N.J.; Dawson, S.; Donald, I.J.; Pearson, R.B.; Smith, R.F.; Pinchbeck, G.L. Understanding the culture of antimicrobial prescribing in agriculture: A qualitative study of UK pig veterinary surgeons. J. Antimicrob. Chemother. 2016, 71, 3300–3312. [Google Scholar] [CrossRef] [Green Version]
- Dyar, O.J.; Huttner, B.; Schouten, J.; Pulcini, C.; ESGAP (ESCMID Study Group for Antimicrobial stewardship). What is antimicrobial stewardship? Clin. Microbiol. Infect. 2017, 23, 793–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulcini, C. Antibiotic stewardship: Update and perspectives. Clin. Microbiol. Infect. 2017, 23, 791–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, L.A.; Latham, S.M.; Dawson, S.; Donald, I.J.; Pearson, R.B.; Smith, R.F.; Williams, N.J.; Pinchbeck, G.L. Antimicrobial use practices, attitudes, and responsibilities in UK farm animal veterinary surgeons. Prev. Vet. Med. 2018, 161, 115–126. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance (accessed on 20 September 2020).
- AMR Action Fund. Available online: https://amractionfund.com/ (accessed on 22 September 2020).
- Her Majesty’s Government. Tackling Antimicrobial Resistance 2019–2024. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784894/UK_AMR_5_year_national_action_plan.pdf (accessed on 20 September 2020).
- European Commission. Commission’s Communication on a One-Health Action Plan to Support Member States in the Fight against Antimicrobial Resistance (AMR). Available online: http://ec.europa.eu/smart-regulation/roadmaps/docs/2016_sante_176_action_plan_against_amr_en.pdf (accessed on 24 September 2020).
- European Commission. EU Action on Antimicrobial Resistance. Available online: https://ec.europa.eu/health/antimicrobial-resistance/eu-action-on-antimicrobial-resistance_en (accessed on 24 September 2020).
- European Commission. A European One Health Action Plan against Antimicrobial Resistance (AMR). Available online: https://ec.europa.eu/health/sites/health/files/antimicrobial_resistance/docs/amr_2017_action-plan.pdf (accessed on 2 October 2020).
- Government of Canada. Federal Action Plan on Antimicrobial Resistance and Use in Canada: Building on the Federal Framework for Action. Available online: https://www.canada.ca/en/health-canada/services/publications/drugs-health-products/federal-action-plan-antimicrobial-resistance-canada.html (accessed on 13 November 2020).
- Joint Programming Initiative on Antimicrobial Resistance. Global Coordination of Antimicrobial Resistance Research. Available online: https://www.jpiamr.eu/ (accessed on 13 November 2020).
- Australian Government. Antimicrobial Resistance. Available online: https://www.amr.gov.au/resources/australias-national-antimicrobial-resistance-strategy-2020-and-beyond (accessed on 13 November 2020).
- Government of India. National Center for Disease Control. Available online: https://ncdc.gov.in/index1.php?lang=1&level=2&sublinkid=389&lid=347 (accessed on 13 November 2020).
- Wattal, C.; Goel, N. Tackling antibiotic resistance in India. Expert Rev. Antiinfect. Ther. 2014, 12, 1427–1440. [Google Scholar] [CrossRef]
- Ranjalkar, J.; Chandy, S.J. India’s National Action Plan for antimicrobial resistance—An overview of the context, status, and way ahead. J. Family Med. Prim. Care. 2019, 8, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Hoque, R.; Ahmed, S.M.; Naher, N.; Islam, M.A.; Rousham, E.K.; Islam, B.Z.; Hassan, S. Tackling antimicrobial resistance in Bangladesh: A scoping review of policy and practice in human, animal, and environment sectors. PLoS ONE 2020, 15, e0227947. [Google Scholar] [CrossRef] [Green Version]
- Elton, L.; Thomason, M.J.; Tembo, J.; Velavan, T.P.; Pallerla, S.R.; Arruda, L.B.; Vairo, F.; Montaldo, C.; Ntoumi, F.; Abdel Hamid, M.M.; et al. Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrob. Resist. Infect. Control. 2020, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health. Antimicrobial Resistance. Available online: https://www.oie.int/en/for-the-media/amr/ (accessed on 18 September 2020).
- World Organization for Animal Health. OIE List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_OIE_List_antimicrobials_June2019.pdf (accessed on 18 September 2020).
- Apley, M.D. Feedlot Pharmaceutical Documentation: Protocols, Prescriptions, and Veterinary Feed Directives. Vet. Clin. North. Am. Food Anim. Pract. 2015, 31, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Okafor, C.C. Perceptions of Tennessee cattle producers regarding the Veterinary Feed Directive. PLoS ONE 2019, 14, e0217773. [Google Scholar] [CrossRef]
- Redding, L.E.; Brooks, C.; Georgakakos, C.B.; Having, G.; Rosenkrantz, L.; Dahlstrom, M.; Plummer, P.J. Addressing Individual Values to Impact Prudent Antimicrobial Prescribing in Animal Agriculture. Front. Vet. Sci 2020, 7, 297. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Antimicrobial Resistance. Available online: https://www.fda.gov/animal-veterinary/safety-health/antimicrobial-resistance (accessed on 18 September 2020).
- U.S. Food and Drug Administration. CVM Updates. Available online: https://www.fda.gov/animal-veterinary/news-events/cvm-updates (accessed on 18 September 2020).
- United States Department of Agriculture. Antimicrobial Resistance Action Plan. Available online: https://www.usda.gov/sites/default/files/documents/usda-antimicrobial-resistance-action-plan.pdf (accessed on 18 September 2020).
- Angelo, K.M.; Chu, A.; Anand, M.; Nguyen, T.A.; Bottichio, L.; Wise, M.; Williams, I.; Seelman, S.; Bell, R.; Fatica, M.; et al. Outbreak of Salmonella Newport infections linked to cucumbers-United States, 2014. MMWR Morb. Mortal Wkly. Rep. 2015, 64, 144–147. [Google Scholar]
- Del Collo, L.P.; Karns, J.S.; Biswas, D.; Lombard, J.E.; Haley, B.J.; Kristensen, R.C.; Kopral, C.A.; Fossler, C.P.; Van Kessel, J.A.S. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter spp. in bulk tank milk and milk filters from US dairies. J. Dairy Sci. 2017, 100, 3470–3479. [Google Scholar] [CrossRef] [Green Version]
- Klumb, C.A.; Scheftel, J.M.; Smith, K.E. Animal agriculture exposures among Minnesota residents with zoonotic enteric infections, 2012–2016. Epidemiol. Infect. 2020, 148, e55. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.E.H.; Tewell, M.; Tecle, S.; Leeper, M.; Sinatra, J.; Kissler, B.; Fung, A.; Brown, K.; Wagner, D.; Trees, E.; et al. Protracted Outbreak of Salmonella Newport Infections Linked to Ground Beef: Possible Role of Dairy Cows—21 States, 2016–2017. MMWR Morb. Mortal Wkly. Rep. 2018, 67, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Kozak, G.K.; MacDonald, D.; Landry, L.; Farber, J.M. Foodborne outbreaks in Canada linked to produce: 2001 through 2009. J. Food Prot. 2013, 76, 173–183. [Google Scholar] [CrossRef]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- Wadamori, Y.; Gooneratne, R.; Hussain, M.A. Outbreaks and factors influencing microbiological contamination of fresh produce. J. Sci. Food Agric. 2017, 97, 1396–1403. [Google Scholar] [CrossRef] [Green Version]
- Voss, A.; Loeffen, F.; Bakker, J.; Klaassen, C.; Wulf, M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 2005, 11, 1965–1966. [Google Scholar] [CrossRef]
- Khanna, T.; Friendship, R.; Dewey, C.; Weese, J.S. Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet. Microbiol. 2008, 128, 298–303. [Google Scholar] [CrossRef]
- Smith, T.C.; Male, M.J.; Harper, A.L.; Kroeger, J.S.; Tinkler, G.P.; Moritz, E.D.; Capuano, A.W.; Herwaldt, L.A.; Diekema, D.J. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS ONE 2009, 4, e4258. [Google Scholar] [CrossRef] [Green Version]
- Boerlin, P.; Reid-Smith, R.J. Antimicrobial resistance: Its emergence and transmission. Anim. Health Res. Rev. 2008, 9, 115–126. [Google Scholar] [CrossRef]
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: A comprehensive review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Examination of unintended consequences of antibiotic use restrictions in food-producing animals: Sub-analysis of a systematic review. One Health 2019, 7, 100095. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Syed-Hussain, S.S.; Ramanoon, S.Z.; Saharee, A.A.; Ahmad, N.I.; Mohd Zin, N.; Khalid, S.F.; Naseeha, D.S.; Syahirah, A.A.; Mansor, R. Knowledge, attitude and perception regarding antimicrobial resistance and usage among ruminant farmers in Selangor, Malaysia. Prev. Vet. Med. 2018, 156, 76–83. [Google Scholar] [CrossRef]
- Vasquez, A.K.; Foditsch, C.; Dulièpre, S.C.; Siler, J.D.; Just, D.R.; Warnick, L.D.; Nydam, D.V.; Sok, J. Understanding the effect of producers’ attitudes, perceived norms, and perceived behavioral control on intentions to use antimicrobials prudently on New York dairy farms. PLoS ONE 2019, 14, e0222442. [Google Scholar] [CrossRef] [Green Version]
- Doidge, C.; Ruston, A.; Lovatt, F.; Hudson, C.; King, L.; Kaler, J. Farmers’ Perceptions of Preventing Antibiotic Resistance on Sheep and Beef Farms: Risk, Responsibility, and Action. Front. Vet. Sci. 2020, 7, 524. [Google Scholar] [CrossRef] [PubMed]
- Wemette, M.; Safi, A.G.; Beauvais, W.; Ceres, K.; Shapiro, M.; Moroni, P.; Welcome, F.L.; Ivanek, R. New York State dairy farmers’ perceptions of antibiotic use and resistance: A qualitative interview study. PLoS ONE 2020, 15, e0232937. [Google Scholar] [CrossRef]
- Sharma, G.; Mutua, F.; Deka, R.P.; Shome, R.; Bandyopadhyay, S.; Shome, B.R.; Goyal Kumar, N.; Grace, D.; Dey, T.K.; Venugopal, N.; et al. A qualitative study on antibiotic use and animal health management in smallholder dairy farms of four regions of India. Infect. Ecol. Epidemiol. 2020, 10, 1792033. [Google Scholar] [CrossRef]
- Afakye, K.; Kiambi, S.; Koka, E.; Kabali, E.; Dorado-Garcia, A.; Amoah, A.; Kimani, T.; Adjei, B.; Caudell, M.A. The Impacts of Animal Health Service Providers on Antimicrobial Use Attitudes and Practices: An Examination of Poultry Layer Farmers in Ghana and Kenya. Antibiotics 2020, 9, 554. [Google Scholar] [CrossRef] [PubMed]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S.; et al. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: A knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 2020, 15, e0220274. [Google Scholar] [CrossRef] [Green Version]
- Rell, J.; Wunsch, N.; Home, R.; Kaske, M.; Walkenhorst, M.; Vaarst, M. Stakeholders’ perceptions of the challenges to improving calf health and reducing antimicrobial use in Swiss veal production. Prev. Vet. Med. 2020, 179, 104970. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Marier, E.A.; Tranter, R.B.; Wu, G.; Watson, E.; Teale, C.J. Factors affecting dairy farmers’ attitudes towards antimicrobial medicine usage in cattle in England and Wales. Prev. Vet. Med. 2015, 121, 30–40. [Google Scholar] [CrossRef]
- McDougall, S.; Compton, C.; Botha, N. Factors influencing antimicrobial prescribing by veterinarians and usage by dairy farmers in New Zealand. N. Z. Vet. 2017, 65, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Moffo, F.; Mouliom Mouiche, M.M.; Kochivi, F.L.; Dongmo, J.B.; Djomgang, H.K.; Tombe, P.; Mbah, C.K.; Mapiefou, N.P.; Mingoas, J.K.; Awah-Ndukum, J. Knowledge, attitudes, practices, and risk perception of rural poultry farmers in Cameroon to antimicrobial use and resistance. Prev. Vet. Med. 2020, 182, 105087. [Google Scholar] [CrossRef]
- Adebowale, O.O.; Adeyemo, F.A.; Bankole, N.; Olasoju, M.; Adesokan, H.K.; Fasanmi, O.; Adeyemo, O.; Awoyomi, O.; Kehinde, O.; Fasina, F.O. Farmers’ Perceptions and Drivers of Antimicrobial Use and Abuse in Commercial Pig Production, Ogun State, Nigeria. Int. J. Environ. Res. Publ. Health 2020, 17, 3579. [Google Scholar] [CrossRef] [PubMed]
Strategies | Countries Involved | Year of Establishment of Action Plan and Website |
---|---|---|
Global Antibiotic Resistance Partnership (GARP) | India, Kenya, South Africa, Vietnam, Mozambique, Nepal, Tanzania, and Uganda | 2009 https://cddep.org/projects/global-antibiotic-resistance-partnership/ (accessed on 21 February 2021) |
Global Health Security Agenda (GHSA) | Canada, the European Union (EU), Norway, and the United States (US) | 2014 https://www.hhs.gov/about/agencies/oga/global-health-security/antimicrobial-resistance/index.html (accessed on 21 February 2021) |
Jaipur Declaration on AMR | India and other countries in Southeast Asia | 2011 https://www.who.int/southeastasia/health-topics/antimicrobial-resistance (accessed on 21 February 2021) |
Strategic action plan to control AMR in the Asia-Pacific region | Countries in the Asia Pacific region | 2010 https://www.apec.org/Publications/2011/10/International-initiatives-to-control-antimicrobial-resistance-in-the-Asia-Pacific-region (accessed on 21 February 2021) |
European Commission Action Plan against the rising threats from AMR | Countries in the EC | 2011 https://ec.europa.eu/health/antimicrobial-resistance/eu-action-on-antimicrobial-resistance_en (accessed on 21 February 2021) |
Transatlantic Task Force on Antimicrobial resistance (TATFAR) | Canada, the European Union (EU), Norway, and the United States (US) | 2009 https://www.cdc.gov/drugresistance/tatfar/index.html (accessed on 21 February 2021) |
Countries | Objectives of AMR Control Strategies | Year of Launching of Action Plan to Combat AMR and Website |
---|---|---|
Australia | Minimizing development and spread of AMR; Assurance of availability of effective antimicrobials. | 2015–2019—first national plan; 2020 and beyond—subsequent national plan. www.amr.gov.au/australias-response/national-amr-strategy (accessed on 21 February 2021) |
Canada | Reacting to the threat of AMR to protect people, animals, and the environment in Canada. | 2014. https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/antimicrobial-resistance-use-canada-federal-framework-action.html (accessed on 21 February 2021) |
Ethiopia | Effective prevention and containment of AMR in humans, animals, agriculture, and the environment in Ethiopia. | 2009–2014—initial plan; 2015–2020—second refreshment. http://www.fmhaca.gov.et/wp-content/uploads/2019/03/Strategy-for-the-Prevention-and-Containment-of-AMR-in-Ethiopia-Oct-2015.pdf (accessed on 21 February 2021) |
France | Tackling AMR in human medicine and veterinary medicine promoting good practices and awareness among all stakeholders. | 2000—three refreshments in human medicine and one plan in veterinary medicine since 2000. http://resistancecontrol.info/2016/government-engagement/the-french-approach-to-fighting-antibiotic-resistance-a-constant-and-coordinated-effort-since-2000/ (accessed on 21 February 2021) |
Germany | Prevention of occurrence and spread of AMR adopting measures in human and veterinary medicine. | 2008 initiative; DART2020 continuation strategy. https://www.bmel.de/EN/topics/animals/animal-health/DART2020.html (accessed on 21 February 2021) |
India | Construction of implementable recommendations to tackle AMR involving human, animal, and environmental sectors in India | 2012 initiative with a five-year plan. http://chennaideclaration.org/ (accessed on 21 February 2021) |
Ireland | Implementing policies and actions to prevent, monitor and tackle AMR across the health, animal, and environmental sectors | 2009 initiative; 2017–2020 subsequent national plan. https://www.hse.ie/eng/services/list/2/gp/antibiotic-prescribing/ (accessed on 21 February 2021) |
Norway | Adopting appropriate use of antibiotics across the sectors, human, animal, aquatic and environmental sectors. | 2008–2012 initial plan; 2015–2020 subsequent strategy. https://www.regjeringen.no/en/search/id86008/?term=antimicrobial+resistance (accessed on 21 February 2021) |
Sweden | Raising general awareness on AMR, enhancing hygiene in the community and health care facilities, and using antibiotics rationally rational use of antibiotics. | 2000 plan was based on Strama 1995. Overall use in Sweden has been significantly reduced. https://www.government.se/contentassets/168838e186de455ca7fe868bee92d209/swedish-strategy-to-combat-antibiotic-resistance.pdf (accessed on 21 February 2021) |
Switzerland | Safeguarding long-term efficacy of antibiotics for human and animal diseases consulting all interested stakeholders. | 2015. http://resistancecontrol.info/2018-frontpage/2018-2/the-swiss-recipe-for-containing-antimicrobial-resistance/ (accessed on 21 February 2021) |
United Kingdom | Advancing towards the 20-year vision on AMR focusing on reducing need of antimicrobials, optimizing use of antimicrobials, and investing in innovation, supply, and access. | 2013–2018 initial strategy; 2019–2024 subsequent plan. https://www.gov.uk/government/publications/uk-5-year-action-plan-for-antimicrobial-resistance-2019-to-2024 (accessed on 21 February 2021) |
United States | Highlighting prevention and control of infections to slow the spread of AMR through multi-sectors coordinated approach. | 2013—release of AMR threat report by CDC; 2014—establishment of federal task force; 2015—first national action plan; 2020—second national strategy. https://aspe.hhs.gov/pdf-report/carb-plan-2020-2025 (accessed on 21 February 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Med. Sci. 2021, 9, 14. https://doi.org/10.3390/medsci9010014
Kasimanickam V, Kasimanickam M, Kasimanickam R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Medical Sciences. 2021; 9(1):14. https://doi.org/10.3390/medsci9010014
Chicago/Turabian StyleKasimanickam, Vanmathy, Maadhanki Kasimanickam, and Ramanathan Kasimanickam. 2021. "Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR?" Medical Sciences 9, no. 1: 14. https://doi.org/10.3390/medsci9010014
APA StyleKasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Medical Sciences, 9(1), 14. https://doi.org/10.3390/medsci9010014