University Dropout Model for Developing Countries: A Colombian Context Approach
Abstract
:1. Introduction
Theoretical Framework
2. Materials and Methods
2.1. Research Model
2.2. Participants
2.3. Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustaffa, J.B. Racial Justice Beyond Credentials: The Radical Politic of a Black College Dropout. Urban Rev. 2022, 54, 318–338. [Google Scholar] [CrossRef]
- Kiss, V.; Maldonado, E.; Segall, M. The Use of Semester Course Data for Machine Learning Prediction of College Dropout Rates. J. High. Educ. Theory Pract. 2022, 22, 64–74. [Google Scholar]
- Tinto, V. Misconceptions Mar Campus Discussions of Student Retention. Chron. High. Educ. 1989, 36, B2. [Google Scholar]
- Girón Cruz, L.E.; González Gómez, D.E. Determinantes del rendimiento académico y la deserción estudiantil, en el programa de Economía de la Pontificia Universidad Javeriana de Cali. Econ. Gest. Desarro. 2005, 3, 173–201. [Google Scholar]
- Villar Aguilés, A.; Manuel Vieira, M.; Hernàndez i Dobon, F.J.; Nunes de Almeida, A. Más que abandono de estudios, trayectorias de reubicación universitaria. Aproximación comparada al caso español y português. Rev. Lusófona Educ. 2012, 21, 139–162. [Google Scholar]
- Lee, M. How supply-side factors affect college dropouts: The effects of collegiate resources and admission quotas allocation on dropouts. Acad. Econ. Pap. 2022, 50, 75–115. [Google Scholar]
- Castaño Corvo, M.B.; Huesca Ramírez, M.G.E. Causas de deserción de alumnos de los primeros semestres de una universidad privada. REMO 2005, 5, 34–39. [Google Scholar]
- Brunner, J.J.; Labraña, J. The Transformation of Higher Education in Latin America: From Elite Access to Massification and Universalisation. In Higher Education in Latin America and the Challenges of the 21st Century; Schwartzman, S., Ed.; Springer: Cham, Switzerland, 2020; pp. 31–41. [Google Scholar] [CrossRef]
- Villalobos, C.; Treviño, E.; Wyman, I.; Scheele, J. Social justice debate and college access in Latin America: Merit or need? The role of educational institutions and states in broadening access to higher education in the region. Educ. Policy Anal. Arch. 2017, 25, 73. [Google Scholar] [CrossRef]
- Murillo, F.J.; Duk, C. El ODS 4 (y el 16) como meta para los próximos años. Rev. Latinoam. Educ. Inclusiva 2017, 11, 11–13. [Google Scholar] [CrossRef]
- Pervin, L.; Reik, L.E.; Dalrymple, W. The College Dropout and the Utilization of Talent; Princeton University Press: Princeton, NJ, USA, 1966. [Google Scholar]
- Constate-Amores, A.; Florenciano Martínez, E.; Navarro Asencio, E.; Fernández-Mellizo, M. Factores asociados al abandono Universitario. Educ. XX1 2021, 24, 17–44. [Google Scholar] [CrossRef]
- Stratton, L.S.; O’Toole, D.M.; Wetzel, J.N. A multinomial logit model of college stopout and dropout behavior. Econ. Educ. Rev. 2008, 27, 319–331. [Google Scholar] [CrossRef]
- Piscitello, J.; Kim, Y.K.; Orooji, M.; Robison, S. Sociodemographic risk, school engagement, and community characteristics: A mediated approach to understanding high school dropout. Child. Youth Serv. Rev. 2022, 133, 106347. [Google Scholar] [CrossRef]
- Álvarez Ferrandiz, D. Análisis del abandono universitario en España: Un estudio bibliométrico. Publicaciones 2021, 51, 241–261. [Google Scholar] [CrossRef]
- Díaz Peralta, C. Modelo conceptual para la deserción estudiantil universitaria Chilena. Estud. Pedagóg. 2008, 34, 65–86. [Google Scholar] [CrossRef]
- Stinebrickner, T.; Stinebrickner, R. Learning about Academic Ability and the College Dropout Decision. J. Labor Econ. 2012, 30, 707–748. [Google Scholar] [CrossRef]
- Sistema de Información Ministerio de Educación. Available online: https://www.mineducacion.gov.co/sistemasinfo/spadies/ (accessed on 12 March 2021).
- Melguizo, T.; Sanchez Torres, F.; Jaime, H. The association between financial aid availability and the college dropout rates in Colombia. High Educ. 2011, 62, 231–247. [Google Scholar] [CrossRef]
- Viale Tudela, H.E. Una aproximación teórica a la deserción estudiantil universitaria. RIDU 2014, 8, 59–76. [Google Scholar] [CrossRef]
- Cabrera, A.F.; Nora, A.; Castañeda, M.B. The role of finances in the persistence process: A structural model. Res. High Educ. 1992, 33, 571–593. [Google Scholar] [CrossRef]
- Braxton, M.; Johnson, M.; Shaw-Sullivan, V. Appraising Tinto’s Theory of College Student Departure. In Higher Education: A Handbook of Theory and Research; Smart, J.C., Ed.; Agathon Press: New York, NY, USA, 1997; Volume 12, pp. 107–164. [Google Scholar]
- Donoso, S.; Schiefelbein, E. Análisis de los modelos explicativos de retención de estudiantes en la universidad: Una visión desde la desigualdad social. Estud. Pedagóg. 2007, 33, 7–27. [Google Scholar] [CrossRef]
- Latiesa, M. La Deserción Universitaria; Centro de Investigaciones Sociológicas: Madrid, Spain, 1992. [Google Scholar]
- González Rodríguez, J.A.; García Gómez, T.; Izquierdo Dorta, C.; Torres García, A. Deserción estudiantil? los que abandonan, son ellos o nosotros? Pedagog. Univ. 2010, 15, 32. [Google Scholar]
- Spady, W.G. Dropouts from higher education: An interdisciplinary review and synthesis. Interchange 1970, 1, 64–85. [Google Scholar] [CrossRef]
- Acevedo, D.; Torres, J.D.; Tirado, D.F. Análisis de la Deserción Estudiantil en el Programa Ingeniería de Alimentos de la Universidad de Cartagena durante el Periodo Académico 2009–2013. Form. Univ. 2015, 18, 35–42. [Google Scholar] [CrossRef]
- Lázaro Alvarez, N.; Callejas, Z.; Griol, D. Predicting computer engineering students’ dropout in cuban higher education with pre-enrollment and early performance data. JOTSE 2020, 10, 241–258. [Google Scholar] [CrossRef]
- Nervi, C.; Rodriguez, J.; Osada, J. Deserción universitaria durante el primer año de estudios. FEM 2015, 18, 93. [Google Scholar] [CrossRef]
- Quispe-Prieto, S.; Cavalcanti-Bandos, M.F.; Caipa-Ramos, M.; Paucar-Caceres, A.; Rojas-Jiménez, H.H. A Systemic Framework to Evaluate Student Satisfaction in Latin American Universities under the COVID-19 Pandemic. Systems 2021, 9, 15. [Google Scholar] [CrossRef]
- Paramo, G.J.; Correa Maya, C.A. Deserción estudiantil universitaria. Conceptualización. Rev. Univ. EAFIT 2012, 35, 65–78. [Google Scholar]
- Herrero, V.; Merlino, A.; Ayllón, S.; Escanés, G. Aplicación de un modelo de duración en programas de prevención de deserción universitaria. Redie 2013, 15, 38–52. [Google Scholar]
- Alvarez Rodríguez, B.; Cuesta, M.; Díaz Ramila, R.; Jiménez, J.M.; Paz, M.D. Análisis de las propiedades psicométricas de una escala de actitud: Comparación de las técnicas Likert y Thurstone. REMA 2012, 2, 23–33. [Google Scholar] [CrossRef]
- Parra, D.C.; Rodríguez, L.A. Factores que Inciden en la Permanencia Académica de los Estudiantes de la Universidad Nacional Abierta y a Distancia UNAD—Cead Facatativá. Master’s Thesis, Universidad Nacional Abierta y a Distancia UNAD, Facatativá, Colombia, 2014. [Google Scholar]
- Kerby, M.B. oward a New Predictive Model of Student Retention in Higher Education: An Application of Classical Sociological Theory. J. Coll. Stud. Retent. Res. Theory Pract. 2015, 17, 138–161. [Google Scholar] [CrossRef]
- Shrestha, N. Factor Analysis as a Tool for Survey Analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Alaminos, A.; Francés, F.; Penalva-Verdú, C.; Santacreu, O. Análisis Multivariante para las Ciencias Sociales I. Índices de Distancia, Conglomerados y Análisis Factorial; PYDLOS Ediciones: San Vicente del Raspeig, Spain, 2015. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. JAMS 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante, 5th ed.; Prentice Hall: Madrid, Spain, 1999. [Google Scholar]
- López-Roldán, P.; Fachelli, S. Metodología de la Investigación Social Cuantitativa, 1st ed.; Universitat Autònoma de Barcelona: Barcelona, Spain, 2015. [Google Scholar]
- Olave-Arias, G.; Cisneros-Estupiñán, M.; Rojas-García, I. Deserción universitaria y alfabetización académica. Educ. Educ. 2013, 16, 455–471. [Google Scholar] [CrossRef]
- Gardner Isaza, L.; Dussán Lubert, C.; Montoya Londoño, D.M. Aproximación causal al estudio de la deserción en la Universidad de Caldas. Periodo 2012-2014. Rev. Colomb. Educ. 2016, 70, 319–340. [Google Scholar] [CrossRef]
- Celis Schneider, R.; Flores Ramirez, C.L.; Reyes Martinez, M.C.; Venegas Villanueva, H. Factores de riesgo de deserción presentes en alumnos repitentes de las carreras de enfermería y kinesiología en una universidad chilena. Cienc. Enferm. 2013, 19, 63–71. [Google Scholar] [CrossRef]
- de la Garza-Carranza, M.T.; Balmori-Méndez, E.E.R.; Galván-Romero, M. Estrategias organizacionales en universidades de corte tecnológico para prevenir la deserción estudiantil. REICE 2013, 11, 31–57. [Google Scholar]
- Zarria Torres, C.; Arce Ramos, C.; Lam Moraga, J. Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos. Cienc. Amaz. 2016, 6, 73–84. [Google Scholar] [CrossRef]
- Fontalvo, C.W.; Castillo, G.M.; Polo, C. Análisis comparativo entre las características más relevantes de deserción estudiantil en el programa de Ingeniería Industrial de la Universidad Autónoma del Caribe. Estudiantes activos en el periodo 2013-01 y desertores académicos de los periodos 2011-01. Escenarios 2014, 12, 96–104. [Google Scholar] [CrossRef]
- Arancibia, S.; Rodríguez, G.; Fritis, R.; Tenorio, N.; Poblete, H. Representaciones Sociales en Torno a Equidad, Acceso y Adaptación en Educación Universitaria. Psicoperspectivas 2013, 12, 116–138. [Google Scholar] [CrossRef]
- Londoño Ardila, L.F. Factores de riesgo presentes en la deserción estudiantil en la Corporación Universitaria Lasallista. Rev. Virtual Univ. Católica Norte 2013, 1, 183–194. [Google Scholar]
Author | Year | Description |
---|---|---|
Spady | 1970 | This model is based on Durkheim’s theory of suicide, and it provides a guide focusing attention on the interaction between student attributes (i.e., dispositions, interests, attitudes, and skills) and the influences, expectations, and demands imposed by various sources in the university environment. |
Fishbein and Ajzen | 1975 | This is one of the pioneer models of the psychological approaches, showing the influence exerted by beliefs and attitudes regarding behavior. Therefore, the intention of dropping out or going on in an academic program will be determined by prior behaviors and subjective norms. |
Bean | 1985 | This model argues that university dropout is analogous to productivity and describes the importance of behavioral intentions (to stay or leave) as predictors of persistence. It is assumed that behavioral intentions are configured in a process in which beliefs form attitudes, and these, in turn, come into play when forming behavioral intentions. The model also claims that beliefs are influenced by components of the academic institution (quality of the courses and programs, teachers, and peers). |
Pascarella and Terenzini | 1985 | This is a general causal model, with explicit considerations regarding institutional and environmental characteristics. The authors argue that the development and change in students occurs in five sets of variables: skills, yields, personality, aspirations, and ethnicity. |
Tinto | 1989 | The model proposed by the author is interactionist. Tinto considers that as the student goes through high school, various variables contribute to reinforce his or her adaptation to the institution selected by him or her, as he or she enters it with a set of characteristics that influence his or her experience in post-secondary education. These include family background characteristics, such as the family’s socio-economic and cultural level and the values it sustains, as well as personal attributes and those related to the academic experience. |
Ethington | 1990 | The author takes the legacy databases created by Fishbein and Ajzen (1975) as a reference for the development of this model. Ethington proposes a more general scheme based on achievement behaviors. In this model, preliminary academic performance (in which the self-concept of the student’s performance and the perception of the degree of difficulty of studies are key) and family background, coupled with a solid system of values, as well as expectations regarding success, are consolidated as guarantors of academic permanence. |
Dimensions | Variable | Standardized Factor Loadings | Average Number of Standardized Factor Loadings |
---|---|---|---|
Family Background | FB1 | 0.833 | 0.833 |
FB2 | 0.833 | ||
Institutional Commitment | IC1 | 0.473 | 0.704 |
IC2 | 0.819 | ||
IC3 | 0.819 | ||
Policy Coherence | PC1 | 0.796 | 0.796 |
PC2 | 0.796 | ||
Student Satisfaction | SS1 | 0.652 | 0.708 |
SS2 | 0.816 | ||
SS3 | 0.657 | ||
Decision to Drop Out | DDO1 | 0.795 | 0.701 |
DDO2 | 0.618 | ||
DDO3 | 0.748 | ||
DDO4 | 0.559 | ||
DDO5 | 0.812 | ||
DDO6 | 0.799 | ||
DDO7 | 0.641 | ||
DDO8 | 0.615 | ||
DDO9 | 0.625 | ||
DDO10 | 0.666 | ||
DDO11 | 0.777 | ||
DDO12 | 0.761 | ||
Social Integration | SI1 | 0.796 | 0.726 |
SI2 | 0.731 | ||
SI3 | 0.652 | ||
Academic Performance | AP1 | 0.717 | 0.717 |
AP2 | 0.717 | ||
Intellectual Development | ID1 | 0.736 | 0.736 |
ID2 | 0.736 | ||
Peer Support | PS1 | 0.749 | 0.749 |
PS2 | 0.749 |
FB | IC | PC | SS | DDO | SI | AP | ID | PS | |
---|---|---|---|---|---|---|---|---|---|
FB | 1.000 | ||||||||
IC | 0.107 | 1.000 | |||||||
PC | 0.031 | 0.092 | 1.000 | ||||||
SS | 0.016 | 0.181 | 0.502 | 1.000 | |||||
DDO | 0.402 | 0.265 | 0.024 | 0.086 | 1.000 | ||||
SI | 0.254 | 0.219 | 0.086 | 0.116 | 0.405 | 1.000 | |||
AP | 0.143 | 0.192 | 0.094 | 0.110 | 0.224 | 0.085 | 1.000 | ||
ID | 0.191 | 0.144 | 0.130 | 0.035 | 0.343 | 0.248 | 0.107 | 1.000 | |
PS | 0.085 | 0.209 | 0.083 | 0.054 | 0.351 | 0.245 | 0.114 | 0.173 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Arias, A.; Chalela, S.; Cadavid-Orrego, M.; Gallegos, A.; Benjumea-Arias, M.; Rodríguez-Salazar, D.Y. University Dropout Model for Developing Countries: A Colombian Context Approach. Behav. Sci. 2023, 13, 382. https://doi.org/10.3390/bs13050382
Valencia-Arias A, Chalela S, Cadavid-Orrego M, Gallegos A, Benjumea-Arias M, Rodríguez-Salazar DY. University Dropout Model for Developing Countries: A Colombian Context Approach. Behavioral Sciences. 2023; 13(5):382. https://doi.org/10.3390/bs13050382
Chicago/Turabian StyleValencia-Arias, Alejandro, Salim Chalela, Marcela Cadavid-Orrego, Ada Gallegos, Martha Benjumea-Arias, and David Yeret Rodríguez-Salazar. 2023. "University Dropout Model for Developing Countries: A Colombian Context Approach" Behavioral Sciences 13, no. 5: 382. https://doi.org/10.3390/bs13050382
APA StyleValencia-Arias, A., Chalela, S., Cadavid-Orrego, M., Gallegos, A., Benjumea-Arias, M., & Rodríguez-Salazar, D. Y. (2023). University Dropout Model for Developing Countries: A Colombian Context Approach. Behavioral Sciences, 13(5), 382. https://doi.org/10.3390/bs13050382