Visuo-Spatial Working Memory and Mathematical Skills in Children: A Network Analysis Study
Abstract
:1. Introduction
1.1. Working Memory Model(s)
1.2. VSWM and Mathematical Abilities
1.3. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Tests
2.2.1. Mathematical Tasks
- Written calculation. This subtest assesses the child’s ability to complete written computational operations (addition, subtraction, multiplication, and division);
- Number ordering. In this task, the child orders number sequences from the lowest to the highest and vice versa. This task requires an understanding of the semantics of numbers to place the numbers in the correct order;
- Transcoding. This task assesses students’ ability to process the syntactic structure of a number. Students are shown 6 series of verbally described numbers (e.g., 3 tens, 8 units, and 2 hundreds) and are asked to transform them into a final number (i.e., 238);
- Arithmetical Facts. This task is used to investigate how children have stored combinations of numbers and whether they are able to access them automatically. The items include simple additions, subtractions, and multiplications and are presented verbally and allowing 5 s to answer for each of the 12 items.
2.2.2. VSWM Tasks
2.3. Statistical Analyses
Network Analysis
3. Results
4. Discussion
4.1. The Relationship between Mathematical Abilities and Different VSWM Components and Processes
4.2. The Relationship between Different Mathematical Skills and Different VSWM Components and Processes
4.3. Conclusions
5. Highlights
- Network Analysis is a flexible method for exploring the relationships between the different VSWM components/processes and several mathematical abilities.
- Both passive and active VSWM seem to be involved in math skills in (older) children.
- Between the different passive components of VSWM only the spatial-sequential component seems to play a role in math abilities.
- Diverse mathematical abilities have different relationships with the various VSWM processes/components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehaene, S. Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In From Monkey Brain to Human Brain; Dehaene, J.R., Hauser, D.M., Rizzolatti, G., Eds.; MIT Press: Cambridge, MA, USA, 2005; pp. 133–157. [Google Scholar]
- Caviola, S.; Mammarella, I.C.; Cornoldi, C.; Lucangeli, D. The involvement of working memory in children’s exact and approximate mental addition. J. Exp. Child Psychol. 2012, 112, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S. Précis of the number sense. Mind Lang. 2001, 16, 16–36. [Google Scholar] [CrossRef]
- Hawes, Z.; Sokolowski, H.M.; Ononye, C.B.; Ansari, D. Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci. Biobehav. Rev. 2019, 103, 316–336. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, I.C.; Toffalini, E.; Caviola, S.; Colling, L.; Szűcs, D. No evidence for a core deficit in developmental dyscalculia or mathematical learning disabilities. J. Child Psychol. Psychiatry 2021, 62, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.J. The foundations of numerical thinking in a brain without numbers. Trends Cogn. Sci. 1999, 3, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Spelke, E.; Dehaene, S. Biological foundations of numerical thinking. Trends Cogn. Sci. 1999, 3, 365–366. [Google Scholar] [CrossRef] [PubMed]
- Wilkey, E.D.; Ansari, D. Challenging the neurobiological link between number sense and symbolic numerical abilities. Ann. N. Y. Acad. Sci. 2020, 1464, 76–98. [Google Scholar] [CrossRef] [PubMed]
- Matejko, A.A.; Ansari, D. Shared Neural Circuits for Visuospatial Working Memory and Arithmetic in Children and Adults. J. Cogn. Neurosci. 2021, 33, 1003–1019. [Google Scholar] [CrossRef] [PubMed]
- Zago, L.; Pesenti, M.; Mellet, E.; Crivello, F.; Mazoyer, B.; Tzourio-Mazoyer, N. Neural correlates of simple and complex mental calculation. Neuroimage 2001, 13, 314–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Piazza, M.; Pinel, P.; Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 2003, 20, 487–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, M.; Dehaene, S. From number neurons to mental arithmetic: The cognitive neuroscience of number sense. In The Cognitive Neurosciences, 3rd ed.; Gazzaniga, M.S., Ed.; The MIT Press: Cambridge, MA, USA, 2004; pp. 865–877. [Google Scholar]
- Allen, K.; Higgins, S.; Adams, J. The relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review. Educ. Psychol. Rev. 2019, 31, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Caviola, S.; Colling, L.J.; Mammarella, I.C.; Szűcs, D. Predictors of mathematics in primary school: Magnitude comparison, verbal and spatial working memory measures. Dev. Sci. 2020, 23, e12957. [Google Scholar] [CrossRef] [PubMed]
- Giofrè, D.; Donolato, E.; Mammarella, I.C. The differential role of verbal and visuospatial working memory in mathematics and reading. Trends Neurosci. Educ. 2018, 12, 1–6. [Google Scholar] [CrossRef]
- Allen, K.; Giofrè, D. A distinction between working memory components as unique predictors of mathematical components in 7–8 year old children. Educ. Psychol. 2021, 41, 678–694. [Google Scholar] [CrossRef]
- Van der Ven, S.H.; Van der Maas, H.L.; Straatemeier, M.; Jansen, B.R. Visuospatial working memory and mathematical ability at different ages throughout primary school. Learn. Individ. Differ. 2013, 27, 182–192. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G.J. Working memory. In The Psychology of Learning and Motivation: Advances in Research and Theory; Bower, G.A., Ed.; Academic Press: New York, NY, USA, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Repovš, G.; Baddeley, A. The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience 2006, 139, 5–21. [Google Scholar] [CrossRef]
- Chein, J.M.; Moore, A.B.; Conway, A.R. Domain-general mechanisms of complex working memory span. Neuroimage 2011, 54, 550–559. [Google Scholar] [CrossRef]
- Lanfranchi, S.; Cornoldi, C.; Vianello, R. Verbal and visuospatial working memory deficits in children with Down syndrome. Am. J. Ment. Retard. 2004, 109, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Rettinger, D.A.; Shah, P.; Hegarty, M. How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J. Exp. Psychol. Gen. 2001, 130, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Miyake, A. The separability of working memory resources for spatial thinking and language processing: An individual differences approach. J. Exp. Psychol. Gen. 1996, 125, 4–27. [Google Scholar] [CrossRef]
- Vecchi, T.; Cornoldi, C. Passive storage and active manipulation in visuo-spatial working memory: Further evidence from the study of age differences. Eur. J. Cogn. Psychol. 1999, 11, 391–406. [Google Scholar] [CrossRef]
- Kane, M.J.; Conway, A.R.; Hambrick, D.Z.; Engle, R.W. Variation in Working Memory Capacity as Variation in Executive Attention and Control; Conway, A., Jarrold, C., Miyake, A., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 21–48. [Google Scholar]
- Chrysochoou, E.; Bablekou, Z. Phonological loop and central executive contributions to oral comprehension skills of 5.5 to 9.5 years old children. Appl. Cogn. Psychol. 2011, 25, 576–583. [Google Scholar] [CrossRef]
- Daneman, M.; Merikle, P.M. Working memory and language comprehension: A meta-analysis. Psychon. Bull. Rev. 1996, 3, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.W.; Tuholski, S.W.; Laughlin, J.E.; Conway, A.R. Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. J. Exp. Psychol. Gen. 1999, 128, 309–331. [Google Scholar] [CrossRef]
- Cornoldi, C.; Vecchi, T. Visuo-Spatial Working Memory and Individual Differences; Psychology Press: London, UK; New York, NY, USA, 2004. [Google Scholar]
- Colom, R.; Shih, P.C.; Flores-Mendoza, C.; Quiroga, M.Á. The real relationship between short-term memory and working memory. Memory 2006, 14, 804–813. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Jonides, J.O.H.N. The executive is central to working memory: Insights from age, performance, and task variations. In Variation in Working Memory; Conway, A., Jarrold, C., Miyake, A., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 250–271. [Google Scholar]
- Owen, A.M. The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. Eur. J. Neurosci. 1997, 9, 1329–1339. [Google Scholar] [CrossRef]
- Watter, S.; Heisz, J.J.; Karle, J.W.; Shedden, J.M.; Kiss, I. Modality-specific control processes in verbal versus spatial working memory. Brain Res. 2010, 1347, 90–103. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Cornoldi, C.; Pazzaglia, F.; Toso, C.; Grimoldi, M.; Vio, C. Evidence for a double dissociation between spatial-simultaneous and spatial-sequential working memory in visuospatial (nonverbal) learning disabled children. Brain Cogn. 2006, 62, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, I.C.; Pazzaglia, F.; Cornoldi, C. Evidence for different components in children’s visuospatial working memory. Br. J. Dev. Psychol. 2008, 26, 337–355. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Caviola, S.; Cornoldi, C.; Lucangeli, D. Mental additions and verbal-domain interference in children with developmental dyscalculia. Res. Dev. Disabil. 2013, 34, 2845–2855. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, F.; Cornoldi, C. The role of distinct components of visuo-spatial working memory in the processing of texts. Memory 1999, 7, 19–41. [Google Scholar] [CrossRef]
- Ventre-Dominey, J.; Bailly, A.; Lavenne, F.; Lebars, D.; Mollion, H.; Costes, N.; Dominey, P.F. Double dissociation in neural correlates of visual working memory: A PET study. Cogn. Brain Res. 2005, 25, 747–759. [Google Scholar] [CrossRef]
- Vicari, S.; Bellucci, S.; Carlesimo, G.A. Evidence from two genetic syndromes for the independence of spatial and visual working memory. Dev. Med. Child Neurol. 2006, 48, 126–131. [Google Scholar] [CrossRef]
- Friso-Van den Bos, I.; Van der Ven, S.H.; Kroesbergen, E.H.; Van Luit, J.E. Working memory and mathematics in primary school children: A meta-analysis. Educ. Res. Rev. 2013, 10, 29–44. [Google Scholar] [CrossRef]
- Peng, P.; Namkung, J.; Barnes, M.; Sun, C. A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. J. Educ. Psychol. 2016, 108, 455–473. [Google Scholar] [CrossRef]
- Allen, K.; Giofrè, D.; Higgins, S.; Adams, J. Working memory predictors of mathematics across the middle primary school years. Br. J. Educ. Psychol. 2020, 90, 848–869. [Google Scholar] [CrossRef] [Green Version]
- Hubber, P.J.; Gilmore, C.; Cragg, L. The roles of the central executive and visuospatial storage in mental arithmetic: A comparison across strategies. Q. J. Exp. Psychol. 2014, 67, 936–954. [Google Scholar] [CrossRef] [Green Version]
- Passolunghi, M.C.M.; Cornoldi, C. Working memory failures in children with arithmetical difficulties. Child Neuropsychol. 2008, 14, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Passolunghi, M.C.; Lanfranchi, S. Domainspecific and domaingeneral precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. Br. J. Educ. Psychol. 2012, 82, 42–63. [Google Scholar] [CrossRef] [PubMed]
- Passolunghi, M.C.; Lanfranchi, S.; Altoè, G.; Sollazzo, N. Early numerical abilities and cognitive skills in kindergarten children. J. Exp. Child Psychol. 2015, 135, 25–42. [Google Scholar] [CrossRef]
- Alloway, T.P.; Passolunghi, M.C. The relationship between working memory, IQ, and mathematical skills in children. Learn. Individ. Differ. 2011, 21, 133–137. [Google Scholar] [CrossRef]
- Ashkenazi, S.; Rosenberg-Lee, M.; Metcalfe, A.W.; Swigart, A.G.; Menon, V. Visuo–spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia 2013, 51, 2305–2317. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.; Giofrè, D.; Higgins, S.; Adams, J. Working memory predictors of written mathematics in 7-to 8-year-old children. Q. J. Exp. Psychol. 2020, 73, 239–248. [Google Scholar] [CrossRef] [Green Version]
- De Vita, C.; Costa, H.M.; Tomasetto, C.; Passolunghi, M.C. The contributions of working memory domains and processes to early mathematical knowledge between preschool and first grade. Psychol. Res. 2022, 86, 497–511. [Google Scholar] [CrossRef]
- Foley, A.E.; Vasilyeva, M.; Laski, E.V. Children’s use of decomposition strategies mediates the visuospatial memory and arithmetic accuracy relation. Br. J. Dev. Psychol. 2017, 35, 303–309. [Google Scholar] [CrossRef]
- Holmes, J.; Adams, J.W. Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula. Educ. Psychol. 2006, 26, 339–366. [Google Scholar] [CrossRef]
- Holmes, J.; Adams, J.W.; Hamilton, C.J. The relationship between visuospatial sketchpad capacity and children’s mathematical skills. Eur. J. Cogn. Psychol. 2008, 20, 272–289. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Lucangeli, D.; Cornoldi, C. Spatial working memory and arithmetic deficits in children with nonverbal learning difficulties. J. Learn. Disabil. 2010, 43, 455–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammarella, I.C.; Caviola, S.; Giofrè, D.; Szűcs, D. The underlying structure of visuospatial working memory in children with mathematical learning disability. Br. J. Dev. Psychol. 2018, 36, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Passolunghi, M.C.; Mammarella, I.C. Selective spatial working memory impairment in a group of children with mathematics learning disabilities and poor problem-solving skills. J. Learn. Disabil. 2012, 45, 341–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szucs, D.; Devine, A.; Soltesz, F.; Nobes, A.; Gabriel, F. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex 2013, 49, 2674–2688. [Google Scholar] [CrossRef] [Green Version]
- Raghubar, K.P.; Barnes, M.A.; Hecht, S.A. Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learn. Individ. Differ. 2010, 20, 110–122. [Google Scholar] [CrossRef]
- Van de Weijer-Bergsma, E.; Kroesbergen, E.H.; Van Luit, J.E. Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Mem. Cogn. 2015, 43, 367–378. [Google Scholar] [CrossRef] [Green Version]
- DeStefano, D.; LeFevre, J.A. The role of working memory in mental arithmetic. Eur. J. Cogn. Psychol. 2004, 16, 353–386. [Google Scholar] [CrossRef]
- Caviola, S.; Mammarella, I.C.; Lucangeli, D.; Cornoldi, C. Working memory and domain-specific precursors predicting success in learning written subtraction problems. Learn. Individ. Differ. 2014, 36, 92–100. [Google Scholar] [CrossRef]
- Herrera, A.; Macizo, P.; Semenza, C. The role of working memory in the association between number magnitude and space. Acta Psychol. 2008, 128, 225–237. [Google Scholar] [CrossRef]
- Lee, K.; Cho, S. Visuo-spatial (but not verbal) executive working memory capacity modulates susceptibility to non-numerical visual magnitudes during numerosity comparison. PLoS ONE 2019, 14, e0214270. [Google Scholar] [CrossRef]
- Simmons, F.R.; Willis, C.; Adams, A.M. Different components of working memory have different relationships with different mathematical skills. J. Exp. Child Psychol. 2012, 111, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Fanari, R.; Meloni, C.; Massidda, D. Visual and spatial working memory abilities predict early math skills: A longitudinal study. Front. Psychol. 2019, 10, 2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, K.; Giofrè, D.; Higgins, S.; Adams, J. Using working memory performance to predict mathematics performance 2 years on. Psychol. Res. 2021, 85, 1986–1996. [Google Scholar] [CrossRef]
- Meyer, M.L.; Salimpoor, V.N.; Wu, S.S.; Geary, D.C.; Menon, V. Differential contribution of specific working memoy components to mathematics achievement in 2nd and 3rd graders. Learn. Individ. Differ. 2010, 20, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Soltanlou, M.; Pixner, S.; Nuerk, H.C. Contribution of working memory in multiplication fact network in children may shift from verbal to visuo-spatial: A longitudinal investigation. Front. Psychol. 2015, 6, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudkin, S.J.; Pearson, D.G.; Logie, R.H. Executive processes in visual and spatial working memory tasks. Q. J. Exp. Psychol. 2007, 60, 79–100. [Google Scholar] [CrossRef]
- Raven, J.C. Guide to Using the Coloured Progressive Matrices; Lewis: Romeoville, IL, USA, 1965. [Google Scholar]
- Pruneti, C. Aggiornamento della standardizzazione italiana del test delle Matrici Progressive Colorate di Raven [Update of the Italian standardization of Raven’s Coloured Progressive Matrices (CPM)]. Boll. Psicol. Appl. 1996, 217, 51–57. [Google Scholar]
- Cornoldi, C.; Lucangeli, D.; Bellina, M. AC-MT 6–11. Test di Valutazione delle Abilità di Calcolo e Soluzione dei Problemi [AC-MT 6–11-Test for the Evaluation of Calculating and Problem Solving Abilities]; Gruppo MT-Erickson: Trento, Italy, 2012. [Google Scholar]
- Mammarella, I.C.; Toso, C.; Pazzaglia, F.; Cornoldi, C. Il Test di Corsi e la Batteria BVS per la Valutazione della Memoria Visuospaziale [The Corsi Blocks Task and the BVS Battery for Visuospatial Memory Assessment]; Erickson: Trento, Italy, 2008. [Google Scholar]
- JASPTeam. JASP (Version 0.14.1); JASPTeam: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epskamp, S.; Cramer, A.O.J.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. Qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- RCoreTeam. R: A Language and Environment for Statistical Computing; Version 3.3.3.; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 1 June 2022).
- Ferguson, C. A network psychometric approach to neurocognition in early Alzheimers’s disease. Cortex 2021, 137, 61–73. [Google Scholar] [CrossRef]
- Kellermann, T.S.; Bonilha, L.; Eskandari, R.; Garcia-Ramos, C.; Lin, J.J.; Hermann, B.P. Mapping the neuropsychological profile of temporal lobe epilepsy using cognitive network topology and graph theory. Epilepsy Behav. 2016, 63, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotstein, A. Network analysis of the structure and change in the mini-mental state examination: A nationally representative sample. Soc. Psychiatry Psychiatr. Epidemiol. 2020, 55, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Tosi, G.; Borsani, C.; Castiglioni, S.; Daini, R.; Franceschi, M.; Romano, D. Complexity in neuropsychological assessments of cognitive impairment: A network analysis approach. Cortex 2020, 124, 85–96. [Google Scholar] [CrossRef]
- Angelelli, P.; Romano, D.L.; Marinelli, C.V.; Macchitella, L.; Zoccolotti, P. The Simple View of Reading in Children Acquiring a Regular Orthography (Italian): A Network Analysis Approach. Front. Psychol. 2021, 12, 686914. [Google Scholar] [CrossRef]
- Zoccolotti, P.; Angelelli, P.; Marinelli, C.V.; Romano, D.L. A Network Analysis of the Relationship among Reading, Spelling and Maths Skills. Brain Sci. 2021, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Costantini, G.; Epskamp, S.; Borsboom, D.; Perugini, M.; Mõttus, R.; Waldorp, L.J.; Cramer, A.O.J. State of the aRt personality research: A tutorial on network analysis of personality data in R. J. Res. Personal. 2015, 54, 13–29. [Google Scholar] [CrossRef]
- Van Borkulo, C.; Boschloo, L.; Borsboom, D.; Penninx, B.W.J.H.; Lourens, J.W.; Schoevers, R.A. Association of symptom network structure with the course of longitudinal depression. JAMA Psychiatry 2015, 72, 1219–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, D.; Maravita, A.; Perugini, M. Psychometric properties of the embodiment scale for the rubber hand illusion and its relation with individual differences. Sci. Rep. 2021, 11, 5029. [Google Scholar] [CrossRef]
- Tosi, G.; Romano, D. The network of the subjective experience in embodiment phenomena. Psychol. Res. 2022, 0123456789. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Epskamp, S. Brief Report on Estimating Regularized Gaussian Networks from Continuous and Ordinal Data. arXiv 2016, arXiv:1606.05771. [Google Scholar]
- Robinaugh, D.J.; Millner, A.J.; McNally, R.J. Identifying Highly Influential Nodes in the Complicated Grief Network. J. Abnorm. Psychol. 2016, 125, 747–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahl, T.; Grob, A.; Segerer, R.; Möhring, W. Executive functions and visual-spatial skills predict mathematical achievement: Asymmetrical associations across age. Psychol. Res. 2021, 85, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Dong, P.; Zhou, Y.; Feng, S.; Zhang, Q. Whether verbal and visuospatial working memory play different roles in pupil’s mathematical abilities. Br. J. Educ. Psychol. 2022, 92, 409–424. [Google Scholar] [CrossRef]
- Camos, V. Low working memory capacity impedes both efficiency and learning of number transcoding in children. J. Exp. Child Psychol. 2008, 99, 37–57. [Google Scholar] [CrossRef]
- Moura, R.; Wood, G.; Pinheiro-Chagas, P.; Lonnemann, J.; Krinzinger, H.; Willmes, K.; Haase, V.G. Transcoding abilities in typical and atypical mathematics achievers: The role of working memory and procedural and lexical competencies. J. Exp. Child Psychol. 2013, 116, 707–727. [Google Scholar] [CrossRef]
- Kuhn, J.T.; Holling, H. Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school. Adv. Cogn. Psychol. 2014, 10, 59–67. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Costa, H.M. Working memory and early numeracy training in preschool children. Child Neuropsychol. 2016, 22, 81–98. [Google Scholar] [CrossRef]
- Söderqvist, S.; Bergman Nutley, S. Working memory training is associated with long term attainments in math and reading. Front. Psychol. 2015, 6, 1711. [Google Scholar] [CrossRef]
- Wilson, A.J.; Revkin, S.K.; Cohen, D.; Cohen, L.; Dehaene, S. An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behav. Brain Funct. 2006, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Ardila, A.; Rosselli, M. Cognitive rehabilitation of acquired calculation disturbances. Behav. Neurol. 2019, 2019, 3151092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, N.L.; Mandalis, A.; Benson, S.; Parry, L.; Epps, A.; Morrow, A.; Lah, S. Computerized working memory training for children with moderate to severe traumatic brain injury: A double-blind, randomized, placebo-controlled trial. J. Neurotrauma 2016, 33, 2097–2104. [Google Scholar] [CrossRef] [PubMed]
Math | Working Memory | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Facts | Ordering | Digits | Calculation | Balloons | Corsi | Matrices | Dots | A-VPT | ||
Math | Facts | 0.18 ± 1.01 | 0.13 | 0.12 | 0.25 | 0 | 0 | 0.02 | 0 | 0.15 |
Ordering | 0.36 *** | 0.11 ± 0.99 | 0.07 | 0 | 0 | 0 | 0 | 0 | 0 | |
Digits | 0.37 *** | 0.30 *** | 0.06 ± 0.89 | 0.04 | 0 | 0 | 0 | 0 | 0.09 | |
Calculation | 0.47 *** | 0.23 * | 0.29 ** | 0.02 ± 0.84 | 0 | 0.05 | 0 | 0 | 0 | |
Working Memory | Balloons | 0.20 * | 0.15 | 0.16 | 0.20 * | 0.03 ± 1.06 | 0 | 0 | 0 | 0 |
Corsi | 0.15 | 0.05 | 0.20 * | 0.25 ** | −0.02 | −0.11 ± 0.99 | 0 | 0 | 0 | |
Matrices | 0.22 * | 0.04 | 0.14 | 0.06 | 0.15 | 0.06 | 0.01 ± 1.07 | 0 | 0 | |
Dots | 0.10 | −0.09 | 0.01 | −0.03 | 0.20 * | 0.16 | 0.17 | −0.11 ± 1.15 | 0 | |
A-VPT | 0.37 *** | 0.22 * | 0.32 *** | 0.25 *** | 0.08 | 0.13 | 0.04 | −0.03 | −0.46 ± 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchitella, L.; Tosi, G.; Romano, D.L.; Iaia, M.; Vizzi, F.; Mammarella, I.C.; Angelelli, P. Visuo-Spatial Working Memory and Mathematical Skills in Children: A Network Analysis Study. Behav. Sci. 2023, 13, 294. https://doi.org/10.3390/bs13040294
Macchitella L, Tosi G, Romano DL, Iaia M, Vizzi F, Mammarella IC, Angelelli P. Visuo-Spatial Working Memory and Mathematical Skills in Children: A Network Analysis Study. Behavioral Sciences. 2023; 13(4):294. https://doi.org/10.3390/bs13040294
Chicago/Turabian StyleMacchitella, Luigi, Giorgia Tosi, Daniele Luigi Romano, Marika Iaia, Francesca Vizzi, Irene C. Mammarella, and Paola Angelelli. 2023. "Visuo-Spatial Working Memory and Mathematical Skills in Children: A Network Analysis Study" Behavioral Sciences 13, no. 4: 294. https://doi.org/10.3390/bs13040294
APA StyleMacchitella, L., Tosi, G., Romano, D. L., Iaia, M., Vizzi, F., Mammarella, I. C., & Angelelli, P. (2023). Visuo-Spatial Working Memory and Mathematical Skills in Children: A Network Analysis Study. Behavioral Sciences, 13(4), 294. https://doi.org/10.3390/bs13040294