Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review
Abstract
:1. Introduction
2. Literature Search
3. Detection of TBI
4. Differentiating Mild TBI from Post-traumatic Stress Disorder
5. Characterizing Connectivity Abnormalities and Correlating with Clinical Features
6. Monitoring Response to Treatments
7. Limitations of MEG
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C.; et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Surveillance Report of Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—2014; US Department of Health and Human Services: Atlanta, GA, USA, 2019.
- Wilde, E.A.; Bouix, S.; Tate, D.F.; Lin, A.P.; Newsome, M.R.; Taylor, B.A.; Stone, J.R.; Montier, J.; Gandy, S.E.; Biekman, B.; et al. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: State of the art and potential benefits. Brain Imaging Behav. 2015, 9, 367–402. [Google Scholar] [CrossRef]
- Kutcher, J.S.; McCrory, P.; Davis, G.; Ptito, A.; Meeuwisse, W.H.; Broglio, S.P. What evidence exists for new strategies or technologies in the diagnosis of sports concussion and assessment of recovery? Br. J. Sports Med. 2013, 47, 299–303. [Google Scholar] [CrossRef]
- Legarreta, A.D.; Monk, S.H.; Kirby, P.W.; Brett, B.L.; Yengo-Kahn, A.M.; Bhatia, A.; Solomon, G.S.; Zuckerman, S.L. Long-term neuroimaging findings in American football players: Systematic review. World Neurosurg. 2018, 120, e365–e379. [Google Scholar] [CrossRef]
- Manning, K.Y.; Llera, A.; Dekaban, G.A.; Bartha, R.; Barreira, C.; Brown, A.; Fischer, L.; Jevremovic, T.; Blackney, K.; Doherty, T.J.; et al. Linked MRI signatures of the brain’s acute and persistent response to concussion in female varsity rugby players. Neuroimage Clin. 2018, 21, 101627. [Google Scholar] [CrossRef]
- Champagne, A.A.; Coverdale, N.S.; Nashed, J.Y.; Fernandez-Ruiz, J.; Cook, D.J. Resting CMRO2 fluctuations show persistent network hyper-connectivity following exposure to sub-concussive collisions. Neuroimage Clin. 2019, 22, 101753. [Google Scholar] [CrossRef]
- Sullivan, D.R.; Hayes, J.P.; Lafleche, G.; Salat, D.H.; Verfaellie, M. Functional brain alterations associated with cognitive control in blast-related mild traumatic brain injury. J. Int. Neuropsychol. Soc. 2018, 24, 662–672. [Google Scholar] [CrossRef]
- McDonald, S.; Dalton, K.I.; Rushby, J.A.; Landin-Romero, R. Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition. Brain Imaging Behav. 2019, 13, 819–829. [Google Scholar] [CrossRef]
- Chen, X.; Tang, C.; Zhou, H.; Li, Z. Effect of amantadine on vegetative state after traumatic brain injury: A functional magnetic resonance imaging study. J. Int. Med. Res. 2019, 47, 1015–1024. [Google Scholar] [CrossRef]
- Byrnes, K.R.; Wilson, C.M.; Brabazon, F.; von Leden, R.; Jurgens, J.S.; Oakes, T.R.; Selwyn, R.G. FDG-PET imaging in mild traumatic brain injury: A critical review. Front. Neuroenerg. 2014, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 1968, 161, 784–786. [Google Scholar] [CrossRef]
- Gross, J. Magnetoencephalography in cognitive neuroscience: A primer. Neuron 2019, 104, 189–204. [Google Scholar] [CrossRef]
- Lewine, J.D.; Davis, J.T.; Sloan, J.H.; Kodituwakku, P.W.; Orrison, W.W., Jr. Neuromagnetic Assessment of Pathophysiologic Brain Activity Induced by Minor Head Trauma. AJNR Am. J. Neuroradiol. 1999, 20, 857–866. [Google Scholar]
- Lewine, J.D.; Davis, J.T.; Bigler, E.D.; Thoma, R.; Hill, D.; Funke, M.; Sloan, J.H.; Hall, S.; Orrison, W.W. Objective documentation of traumatic brain injury subsequent to mild head trauma: Multimodal brain imaging with MEG, SPECT, and MRI. J. Head Trauma Rehabil. 2007, 22, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-X.; Theilmann, R.J.; Robb, A.; Angeles, A.; Nichols, S.; Drake, A.; D’Andrea, J.; Levy, M.; Holland, M.; Song, T.; et al. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J. Neurotrauma 2009, 26, 1213–1226. [Google Scholar] [CrossRef]
- Huang, M.-X.; Nichols, S.; Robb, A.; Angeles, A.; Drake, A.; Holland, M.; Asmussen, S.; D’Andrea, J.; Chun, W.; Levy, M.; et al. An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. Neuroimage 2012, 61, 1067–1082. [Google Scholar] [CrossRef]
- Huang, M.-X.; Nichols, S.; Baker, D.G.; Robb, A.; Angeles, A.; Yurgil, K.A.; Drake, A.; Levy, M.; Song, T.; McLay, R.; et al. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neuroimage Clin. 2014, 5, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Zouridakis, G.; Patidar, U.; Situ, N.; Rezaie, R.; Castillo, E.M.; Levin, H.S.; Papanicolaou, A.C. Functional connectivity changes in mild traumatic brain injury assessed using magnetoencephalography. J. Mech. Med. Biol. 2012, 12, 1240006. [Google Scholar] [CrossRef]
- Vakorin, V.A.; Doesburg, S.M.; da Costa, L.; Jetly, R.; Pang, E.W.; Taylor, M.J. Detecting mild traumatic brain injury using resting state magnetoencephalographic connectivity. PLoS Comput. Biol. 2016, 12, e1004914. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Zouridakis, G.; Rezaie, R.; Babajani-Feremi, A.; Papanicolaou, A.C. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury. Neuroimage Clin. 2015, 9, 519–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltiainen, H.; Helle, L.; Liljeström, M.; Renvall, H.; Forss, N. Theta-band oscillations as an indicator of mild traumatic brain injury. Brain Topogr. 2018, 31, 1037–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Arakaki, X.; Harrington, M.; Zouridakis, G. Source connectivity analysis can assess recovery of acute mild traumatic brain injury patients. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 2018, 3165–3168. [Google Scholar] [CrossRef]
- Tormenti, M.; Krieger, D.; Puccio, A.M.; McNeil, M.R.; Schneider, W.; Okonkwo, D.O. Magnetoencephalographic virtual recording: A novel diagnostic tool for concussion. Neurosurg. Focus 2012, 33, E9. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, L.; Robertson, A.; Bethune, A.; MacDonald, M.J.; Shek, P.N.; Taylor, M.J.; Pang, E.W. Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, M.; Hughes, J.D.; Popescu, E.-A.; Riedy, G.; DeGraba, T.J. Reduced prefrontal MEG alpha-band power in mild traumatic brain injury with associated posttraumatic stress disorder symptoms. Clin. Neurophysiol. 2016, 127, 3075–3085. [Google Scholar] [CrossRef]
- Rowland, J.A.; Stapleton-Kotloski, J.R.; Alberto, G.E.; Rawley, J.A.; Kotloski, R.J.; Taber, K.H.; Godwin, D.W. Contrasting effects of posttraumatic stress disorder and mild traumatic brain injury on the whole-brain resting-state network: A magnetoencephalography study. Brain Connect. 2017, 7, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Richardson, J.D.; Dunkley, B.T. Classifying post-traumatic stress disorder using magnetoecephalographic connectome and machine learning. Sci. Rep. 2020, 10, 5937. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Xu, D.; Roskos, T.; Stout, J.; Kull, L.; Cheng, X.; Whitson, D.; Boomgarden, E.; Gfeller, J.; Bucholz, R.D. Complexity analysis of resting state magnetoencephalography activity in traumatic brain injury patients. J. Neurotrauma 2013, 30, 1702–1709. [Google Scholar] [CrossRef] [Green Version]
- Dunkley, B.T.; Da Costa, L.; Bethune, A.; Jetly, R.; Pang, E.W.; Taylor, M.J.; Doesburg, S.M. Low-frequency connectivity is associated with mild traumatic brain injury. Neuroimage Clin. 2015, 7, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, M.; Dimitriadis, S.I.; Zervakis, M.; Micheloyannis, S.; Rezaie, R.; Babajani-Feremi, A.; Zouridakis, G.; Papanicolaou, A.C. Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. Int. J. Psychophysiol. 2016, 102, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, M.; Dimitriadis, S.I.; Zervakis, M.; Papanicolaou, A.C.; Zouridakis, G. Reconfiguration of dominant coupling modes in mild traumatic brain injury mediated by δ-band activity: A resting state MEG study. Neuroscience 2017, 356, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, M.; Dimitriadis, S.I.; Zervakis, M.; Papanicolaou, A.C.; Zouridakis, G. Aberrant whole-brain transitions and dynamics of spontaneous network microstates in mild traumatic brain injury. Front. Comput. Neurosci. 2020, 13, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhourani, A.; Wozny, T.A.; Krishnaswamy, D.; Pathak, S.; Walls, S.A.; Ghuman, A.S.; Krieger, D.N.; Okonkwo, D.O.; Richardson, R.M.; Niranjan, A. Magnetoencephalography-based identification of functional connectivity network disruption following mild traumatic brain injury. J. Neurophysiol. 2016, 116, 1840–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunkley, B.T.; Urban, K.; Da Costa, L.; Wong, S.M.; Pang, E.W.; Taylor, M.J. Default mode network oscillatory coupling is increased following concussion. Front. Neurol. 2018, 9, 280. [Google Scholar] [CrossRef]
- Popescu, M.; Hughes, J.D.; Popescu, E.-A.; Mikola, J.; Merrifield, W.; DeGraba, M.; Riedy, G.; DeGraba, T.J. Activation of dominant hemisphere association cortex during naming as a function of cognitive performance in mild traumatic brain injury: Insights into mechanisms of lexical access. Neuroimage Clin. 2017, 15, 741–752. [Google Scholar] [CrossRef]
- Li, L.; Pagnotta, M.F.; Arakaki, X.; Tran, T.; Strickland, D.; Harrington, M.; Zouridakis, G. Brain activation profiles in mTBI: Evidence from combined resting-state EEG and MEG activity. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 6963–6966. [Google Scholar] [CrossRef]
- Castellanos, N.P.; Paúl, N.; Ordóñez, V.E.; Demuynck, O.; Bajo, R.; Campo, P.; Bilbao, A.; Ortiz, T.; del-Pozo, F.; Maestú, F. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain 2010, 133, 2365–2381. [Google Scholar] [CrossRef]
- Castellanos, N.P.; Leyva, I.; Buldú, J.M.; Bajo, R.; Paúl, N.; Cuesta, P.; Ordóñez, V.E.; Pascua, C.L.; Boccaletti, S.; Maestú, F.; et al. Principles of recovery from traumatic brain injury: Reorganization of functional networks. Neuroimage 2011, 55, 1189–1199. [Google Scholar] [CrossRef]
- Lawton, T.; Huang, M.-X. Dynamic cognitive remediation for a Traumatic Brain Injury (TBI) significantly improves attention, working memory, processing speed, and reading fluency. Restor. Neurol. Neurosci. 2019, 37, 71–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.-X.; Swan, A.R.; Quinto, A.A.; Matthews, S.; Harrington, D.L.; Nichols, S.; Bruder, B.J.; Snook, C.C.; Huang, C.W.; Baker, D.G.; et al. A pilot treatment study for mild traumatic brain injury: Neuroimaging changes detected by MEG after low-intensity pulse-based transcranial electrical stimulation. Brain Inj. 2017, 31, 1951–1963. [Google Scholar] [CrossRef]
- Gloor, P.; Ball, G.; Schaul, N. Brain lesions that produce delta waves in the EEG. Neurology 1977, 27, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.J.; Gloor, P.; Schaul, N. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr. Clin. Neurophysiol. 1977, 43, 346–361. [Google Scholar] [CrossRef]
- Lee, R.R.; Huang, M. Magnetoencephalography in the diagnosis of concussion. Prog. Neurol. Surg. 2014, 28, 94–111. [Google Scholar] [CrossRef]
- McMillan, T.M. Errors in diagnosing post-traumatic stress disorder after traumatic brain injury. Brain Inj. 2001, 15, 39–46. [Google Scholar] [CrossRef]
- Sydnor, V.J.; Bouix, S.; Pasternak, O.; Hartl, E.; Levin-Gleba, L.; Reid, B.; Tripodis, Y.; Guenette, J.P.; Kaufmann, D.; Makris, N.; et al. Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. Neuroimage Clin. 2020, 26, 102190. [Google Scholar] [CrossRef]
- Huang, M.; Risling, M.; Baker, D.G. The role of biomarkers and MEG-based imaging markers in the diagnosis of post-traumatic stress disorder and blast-induced mild traumatic brain injury. Psychoneuroendocrinology 2016, 63, 398–409. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R. Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin. Neurosci. 2011, 13, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Dunkley, B.T. Differential intrinsic coupling modes in psychological and physical trauma. Front. Psychiatry 2015, 6, 140. [Google Scholar] [CrossRef] [Green Version]
- Scadding, J.; Taylor, A. Fifth Independent Medical Expert Group (IMEG) Report; United Kingdom Ministry of Defence: London, UK, 2020.
- Kumar, S.; Rao, S.L.; Chandramouli, B.A.; Pillai, S.V. Reduction of functional brain connectivity in mild traumatic brain injury during working memory. J. Neurotrauma 2009, 26, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Slobounov, S. Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollonini, L.; Pophale, S.; Situ, N.; Wu, M.-H.; Frye, R.E.; Leon-Carrion, J.; Zouridakis, G. Information communication networks in severe traumatic brain injury. Brain Topogr. 2010, 23, 221–226. [Google Scholar] [CrossRef]
- Tsirka, V.; Simos, P.G.; Vakis, A.; Kanatsouli, K.; Vourkas, M.; Erimaki, S.; Pachou, E.; Stam, C.J.; Micheloyannis, S. Mild traumatic brain injury: Graph-model characterization of brain networks for episodic memory. Int. J. Psychophysiol. 2011, 79, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Tarapore, P.E.; Findlay, A.M.; LaHue, S.C.; Lee, H.; Honma, S.M.; Mizuiri, D.; Luks, T.L.; Manley, G.T.; Nagarajan, S.S.; Mukherjee, P. Resting state magnetoencephalography functional connectivity in traumatic brain injury: Clinical article. J. Neurosurg. 2013, 118, 1306–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foss, L.; Belli, A.; Brody, D.; Brookes, M.; Bull, A.; Craner, M.; Dunkley, B.; Evangelou, N.; Furlong, P.; Gibb, I.; et al. Setting a National Consensus for Managing Mild and Blast Traumatic Brain Injury: Post-Meeting Consensus Report; Imperial College: London, UK, 2020. [Google Scholar]
- Berrigan, P.; Bardouille, T.; MacLellan, M.; Mohamed, I.S.; Murthy, M. Cost-utility analysis of magnetoencephalography used to inform intracranial electrode placement in patients with drug resistant epilepsy: A model based analysis. J. Eval. Clin. Pract. 2016, 22, 942–949. [Google Scholar] [CrossRef] [PubMed]
Study | No. of Affected Patients | No. of Healthy Controls | % Female | Ages | Time Since Injury |
---|---|---|---|---|---|
Lewine (1999) [15] | 30 | 20 | 44 | 18–57 | 2–16 months |
Lewine (2007) [16] | 30 | N/A * | - | ≥18 | ≥1 year |
Huang (2009) [17] | 10 | 14 | 10 ‡ | 12–43 | 1–46 months |
Huang (2012) [18] | 55 | 44 | 16 | Mean 27 ± 8 | 4 weeks–3 years |
Huang (2014) [19] | 84 | 79 | 16 | Mean 28 ± 9 | 4 weeks–5 years |
Zouridakis (2012) [20] | 10 | 10 | 30 | 20–46 | >3 months |
Vakorin (2016) [21] | 20 | 21 | 0 | 21–44 | <3 months |
Dimitriadis (2015) [22] | 31 | 55 | 42 ‡ | Mean 29 ± 9 | <24 h |
Kaltiainen (2018) [23] | 26 | 139 | 68 | 18–60 | 6 days–6 months |
Li (2018) [24] | 13 | 8 | 48 | Mean 26 | - |
Tormenti (2012) [25] | 5 | 5 | 50 | 16–57 | ≤4 months |
Da Costa (2015) [26] | 16 | 16 | 0 | 20–40 | 2 months |
Popescu (2016) [27] | 32 | N/A | 0 | Mean 40 | 6 months–11 years |
Rowland (2018) [28] | 18 | 10 | 0 | Mean 39 ± 10 | Mean 6 ± 3 years |
Zhang (2020) [29] | 23 | 21 | 0 | 18–48 | 1–4 years ^ |
Luo (2013) [30] | 18 | 18 | 0 | Mean 29 ± 6 ‡ | ≥6 months |
Dunkley (2015) [31] | 20 | 21 | 0 | Mean 31 ± 7 ‡ | <3 months |
Antonakakis (2016) [32] | 30 | 50 | 43 ‡ | Mean 29 ± 9 ‡ | <24 h |
Antonakakis (2017) [33] | 30 | 50 | 43 ‡ | Mean 29 ± 9 | <24 h |
Antonakakis (2020) [34] | 30 | 50 | 43 ‡ | Mean 29 ± 9 | <24 h |
Alhourani (2017) [35] | 9 | 15 | 44 ‡ | 14–62 | 3 months–8 years |
Dunkley (2018) [36] | 26 | 24 | 0 | Mean 31 ± 7 ‡ | <3 months |
Popescu (2017) [37] | 80 | N/A | 1 | Mean 59 | - |
Li (2015) [38] | 6 | 5 | 36 | Mean 29 ± 7 | - |
Castellanos (2010) [39] | 15 | 14 | - | 18–51 | 4–6 months |
Castellanos (2011) [40] | 15 | 14 | 13 | 18–51 | 2–6 months |
Lawton (2019) [41] | 4 | N/A | 0 | 15–68 | - |
Huang (2017) [42] | 6 | N/A | 17 | 27–41 | Mean 48 ± 25 months |
Study | MEG System | Sensor/Source Space; Atlas, if Applicable | Functional Connectivity | Data Analysis | Features Selection if Machine Learning | Classifier if Machine Learning |
---|---|---|---|---|---|---|
Lewine (1999) [15] | Magnes | Source | N/A | Z-score | N/A | N/A |
Lewine (2007) [16] | Elekta | Source | N/A | Fisher exact test | N/A | N/A |
Huang (2009) [17] | Elekta | Source | N/A | Nonparametric permutation tests | N/A | N/A |
Huang (2012) [18] | Elekta | Source; MNI-152 | N/A | Correlation coefficient | N/A | N/A |
Huang (2014) [19] | Elekta | Source; MNI-152 | N/A | Z-score | N/A | N/A |
Zouridakis (2012) [20] | Magnes | Sensor | Static | Machine learning | Fisher’s criterion ranking | SVM |
Vakorin (2016) [21] | CTF | Source; AAL | Dynamic | Machine learning | LOOCV | SVM |
Dimitriadis (2015) [22] | Magnes, Elekta | Sensor | Static | Machine learning | Tensor space dimensionality reduction | ELM |
Kaltiainen (2018) [23] | Elekta | Source | N/A | Chi square | N/A | N/A |
Li (2018) [24] | CTF | Source | Static | ANOVA | N/A | N/A |
Tormenti (2012) [25] | Elekta | Source | N/A | Task-based activity, stepwise linear discriminant analysis | N/A | N/A |
Da Costa (2015) [26] | CTF | Source | N/A | Task-based activity, t-test, ANOVA | N/A | N/A |
Popescu (2016) [27] | Elekta | Source; Desikan-Killiany | N/A | t-test, Mann–Whitney rank-sum, Spearman’s rank correlation coefficient | N/A | N/A |
Rowland (2018) [28] | CTF | Source | Static | Graph theory metrics, ANOVA | N/A | N/A |
Zhang (2020) [29] | CTF | Source; AAL | Static | Machine learning, AUR | rRF | SVM |
Luo (2013) [30] | Magnes | Sensor | N/A | Lempel-Ziv complexity, t-test | N/A | N/A |
Dunkley (2015) [31] | CTF | Source; AAL | Static | AEC, nonparametric permutation tests | N/A | N/A |
Antonakakis (2016) [32] | Magnes | Sensor | Static | Machine learning | Tensor subspace analysis | k-NN, ENS, ELM |
Antonakakis (2017) [33] | Magnes | Sensor | Static | Machine learning | Iterative bootstrap | k-NN, SVM |
Antonakakis (2020) [34] | Magnes | Source; AAL | Dynamic | Machine learning | Rank-feature | k-NN |
Alhourani (2017) [35] | Elekta | Source; MNI-152 | Static | Phase synchrony, graph theory metrics | N/A | N/A |
Dunkley (2018) [36] | CTF | Source | Static and dynamic | AEC, nonparametric permutation tests | N/A | N/A |
Popescu (2017) [37] | Elekta | Source; Desikan-Killiany | N/A | Normalized evoked response power, ANOVA | N/A | N/A |
Li (2015) [38] | CTF | Source; Desikan-Killiany | N/A | Z-score maps | N/A | N/A |
Castellanos (2010) [39] | Magnes | Sensor | Dynamic | Distance-to-control connectivity patterns, Kruskal–Wallis | N/A | N/A |
Castellanos (2011) [40] | Magnes | Sensor | Dynamic | Graph theory metrics, Kruskal–Wallis | N/A | N/A |
Lawton (2019) [41] | Elekta | Source; MNI-152 | N/A | Task-based activity, t-test | ||
Huang (2017) [42] | Elekta | Sensor | N/A | Z-score maps | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peitz, G.W.; Wilde, E.A.; Grandhi, R. Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review. Med. Sci. 2021, 9, 7. https://doi.org/10.3390/medsci9010007
Peitz GW, Wilde EA, Grandhi R. Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review. Medical Sciences. 2021; 9(1):7. https://doi.org/10.3390/medsci9010007
Chicago/Turabian StylePeitz, Geoffrey W., Elisabeth A. Wilde, and Ramesh Grandhi. 2021. "Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review" Medical Sciences 9, no. 1: 7. https://doi.org/10.3390/medsci9010007
APA StylePeitz, G. W., Wilde, E. A., & Grandhi, R. (2021). Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review. Medical Sciences, 9(1), 7. https://doi.org/10.3390/medsci9010007