What Is the Relationship between Metacognition and Mental Effort in Executive Functions? The Contribution of Neurophysiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.2.1. Behavioral Data Acquisition: Task and Data Processing
2.2.2. EEG Data Acquisition: Tool and Data Processing
2.3. Data Analyses
3. Results
3.1. Step One: Metacognition
3.2. Step Two: Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balconi, M.; Fronda, G.; Crivelli, D. Effects of Technology-Mediated Mindfulness Practice on Stress: Psychophysiological and Self-Report Measures. Stress 2019, 22, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Crivelli, D.; Fronda, G.; Venturella, I.; Balconi, M. Stress and Neurocognitive Efficiency in Managerial Contexts: A Study on Technology-Mediated Mindfulness Practice. Int. J. Workplace Health Manag. 2019, 12, 42–56. [Google Scholar] [CrossRef]
- Habay, J.; Van Cutsem, J.; Verschueren, J.; De Bock, S.; Proost, M.; De Wachter, J.; Tassignon, B.; Meeusen, R.; Roelands, B. Mental Fatigue and Sport-Specific Psychomotor Performance: A Systematic Review. Sports Med. 2021, 51, 1527–1548. [Google Scholar] [CrossRef] [PubMed]
- Pardini, M.; Bonzano, L.; Roccatagliata, L.; Mancardi, G.L.; Bove, M. The Fatigue-Motor Performance Paradox in Multiple Sclerosis. Sci. Rep. 2013, 3, 2001. [Google Scholar] [CrossRef] [PubMed]
- Darvishi-Bayazi, M.-J.; Law, A.; Romero, S.M.; Jennings, S.; Rish, I.; Faubert, J. Beyond Performance: The Role of Task Demand, Effort, and Individual Differences in Ab Initio Pilots. Sci. Rep. 2023, 13, 14035. [Google Scholar] [CrossRef]
- Taylor, L.; Watkins, S.L.; Marshall, H.; Dascombe, B.J.; Foster, J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. Front. Physiol. 2016, 6, 372. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Kok, A. Cognitive Control, Motivation and Fatigue: A Cognitive Neuroscience Perspective. Brain Cogn. 2022, 160, 105880. [Google Scholar] [CrossRef]
- Scholey, E.; Apps, M.A.J. Fatigue: Tough Days at Work Change Your Prefrontal Metabolites. Curr. Biol. 2022, 32, R876–R879. [Google Scholar] [CrossRef]
- Boksem, M.A.S.; Tops, M. Mental Fatigue: Costs and Benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef]
- Fiedler, K.; Ackerman, R.; Scarampi, C. Metacognition: Monitoring and Controlling One’s Own Knowledge, Reasoning, and Decisions. In Introduction to the Psychology of Human Thought; Sternberg, R.J., Funke, J., Eds.; Heidelberg University Publishing: Heidelberg, Germany, 2019; pp. 89–111. [Google Scholar]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Schunk, D.H.; Zimmerman, B.J. (Eds.) Self-Regulation of Learning and Performance: Issues and Educational Spplications; Taylor & Francis: London, UK, 2023. [Google Scholar]
- Sundre, D.L.; Kitsantas, A. An Exploration of the Psychology of the Examinee: Can Examinee Self-Regulation and Test-Taking Motivation Predict Consequential and Non-Consequential Test Performance? Contemp. Educ. Psychol. 2004, 29, 6–26. [Google Scholar] [CrossRef]
- Spada, M.M.; Georgiou, G.A.; Wells, A. The Relationship among Metacognitions, Attentional Control, and State Anxiety. Cogn. Behav. Ther. 2010, 39, 64–71. [Google Scholar] [CrossRef]
- Batha, K.; Carroll, M. Metacognitive Training Aids Decision Making. Aust. J. Psychol. 2007, 59, 64–69. [Google Scholar] [CrossRef]
- Balconi, M.; Angioletti, L.; Crivelli, D. Neuro-Empowerment of Executive Functions in the Workplace: The Reason Why. Front. Psychol. 2020, 11, 1519. [Google Scholar] [CrossRef]
- Koriat, A. Metacognition: Decision Making Processes in Self-Monitoring and Self-Regulation. In The Wiley Blackwell Handbook of Judgment and Decision Making; Keren, G., Wu, G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 356–379. [Google Scholar]
- Balconi, M.; Lucchiari, C. In the Face of Emotions: Event-Related Potentials in Supraliminal and Subliminal Facial Expression Recognition. Genet. Soc. Gen. Psychol. Monogr. 2005, 131, 41–69. [Google Scholar] [CrossRef]
- Rabinovich, M.; Tristan, I.; Varona, P. Neural Dynamics of Attentional Cross-Modality Control. PLoS ONE 2013, 8, e64406. [Google Scholar] [CrossRef]
- Drigas, A.; Karyotaki, M. Attentional Control and Other Executive Functions. Int. J. Emerg. Technol. Learn. (iJET) 2017, 12, 219–233. [Google Scholar] [CrossRef]
- Golnar-Nik, P.; Farashi, S.; Safari, M.-S. The Application of EEG Power for the Prediction and Interpretation of Consumer Decision-Making: A Neuromarketing Study. Physiol. Behav. 2019, 207, 90–98. [Google Scholar] [CrossRef]
- Forte, G.; Morelli, M.; Grässler, B.; Casagrande, M. Decision Making and Heart Rate Variability: A Systematic Review. Appl. Cogn. Psychol. 2022, 36, 100–110. [Google Scholar] [CrossRef]
- Crivelli, D.; Balconi, M. Neuroassessment in Sports: An Integrative Approach for Performance and Potential Evaluation in Athletes. Front. Psychol. 2022, 13, 747852. [Google Scholar] [CrossRef] [PubMed]
- Rietschel, J.C.; Miller, M.W.; Gentili, R.J.; Goodman, R.N.; McDonald, C.G.; Hatfield, B.D. Cerebral-Cortical Networking and Activation Increase as a Function of Cognitive-Motor Task Difficulty. Biol. Psychol. 2012, 90, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Smith, M.E. Neurophysiological Measures of Cognitive Workload during Human-Computer Interaction. Theor. Issues Ergon. Sci. 2003, 4, 113–131. [Google Scholar] [CrossRef]
- Gevins, A. Neurophysiological Measures of Working Memory and Individual Differences in Cognitive Ability and Cognitive Style. Cerebral. Cortex 2000, 10, 829–839. [Google Scholar] [CrossRef]
- Bastos, A.M.; Vezoli, J.; Bosman, C.A.; Schoffelen, J.-M.; Oostenveld, R.; Dowdall, J.R.; De Weerd, P.; Kennedy, H.; Fries, P. Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron 2015, 85, 390–401. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P. Beta-Band Oscillations—Signalling the Status Quo? Curr. Opin. Neurobiol. 2010, 20, 156–165. [Google Scholar] [CrossRef]
- Wróbel, A. Beta Activity: A Carrier for Visual Attention. Acta Neurobiol. Exp. 2000, 60, 247–260. [Google Scholar]
- Michalareas, G.; Vezoli, J.; van Pelt, S.; Schoffelen, J.-M.; Kennedy, H.; Fries, P. Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas. Neuron 2016, 89, 384–397. [Google Scholar] [CrossRef]
- Gentili, R.J.; Bradberry, T.J.; Oh, H.; Hatfield, B.D.; Contreras Vidal, J.L. Cerebral Cortical Dynamics during Visuomotor Transformation: Adaptation to a Cognitive-Motor Executive Challenge. Psychophysiology 2011, 48, 813–824. [Google Scholar] [CrossRef]
- Gentili, R.J.; Rietschel, J.C.; Jaquess, K.J.; Lo, L.-C.; Prevost, C.M.; Miller, M.W.; Mohler, J.M.; Oh, H.; Tan, Y.Y.; Hatfield, B.D. Brain Biomarkers Based Assessment of Cognitive Workload in Pilots under Various Task Demands. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE), Chicago, IL, USA, 26–30 August 2014; pp. 5860–5863. [Google Scholar]
- Hsieh, L.-T.; Ranganath, C. Frontal Midline Theta Oscillations during Working Memory Maintenance and Episodic Encoding and Retrieval. Neuroimage 2014, 85, 721–729. [Google Scholar] [CrossRef]
- Kutafina, E.; Heiligers, A.; Popovic, R.; Brenner, A.; Hankammer, B.; Jonas, S.M.; Mathiak, K.; Zweerings, J. Tracking of Mental Workload with a Mobile Eeg Sensor. Sensors 2021, 21, 5205. [Google Scholar] [CrossRef] [PubMed]
- Stoet, G. PsyToolkit: A Software Package for Programming Psychological Experiments Using Linux. Behav. Res. Methods 2010, 42, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Finocchiaro, R.; Campanella, S. Reward Sensitivity, Decisional Bias, and Metacognitive Deficits in Cocaine Drug Addiction. J. Addict. Med. 2014, 8, 399–406. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Howells, F.M.; Stein, D.J.; Russell, V.A. Perceived Mental Effort Correlates with Changes in Tonic Arousal during Attentional Tasks. Behav. Brain Funct. 2010, 6, 39. [Google Scholar] [CrossRef]
- Sergeant, J.A. Modeling Attention-Deficit/Hyperactivity Disorder: A Critical Appraisal of the Cognitive-Energetic Model. Biol Psychiatry 2005, 57, 1248–1255. [Google Scholar] [CrossRef]
- Borghetti, L.; Morris, M.B.; Jack Rhodes, L.; Haubert, A.R.; Veksler, B.Z. Gamma Oscillations Index Sustained Attention in a Brief Vigilance Task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 546–550. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, D.-W.; Im, C.-H. Brain Areas Responsible for Vigilance: An EEG Source Imaging Study. Brain Topogr. 2017, 30, 343–351. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Fründ, I.; Lenz, D. Human Gamma-Band Activity: A Review on Cognitive and Behavioral Correlates and Network Models. Neurosci. Biobehav. Rev. 2010, 34, 981–992. [Google Scholar] [CrossRef]
- Curley, T.M.; Borghetti, L.; Morris, M.B. Gamma Power as an Index of Sustained Attention in Simulated Vigilance Tasks. Top. Cogn. Sci. 2023. Advance Online Publication. [Google Scholar] [CrossRef]
- Hockey, G.R.J. Compensatory Control in the Regulation of Human Performance under Stress and High Workload: A Cognitive-Energetical Framework. Biol. Psychol. 1997, 45, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Langner, R.; Eickhoff, S.B. Sustaining Attention to Simple Tasks: A Meta-Analytic Review of the Neural Mechanisms of Vigilant Attention. Psychol. Bull. 2013, 139, 870–900. [Google Scholar] [CrossRef] [PubMed]
- Buschman, T.J.; Miller, E.K. Top-down versus Bottom-up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science 2007, 315, 1860–1862. [Google Scholar] [CrossRef] [PubMed]
- Panichello, M.F.; Buschman, T.J. Shared Mechanisms Underlie the Control of Working Memory and Attention. Nature 2021, 592, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, T.; Ponomarenko, A.; Monaghan, C.K.; Poulter, S.L.; Cacucci, F.; Wills, T.; Hasselmo, M.E.; Lever, C. Reconciling the Different Faces of Hippocampal Theta: The Role of Theta Oscillations in Cognitive, Emotional and Innate Behaviors. Neurosci. Biobehav. Rev. 2018, 85, 65–80. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Frank, M.J. Frontal Theta as a Mechanism for Cognitive Control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef]
- Chevalier, N.; Hadley, L.V.; Balthrop, K. Midfrontal Theta Oscillations and Conflict Monitoring in Children and Adults. Dev. Psychobiol. 2021, 63, e22216. [Google Scholar] [CrossRef]
- Papenberg, G.; Hämmerer, D.; Müller, V.; Lindenberger, U.; Li, S.-C. Lower Theta Inter-Trial Phase Coherence during Performance Monitoring Is Related to Higher Reaction Time Variability: A Lifespan Study. Neuroimage 2013, 83, 912–920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balconi, M.; Acconito, C.; Allegretta, R.A.; Crivelli, D. What Is the Relationship between Metacognition and Mental Effort in Executive Functions? The Contribution of Neurophysiology. Behav. Sci. 2023, 13, 918. https://doi.org/10.3390/bs13110918
Balconi M, Acconito C, Allegretta RA, Crivelli D. What Is the Relationship between Metacognition and Mental Effort in Executive Functions? The Contribution of Neurophysiology. Behavioral Sciences. 2023; 13(11):918. https://doi.org/10.3390/bs13110918
Chicago/Turabian StyleBalconi, Michela, Carlotta Acconito, Roberta A. Allegretta, and Davide Crivelli. 2023. "What Is the Relationship between Metacognition and Mental Effort in Executive Functions? The Contribution of Neurophysiology" Behavioral Sciences 13, no. 11: 918. https://doi.org/10.3390/bs13110918
APA StyleBalconi, M., Acconito, C., Allegretta, R. A., & Crivelli, D. (2023). What Is the Relationship between Metacognition and Mental Effort in Executive Functions? The Contribution of Neurophysiology. Behavioral Sciences, 13(11), 918. https://doi.org/10.3390/bs13110918