Analysis of Pharmaceutical Companies’ Social Media Activity during the COVID-19 Pandemic and Its Impact on the Public
Abstract
:1. Introduction
- RQ1.
- What are the differences in the activity and emotional profiles of pharmaceutical companies’ posts in the COVID-19 and the non-COVID-19 communication channels?
- RQ2.
- How did users respond to posts in the two channels in terms of diffusion and emotion enhancement through their retweet activity?
- RQ3.
- Which emotions were triggered in users by posts in the COVID-19 channel?
- RQ4.
- How did users respond to posts with different emotional charges in the COVID-19 channel?
2. Materials and Methods
2.1. Dataset Compilation
2.2. Tools and Techniques
3. Results
3.1. Dataset
3.2. Activity and Emotional Profile of Pharmaceutical Companies’ Posts in the COVID-19 and Non-COVID-19 Communication Channels (RQ1)
3.3. Users’ Response to Pharmaceutical Companies’ Posts in the Non-COVID-19 and the COVID-19 Communication Channels (RQ2)
3.4. Emotions Triggered in Users by Pharmaceutical Companies’ Posts in the COVID-19 Channel (RQ3)
3.5. Users’ Response to Posts with Different Emotional Charges in the COVID-19 Channel (RQ4)
4. Discussion
5. Conclusions
Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Month | Word Frequencies in Companies’ Posts | Word Frequencies in Companies’ Posts Retweeted by Users |
---|---|---|
March 2020 | test (269), id (249), working (116), use (116), today (112), pandemic (109), available (106), week (100), instrument (96), world (91), health (90) | test (45,264), testing (43,749), little (42,112), launching (41,289), frontlines (39,587), rapid (39,267), detect (38,677), breaking (38,462), minute (7447), result (7440) |
April 2020 | patient (450), pandemic (449), health (384), test (330), support (319), help (317), learn (271), time (255), vaccine (254), world (249), medicine (247) | vaccine (17,804), j (15,120), learn (8536), working (8318), test (8075), scientist (7701), virus (7545), develop (7451), pandemic (6648), meet (6152) |
May 2020 | patient (423), pandemic (377), help (302), health (288), support (286), vaccine (277), learn (273), time (207), community (200), new (200), people (188) | vaccine (6021), patient (4539), read (4179), pandemic (4023), learn (4009), impact (2781), health (2482), support (2470), effort (2403), data (2336) |
June 2020 | pandemic (283), patient (270), health (232), learn (217), antibody (180), help (165), vaccine (138), support (137), test (136), community (128), people (128) | vaccine (6783), trial (5440), human (3994), india (3935), developed (3792), biotech (3780), bharat (3762), enters (3759), indigenous (3758), successfully (3758) |
July 2020 | patient (306), health (281), pandemic (279), learn (223), vaccine (222), test (222), help (216), antibody (207), clinical (154), people (144), new (126) | vaccine (7206), study (5575), read (5335), result (3535), investigational (3078), phase (2941), preclinical (2888), trial (2329), protection (2311), dan (2288) |
August 2020 | health (204), pandemic (199), vaccine (195), learn (156), patient (147), help (146), test (116), people (100), care (99), read (97), clinical (89) | vaccine (3201), candidate (1521), help (1221), trial (1202), life (1185), health (1129), app (1064), learn (1039), read (1030), watch (975) |
September 2020 | vaccine (287), patient (284), pandemic (260), health (224), learn (198), help (176), care (127), clinical (126), new (121), today (116), community (115) | vaccine (9014), trial (4420), clinical (3129), scientific (2685), process (2394), developing (2380), commitment (2300), learn (2249), integrity (2218), pledge (2218) |
October 2020 | health (281), pandemic (277), vaccine (205), patient (204), learn (184), help (153), need (109), clinical (106), care (105), global (104), read (103) | vaccine (2901), pandemic (1650), health (1390), patient (1310), help (1160), read (1141), learn (1024), clinical (943), care (942), people (936) |
November 2020 | vaccine (330), health (301), pandemic (232), patient (178), learn (136), worker (128), trial (122), help (122), care (117), clinical (111) | evidence (24,659), efficacy (22,268), candidate (21,939), vaccine (18,735), analysis (16,319), proud (15,260), announce (15,172), along (15,029), interim (14,761), update (13,972) |
December 2020 | vaccine (339), pandemic (212), health (185), learn (145), trial (133), clinical (131), patient (131), new (129), help (128), year (124) | vaccine (16,326), use (4610), happy (4517), argentina (4447), first (3730), team (3291), new (3284), emergency (3254), country (3175), v (3115) |
January 2021 | vaccine (307), pandemic (147), learn (123), health (116), patient (110), help (98), people (90), read (79), trial (69), care (68) | vaccine (25,756), first (9376), announced (8669), read (8620), moderna (8140), republic (7992), variant (7767), africa (7600), neutralizing (7432), south (7323) |
February 2021 | vaccine (350), pandemic (191), patient (153), health (148), learn (134), trial (101), read (100), help (99), care (90), new (87) | vaccine (22,846), sputnik (9559), v (9240), efficacy (7878), data (7161), trial (6965), phase (6922), result (6873), humankind (6794), case (6702) |
March 2021 | vaccine (545), pandemic (248), health (215), contact (178), lilly (168), sputnik (166), hotline (160), v (156), help (144), patient (138) | vaccine (41,220), sputnik (22,098), v (20,242), help (11,405), country (9147), antibody (8951), people (8798), may (8686), treatment (7108), could (7099) |
April 2021 | vaccine (570), tweet (532), request (325), like (321), inform (299), would (293), kindly (293), person (286), connected (281), cipla (273) | sputnik (59,155), vaccine (47,588), v (46,530), first (33,638), production (28,452), country (24,971), effective (17,812), preventing (15,292), manufacture (14,797), latin (14,700) |
May 2021 | govt (469), vaccine (364), contact (349), request (309), hospital (284), latest (253), state (244), per (240), pandemic (239), central (237) | spin (63,621), number (42,517), lung (42,417), hold (42,416), breath (42,414), sputnik (27,168), health (25,254), vaccine (22,602), watch (21,648), quick (21,627) |
June 2021 | vaccine (433), pandemic (231), sputnik (179), patient (172), v (161), health (157), learn (132), help (120), plasma (120), trial (116) | vaccine (22,773), sputnik (11,881), v (10,508), variant (5943), vaccination (5232), country (4680), efficacy (4658), delta (4651), new (4429), today (4114) |
July 2021 | sputnik (520), vaccine (360), v (316), reddy (258), team (247), thank (220), dose (206), pandemic (185), health (173), know (166) | vaccine (15,668), india (7726), trial (7169), sputnik (6846), v (5915), data (5723), doctor (5546), published (5239), efficacy (4840), largest (4727) |
August 2021 | sputnik (484), vaccine (400), v (311), team (256), reddy (198), india (192), partner (172), trial (161), know (158), pandemic (156) | vaccine (13,821), sputnik (8496), v (4862), efficacy (3962), light (3028), breaking (2772), argentina (2767), study (2537), country (2454), health (2427) |
September 2021 | vaccine (478), sputnik (279), v (183), team (167), pandemic (157), please (144), learn (132), health (127), patient (127), reddy (125) | booster (20,628), vaccine (14,436), today (8340), data (8175), positive (7086), mrna (6779), virus (6507), different (6474), respiratory (6400), flu (6395) |
October 2021 | vaccine (421), patient (161), learn (149), sputnik (148), health (147), pandemic (140), trial (135), clinical (128), plasma (102), world (93) | vaccine (21,455), sputnik (12,960), breaking (8236), light (8234), rdif (7500), world (7323), argentina (6894), v (5353), combo (4995), vaccination (4423) |
November 2021 | vaccine (418), pandemic (187), share (187), insight (176), colleague (171), global (144), sputnik (138), pfizer (124), health (122), help (120) | v (17,877), vaccine (16,434), pandemic (16,292), vaccination (15,032), global (14,418), video (13,853), fight (13,665), last (13,629), year (13,584), believe (13,516), |
December 2021 | vaccine (479), sputnik (229), booster (150), mrna (124), pandemic (118), pfizer (118), learn (118), new (110), light (103), study (96) | sputnik (17,520), vaccine (14,324), light (9801), booster (9546), month (4975), antibody (4864), omicron (4548), vaccination (4523), mrna (4502), pfizer (4150) |
January 2022 | vaccine (341), sputnik (260), study (131), pandemic (118), virus (100), team (97), new (93), please (91), pfizer (90), match (86) | study (15,695), vaccine (13,941), candidate (10,270), learn (9775), first (9526), announce (9100), proud (8519), announcement (8490), participant (8397), phase (8366) |
February 2022 | cancer (1554), issue (1519), live (1517), lung (1516), fourth (1512), twitter (1512), newsletter (1512), tap (1512), readreply (1512), vaccine (248) | vaccine (9026), sputnik (5687), light (3116), breaking (2034), people (2025), one (1892), booster (1808), use (1778), child (1690), state (1605) |
March 2022 | vaccine (198), pandemic (121), patient (118), new (116), health (105), learn (100), clinical (86), plasma (84), trial (81), help (65) | vaccine (2691), year (1542), new (1149), patient (1144), study (1057), phase (820), sputnik (800), health (798), learn (755), variant (690) |
April 2022 | vaccine (240), patient (123), health (116), learn (114), new (106), clinical (96), help (88), trial (87), plasma (85), world (72) | vaccine (4031), nasal (2254), year (1555), child (1419), sputnik (1353), world (1295), first (1147), health (1041), month (1003), variant (917) |
May 2022 | sputnik (343), v (225), dose (223), vaccine (195), thank (134), week (125), received (115), administration (115), approved (115), patient (114) | vaccine (4084), country (2981), medicine (2848), health (2530), tested (2362), initiative (2136), gap (2116), rwanda (2114), ghana (2108), close (2103) |
June 2022 | vaccine (133), new (119), plasma (111), learn (96), health (91), patient (81), case (71), pfizer (70), trial (70), clinical (69) | vaccine (3089), new (2454), technology (1598), treatment (1593), disease (1524), get (1420), explore (1372), strategy (1364), using (1362), ahead (1361) |
July 2022 | vaccine (161), new (103), primary (100), case (99), plasma (91), pandemic (89), dose (87), health (77), please (76), hospital (76) | vaccine (1634), novavax (1327), pandemic (1021), new (923), authorized (851), read (843), response (646), health (643), booster (637), case (581) |
August 2022 | vaccine (172), information (130), learn (118), clinical (100), new (86), plasma (86), trial (86), medical (83), health (79), novavax (72) | vaccine (1981), booster (1439), learning (1404), read (1271), learn (978), pandemic (974), get (940), use (886), patient (880), novavax (879) |
September 2022 | vaccine (149), health (142), new (108), plasma (95), trial (94), clinical (88), antibody (78), patient (76), learn (69), monoclonal (68) | vaccine (1327), new (706), year (681), use (643), health (598), booster (512), older (498), learn (487), world (485), age (459) |
Month | Hashtag Frequencies in Companies’ Posts | Hashtag Frequencies in Companies’ Posts Retweeted by Users |
---|---|---|
March 2020 | #TwitchStreamAid (21), #SocialDistancing (20), #ForceForGood (17), #JNJ (15), #NationalDoctorsDay (13), #SanofiActs (12), #CovidMaternity (12), #SteppingUp (12), #StayHome (11), #StaySafe (9), | #JNJ (3394), #NationalDoctorsDay (208), #Hydroxychloroquine (186), #ForceForGood (168), #Azithromycine (166), #sanitizers (166), #SanofiActs (159), #AllInItTogether (144), #WeAreLilly (112), #Thankyou (109), |
April 2020 | #JNJ (71), #StayHome (70), #WorldHealthDay (47), #TogetherAtHome (45), #vaccine (44), #StaySafe (37), #ForceForGood (34), #IndiaFightsCorona (31), #InThisTogether (31), #SanofiActs (29), | #JNJ (7763), #WorldHealthDay (1884), #ForceForGood (1516), #SteppingUp (1409), #BackTheFrontline (1366), #AllInItTogether (1345), #vaccine (1273), #WomenInScience (678), #SanofiActs (456), #FlattenTheCurve (436), |
May 2020 | #JNJ (98), #BackTheFrontline (71), #vaccine (46), #cancer (39), #Zydus (38), #InternationalNursesDay (32), #nurses (29), #ForceForGood (27), #ASCO20 (26), #StrongerTogether (25), | #JNJ (3350), #vaccine (2602), #BackTheFrontline (2315), #mRNA (1799), #MentalHealthMonth (836), #MayIsForMothers (400), #ClinicalTrial (381), #FlattenTheCurve (354), #cancer (304), #nurses (250), |
June 2020 | #BIODigital (78), #Zydus (55), #JNJ (51), #diabetes (23), #vaccine (23), #PATHLiveForum (21), #BackTheFrontline (17), #biomerieuxconnection (16), #cancer (15), #ADA2020 (14), | #BharatBiotech (3760), #COVAXIN (3758), #Collaboration (3758), #Indiafightscorona (3758), #makeinindia (3758), #ICMR (3758), #coronavirusvaccine (3758), #JNJ (1040), #vaccine (411), #BIODigital (367), |
July 2020 | #Zydus (59), #vaccine (53), #JNJ (51), #BackTheFrontline (42), #Itolizumab (30), #DutyOfCare (30), #pandemic (29), #BreakTheChain (26), #HIV (24), #DedicatedToLife (24), | #JNJ (3221), #vaccine (2385), #mRNA (1245), #science (1129), #BharatBiotech (1119), #Indiafightscorona (1110), #VaccineTrials (1102), #ClinicalTrials (1096), #Vaccine (1096), #Innovation (1091), |
August 2020 | #Zydus (44), #vaccine (42), #DedicatedToLife (38), #JNJ (31), #cancer (26), #BreakTheChain (22), #BackTheFrontline (21), #NVXCoV2373 (21), #WorldMaskWeek (20), #WearAMask (20), | #vaccine (747), #WeWontRest (610), #NVXCoV2373 (394), #SII (381), #LatestNews (349), #JNJ (332), #Favipiravir (125), #CAREvsCOVID (124), #VaccinesWork (123), #JanssenNeverStops (117), |
September 2020 | #JNJ (48), #vaccine (31), #VaccinesWork (30), #WeStandWithScience (28), #cancer (25), #UNGA75 (24), #SARSCoV2 (18), #UNGA (18), #TB (17), #pandemic (16), | #JNJ (3017), #WeStandWithScience (2460), #SII (872), #Latestnews (872), #vaccine (522), #SARSCoV2 (382), #EASD2020 (284), #BharatBiotech (269), #COVAXIN (269), #Safety (266), |
October 2020 | #JNJ (35), #vaccine (29), #WorldMentalHealthDay (26), #BackTheFrontline (23), #VaccinesWork (18), #BacktheFrontline (18), #LetsEndShortages (17), #EUPharmaStrategy (16), #mentalhealth (16), #biomerieuxconnection (16), | #vaccine (359), #WeWontRest (341), #NewNormalSameCancer (307), #JNJ (263), #clinicaltrials (262), #PatientsAreOurPurpose (254), #BacktheFrontline (254), #COVAXIN (236), #BharatBiotech (234), #indiafightscorona (234), |
November 2020 | #BackTheFrontline (75), #BacktheFrontline (44), #SputnikV (39), #vaccine (35), #AMR (22), #cancer (20), #VaccinesWork (20), #pandemic (19), #STATSummit (19), #StrongerTogether (18), | #vaccine (12,619), #SputnikV (1843), #EUA (440), #JNJ (411), #ScienceWillWin (387), #SputnikVhttps (344), #Alpha1Awareness (261), #mRNA (255), #BackTheFrontline (234), #BacktheFrontline (229), |
December 2020 | #SputnikV (106), #Zydus (31), #DedicatedToLife (31), #vaccine (27), #JNJ (27), #BackTheFrontline (26), #pandemic (24), #UHCDay (20), #cancer (16), #WorldAIDSDay (14), | #SputnikV (9808), #SputnikV4Victory (2194), #vaccine (556), #HayVacunaHayFuturo (357), #mRNA (339), #WhatScienceCanDo (313), #CovidVaccine (264), #BNT162b2 (230), #covidvaccine (218), #JNJ (193), |
January 2021 | #SputnikV (55), #vaccine (26), #VaccinesWork (20), #biomerieuxconnection (15), #JNJ (14), #VaccinesAreVital (13), #cancer (12), #JPM2021 (11), #CES2021 (10), #BharatBiotech (9), | #SputnikV (6897), #BharatBiotech (1942), #VaccinesWithoutPolitics (1847), #COVAXIN (1800), #IndiaFightsCorona (812), #SARS_CoV_2 (720), #MakeInIndia (719), #JNJ (596), #bioRxiv (364), #COVISHIELD (239), |
February 2021 | #SputnikV (101), #vaccine (38), #cancer (33), #WorldCancerDay (17), #JNJ (16), #ScienceWillWin (15), #RocheInnovation (14), #pandemic (13), #progressinmind (12), #healthcare (10), | #SputnikV (17,540), #vaccine (746), #ScienceWillWin (514), #COVAXIN (490), #SputnikVaccinated (438), #VaccinesWork (295), #sputnikvaccinated (288), #SARSCoV2 (268), #BharatBiotech (248), #Partnership (248), |
March 2021 | #SputnikV (97), #vaccine (37), #pandemic (23), #IWD2021 (23), #JNJ (19), #ChooseToChallenge (15), #WorldTBDay (15), #BackTheFrontline (14), #LivingInnovation (14), #ScienceWillWin (13), | #SputnikV (10,731), #SputnikVaccinated (1489), #sputnikvaccinated (1037), #PfizerProud (716), #COVAXIN (599), #vaccine (573), #CovidVaccine (556), #Covid (422), #BackTheFrontline (414), #BharatBiotech (397), |
April 2021 | #SputnikV (95), #Remdesivir (65), #Tocilizumab (61), #WorldImmunizationWeek (54), #VaccinesWork (52), #vaccine (39), #WorldHealthDay (32), #LivingInnovation (27), #WIW2021 (26), #ModernaVaccinesDay (19), | #SputnikV (42,122), #SputnikVaccinated (2059), #Serbia (1567), #COVAXIN (1078), #COVAX (936), #WIW2021 (877), #LeadWithLove (850), #VaxLive (823), #India (644), #Phase3 (637), |
May 2021 | #Remdesivir (234), #Tocilizumab (233), #SputnikV (90), #LivingInnovation (29), #vaccine (19), #CSLPlasma (18), #DonatePlasma (18), #CTD2021 (18), #JNJ (18), #News (14), | #Lungs (21,207), #LungTest (21,207), #ExpertDoctor (21,207), #SputnikV (15,806), #vaccine (6287), #COVAXIN (3577), #BharatBiotech (3429), #IndiaGetVaccinated (3036), #Argentina (2983), #India (1228), |
June 2021 | #SputnikV (99), #vaccine (27), #LivingInnovation (26), #ASCO21 (23), #CSLPlasma (21), #PlasmaDonorsSaveLives (20), #DonatePlasma (20), #BIODigital (16), #clinicaltrial (13), #Argentina (13), | #SputnikV (13,530), #Argentina (3183), #COVAXIN (1397), #BharatBiotech (1133), #announce (1097), #data (1097), #publications (1097), #covaxinpublications (1097), #India (857), #WATCH (656), |
July 2021 | #SputnikV (60), #Sunkalp (31), #doctorsday2021 (29), #nationaldoctorsday (29), #vaccine (19), #PlasmaDonorsSaveLives (19), #DonatePlasma (17), #CSLPlasma (14), #LivingInnovation (11), #JNJ (11), | #SputnikV (7286), #Sunkalp (1828), #doctorsday2021 (1822), #nationaldoctorsday (1822), #DeltaVariant (1459), #antiviral (1208), #Argentina (837), #Chile (708), #vaccine (401), #COVIDVaccine (373), |
August 2021 | #SputnikV (29), #vaccine (29), #PlasmaDonorsSaveLives (21), #Vaccines (17), #CSLPlasma (15), #Covid (15), #DonatePlasma (14), #biomerieuxconnection (14), #mRNA (12), #ScienceCantWinWithoutYou (12), | #SputnikV (2694), #COVAXIN (975), #vaccine (923), #BharatBiotech (882), #Delta (824), #Zydus (638), #zycovd (638), #atmanirbharbharat (638), #worldsfirstdnavaccine (638), #dnavaccine (638), |
September 2021 | #SputnikV (33), #vaccine (25), #Pharmacists (19), #mentalhealth (17), #BacktoSchool (15), #mRNA (13), #IDWeek2021 (13), #PlasmaDonorsSaveLives (12), #LivingInnovation (11), #BloodCancerAwarenessMonth (11), | #mRNA (6555), #SputnikV (2457), #sputnikvaccinated (711), #Venezuela (534), #ParivartanKaTeeka (440), #COVAXIN (325), #caringforlife (277), #vaccine (264), #Pakistan (215), #SunPharma (184), |
October 2021 | #SputnikV (63), #multiplemyeloma (37), #vaccine (34), #PlasmaDonorsSaveLives (19), #JNJ (17), #DonatePlasma (14), #IPAW21 (11), #HIV (11), #LivingInnovation (10), #BreastCancerAwarenessMonth (10), | #SputnikV (8492), #antiviral (1145), #Roche125 (826), #RocheLifeTalks (823), #CelebrateLife (823), #COVID19vaccine (493), #ValuingVaccines (449), #HIV (430), #EACS2021 (399), #vaccine (324), |
November 2021 | #alwayscurious (90), #survey (80), #pandemic (27), #vaccine (24), #LivingInnovation (23), #SputnikV (22), #antiviral (12), #AMR (10), #mRNA (10), #WAAW (9), | #SputnikV (15,947), #antiviral (3728), #covaxin (3187), #Indianinnovationglobalvalidation (2015), #indiasfirstindigenouscovidvaccine (2015), #1 (1703), #Omicron (1446), #vaccine (1404), #BharatBiotech (1198), #thelancet (1142), |
December 2021 | #Omicron (92), #SputnikV (22), #vaccine (20), #VaccinesWork (17), #investors (16), #media (16), #DotheAmazing (16), #LivingInnovation (15), #News (14), #antiviral (14), | #Omicron (6912), #SputnikV (2393), #BharatBiotech (2039), #vaccine (1785), #covaxin (1519), #pandemic (1380), #covaxinapproval (1293), #childrensafety (1293), #safety (991), #covid (690), |
January 2022 | #Omicron (153), #vaccine (27), #Pfizer (22), #mRNA (18), #SputnikV (14), #Covid (10), #DotheAmazing (9), #plasma (9), #AMR (9), #JNJ (9), | #vaccine (16,680), #mRNA (9780), #Omicron (8920), #HIV (8129), #BharatBiotech (6488), #Covaxin (3832), #SputnikV (3056), #boosterdose (2737), #SARS_CoV_2 (1933), #deltavariant (1707), |
February 2022 | #stop (1512), #Omicron (44), #BlackHistoryMonth (16), #vaccine (13), #DotheAmazing (12), #DonatePlasma (12), #plasma (10), #WorldCancerDay (10), #RareDiseaseDay (9), #SputnikV (7), | #Omicron (1591), #vaccine (1565), #COVID19vaccine (662), #BharatBiotech (552), #COVAXIN (552), #clinicaltrial (488), #VaccineMandate (482), #bbv152 (482), #Pandemic (482), #bharatbiotech (332), |
March 2022 | #vaccine (33), #Omicron (22), #DotheAmazing (17), #plasma (14), #mRNA (12), #DonatePlasma (11), #LivingInnovation (8), #AstraZeneca (8), #VaccinesDay (8), #LongCOVID (8), | #vaccine (873), #Omicron (429), #mRNA (307), #SOTU (192), #VaccinesDay (173), #HIV (168), #LongCOVID (109), #respiratory (90), #SputnikV (68), #ICYMI (61), |
April 2022 | #WorldImmunizationWeek (52), #vaccine (27), #Omicron (26), #WHWWeek (13), #LivingInnovation (13), #VaccinesWork (13), #LongLifeForAll (13), #WVCDC (12), #WIW2022 (12), #ECCMID2022 (11), | #Omicron (901), #BharatBiotech (537), #COVAXIN (537), #vaccine (442), #EUA (332), #covaxinapproval (321), #chidrensafety (321), #bbv152 (321), #childrenvaccine (321), #india (321), |
May 2022 | #Omicron (28), #vaccine (27), #MDS (13), #LivingInnovation (12), #DotheAmazing (10), #HealthEquity (9), #VaccinesWork (8), #DonatePlasma (8), #clinicaltrials (7), #VaccinesForLife (7), | #healthequity (1168), #HealthEquity (955), #WEF22 (955), #vaccine (736), #BharatBiotech (404), #Omicron (357), #COVAXIN (281), #hypertension (221), #BecauseIsayso (221), #CheckYourPressure (221), |
June 2022 | #Omicron (40), #vaccine (29), #JNJ (18), #DonatePlasma (11), #BIO2022 (11), #DoTheAmazing (10), #ASCO22 (9), #EHMA2022 (9), #mRNA (8), #HealthforHumanity (8), | #innovation (1356), #Omicron (1203), #booster (833), #vaccine (607), #BharatBiotech (189), #leadinnovation (189), #Covaxin (150), #Covaxin4Kids (150), #sarscov2 (150), #covaxinforchildren (150), |
July 2022 | #Omicron (47), #vaccine (23), #JNJ (11), #DonatePlasma (10), #DoTheAmazing (8), #mRNA (7), #SixDegreesOfInnovation (7), #InnovateForLife (7), #DotheAmazing (5), #diabetes (5), | #Omicron (691), #vaccine (641), #COVID-19vaccine (466), #booster (258), #BA4 (256), #BA5 (256), #covaxin (192), #mRNA (160), #BharatBiotech (142), #covaxinapproval (100), |
August 2022 | #vaccine (30), #NIAM (16), #Omicron (16), #DonatePlasma (13), #AheadTogether (8), #JNJ (8), #NIAM22 (7), #DoTheAmazing (7), #VaccinesWork (6), #LongCOVID (6), | #vaccine (1028), #Omicron (684), #BharatBiotech (243), #bivalent (242), #booster (186), #COVID-19vaccine (136), #bbv154 (136), #intranasalvaccine (136), #HIV (113), #mRNA (109), |
September 2022 | #vaccine (35), #UNGA77 (23), #UNGA (23), #WhatScienceCanDo (19), #Omicron (16), #LongCOVID (13), #cancer (12), #DonatePlasma (11), #PATHatUNGA (11), #thecarecontinues (10), | #vaccine (626), #BharatBiotech (317), #VaccinesWork (295), #incovacc (292), #intranasalvaccine (292), #COVID-19Vaccine (292), #worldsfirstintranasalvaccine (292), #vaccineapproval (292), #India (292), #Omicron (270), |
Appendix B
References
- History’s Deadliest Pandemics, from Ancient Rome to Modern America. Available online: https://www.washingtonpost.com/graphics/2020/local/retropolis/coronavirus-deadliest-pandemics/ (accessed on 25 September 2023).
- Gallotti, R.; Valle, F.; Castaldo, N.; Sacco, P.; De Domenico, M. Assessing the Risks of ‘Infodemics’ in Response to COVID-19 Epidemics. Nat. Hum. Behav. 2020, 4, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Let’s Flatten the Infodemic Curve. Available online: https://www.who.int/news-room/spotlight/let-s-flatten-the-infodemic-curve (accessed on 18 September 2023).
- Managing the COVID-19 Infodemic: Promoting Healthy Behaviours and Mitigating the Harm from Misinformation and Disinformation. Available online: https://www.who.int/news/item/23-09-2020-managing-the-covid-19-infodemic-promoting-healthy-behaviours-and-mitigating-the-harm-from-misinformation-and-disinformation (accessed on 13 September 2023).
- Zhong, B.; Huang, Y.; Liu, Q. Mental Health Toll from the Coronavirus: Social Media Usage Reveals Wuhan Residents’ Depression and Secondary Trauma in the COVID-19 Outbreak. Comput. Hum. Behav. 2021, 114, 106524. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.; Lodha, P. Social Connectedness, Excessive Screen Time during COVID-19 and Mental Health: A Review of Current Evidence. Front. Hum. Dyn. 2021, 3, 684137. [Google Scholar] [CrossRef]
- Tagliabue, F.; Galassi, L.; Mariani, P. The “Pandemic” of Disinformation in COVID-19. SN Compr. Clin. Med. 2020, 2, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Jamison, A.M.; Broniatowski, D.A.; Dredze, M.; Sangraula, A.; Smith, M.C.; Quinn, S.C. Not Just Conspiracy Theories: Vaccine Opponents and Proponents Add to the COVID-19 ‘Infodemic’ on Twitter. HKS Misinf. Rev. 2020, 1. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, J.; Pal, A.; Yu, K.; Chen, F.; Yu, S. Analysis and Insights for Myths Circulating on Twitter during the COVID-19 Pandemic. IEEE Open J. Comput. Soc. 2020, 1, 209–219. [Google Scholar] [CrossRef]
- Muñoz-Sastre, D.; Rodrigo-Martín, L.; Rodrigo-Martín, I. The Role of Twitter in the WHO’s Fight against the Infodemic. IJERPH 2021, 18, 11990. [Google Scholar] [CrossRef]
- Rufai, S.R.; Bunce, C. World Leaders’ Usage of Twitter in Response to the COVID-19 Pandemic: A Content Analysis. J. Public Health 2020, 42, 510–516. [Google Scholar] [CrossRef]
- Haman, M. The Use of Twitter by State Leaders and Its Impact on the Public during the COVID-19 Pandemic. Heliyon 2020, 6, e05540. [Google Scholar] [CrossRef]
- Rao, H.R.; Vemprala, N.; Akello, P.; Valecha, R. Retweets of Officials’ Alarming vs Reassuring Messages during the COVID-19 Pandemic: Implications for Crisis Management. Int. J. Inf. Manag. 2020, 55, 102187. [Google Scholar] [CrossRef]
- Chan, T.M.; Dzara, K.; Dimeo, S.P.; Bhalerao, A.; Maggio, L.A. Social Media in Knowledge Translation and Education for Physicians and Trainees: A Scoping Review. Perspect. Med. Educ. 2019, 9, 20–30. [Google Scholar] [CrossRef]
- Rosenberg, H.; Syed, S.; Rezaie, S. The Twitter Pandemic: The Critical Role of Twitter in the Dissemination of Medical Information and Misinformation during the COVID-19 Pandemic. CJEM 2020, 22, 418–421. [Google Scholar] [CrossRef]
- Sinnenberg, L.; Buttenheim, A.M.; Padrez, K.; Mancheno, C.; Ungar, L.; Merchant, R.M. Twitter as a Tool for Health Research: A Systematic Review. Am. J. Public Health 2017, 107, e1–e8. [Google Scholar] [CrossRef]
- Edo-Osagie, O.; De La Iglesia, B.; Lake, I.; Edeghere, O. A Scoping Review of the Use of Twitter for Public Health Research. Comput. Biol. Med. 2020, 122, 103770. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.J.; Malik, A.K.; Qamar, N.; Yar, S.; Malik, A.J.; Rauf, U. A Survey on COVID-19 Data Analysis Using AI, IoT, and Social Media. Sensors 2023, 23, 5543. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.-F.; Chen, H.; Tisseverasinghe, T.; Yang, Y.; Li, L.; Butt, Z.A. What Social Media Told Us in the Time of COVID-19: A Scoping Review. Lancet Digit. Health 2021, 3, e175–e194. [Google Scholar] [CrossRef]
- Bhat, M.; Qadri, M.; Beg, N.-A.; Kundroo, M.; Ahanger, N.; Agarwal, B. Sentiment Analysis of Social Media Response on the COVID-19 Outbreak. Brain Behav. Immun. 2020, 87, 136–137. [Google Scholar] [CrossRef]
- Martinez, L.S.; Savage, M.W.; Jones, E.; Mikita, E.; Yadav, V.; Tsou, M.-H. Examining Vaccine Sentiment on Twitter and Local Vaccine Deployment during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2023, 20, 354. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, S.; Yu, X.; Xu, H. Chinese Public’s Attention to the COVID-19 Epidemic on Social Media: Observational Descriptive Study. J. Med. Internet Res. 2020, 22, e18825. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Yang, S.; Li, J. Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using Social Media. In Advanced Data Mining and Applications; Yang, X., Wang, C.-D., Islam, M.S., Zhang, Z., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12447, pp. 610–623. ISBN 978-3-030-65389-7. [Google Scholar]
- Wicke, P.; Bolognesi, M.M. COVID-19 Discourse on Twitter: How the Topics, Sentiments, Subjectivity, and Figurative Frames Changed over Time. Front. Commun. 2021, 6, 651997. [Google Scholar] [CrossRef]
- Qorib, M.; Oladunni, T.; Denis, M.; Ososanya, E.; Cotae, P. COVID-19 Vaccine Hesitancy: A Global Public Health and Risk Modelling Framework Using an Environmental Deep Neural Network, Sentiment Classification with Text Mining and Emotional Reactions from COVID-19 Vaccination Tweets. Int. J. Environ. Res. Public Health 2023, 20, 5803. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Wang, S.; Luo, W.; Zhang, M.; Huang, X.; Yan, Y.; Liu, R.; Ly, K.; Kacker, V.; She, B.; et al. Revealing Public Opinion Towards COVID-19 Vaccines with Twitter Data in the United States: Spatiotemporal Perspective. J. Med. Internet Res. 2021, 23, e30854. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.C.; Han, E.L.; Luli, G.K. COVID-19 Vaccine–Related Discussion on Twitter: Topic Modeling and Sentiment Analysis. J. Med. Internet Res. 2021, 23, e24435. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, G.; Maione, C.; Yang, H.; Zaballa, K.; Bonnici, N.; Carter, J.; Spitzberg, B.H.; Jin, C.; Tsou, M.-H. Social Network Analysis of COVID-19 Sentiments: 10 Metropolitan Cities in Italy. IJERPH 2022, 19, 7720. [Google Scholar] [CrossRef] [PubMed]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Ntompras, C.; Drosatos, G.; Kaldoudi, E. A High-Resolution Temporal and Geospatial Content Analysis of Twitter Posts Related to the COVID-19 Pandemic. J. Comput. Soc. Sci. 2022, 5, 687–729. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.W.H.; Vadde, S.K.; Wang, G. Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis. J. Med. Internet Res. 2021, 23, e26953. [Google Scholar] [CrossRef] [PubMed]
- Biopharma Leaders Unite to Stand with Science|Pfizer. Available online: https://www.pfizer.com/news/press-release/press-release-detail/biopharma-leaders-unite-stand-science (accessed on 13 September 2023).
- Agley, J. Assessing Changes in US Public Trust in Science amid the COVID-19 Pandemic. Public Health 2020, 183, 122–125. [Google Scholar] [CrossRef]
- Pew Research Center. Americans’ Trust in Scientists, Other Groups Declines; Pew Research Center: Washington, DC, USA, 2022. [Google Scholar]
- Pew Research Center. Intent to Get a COVID-19 Vaccine Rises to 60% as Confidence in Research and Development Process Increases; Pew Research Center: Washington, DC, USA, 2020. [Google Scholar]
- Carayannis, E.G.; Campbell, D.F.J. “Mode 3” and “Quadruple Helix”: Toward a 21st Century Fractal Innovation Ecosystem. Int. J. Technol. Manag. 2009, 46, 201–234. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Barth, T.D.; Campbell, D.F. The Quintuple Helix Innovation Model: Global Warming as a Challenge and Driver for Innovation. J. Innov. Entrep. 2012, 1, 2. [Google Scholar] [CrossRef]
- PandeVITA. Available online: https://pandevita.eu/ (accessed on 28 September 2023).
- Braig, N.; Benz, A.; Voth, S.; Breitenbach, J.; Buettner, R. Machine Learning Techniques for Sentiment Analysis of COVID-19-Related Twitter Data. IEEE Access 2023, 11, 14778–14803. [Google Scholar] [CrossRef]
- Gianfredi, V.; Provenzano, S.; Santangelo, O.E. What Can Internet Users’ Behaviours Reveal about the Mental Health Impacts of the COVID-19 Pandemic? A Systematic Review. Public Health 2021, 198, 44–52. [Google Scholar] [CrossRef]
- List of Pharmaceutical Companies—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=List_of_pharmaceutical_companies&oldid=1102115827 (accessed on 3 August 2022).
- Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hamdi, M.; Shah, Z. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. J. Med. Internet Res. 2020, 22, e19016. [Google Scholar] [CrossRef]
- Drescher, L.S.; Roosen, J.; Aue, K.; Dressel, K.; Schär, W.; Götz, A. The Spread of COVID-19 Crisis Communication by German Public Authorities and Experts on Twitter: Quantitative Content Analysis. JMIR Public Health Surveill. 2021, 7, e31834. [Google Scholar] [CrossRef]
- Colneric, N.; Demsar, J. Emotion Recognition on Twitter: Comparative Study and Training a Unison Model. IEEE Trans. Affect. Comput. 2020, 11, 433–446. [Google Scholar] [CrossRef]
- Sharma, A.; Ghose, U. Sentimental Analysis of Twitter Data with Respect to General Elections in India. Procedia Comput. Sci. 2020, 173, 325–334. [Google Scholar] [CrossRef]
- Wang, J.; Wei, L. Fear and Hope, Bitter and Sweet: Emotion Sharing of Cancer Community on Twitter. Soc. Media Soc. 2020, 6, 205630511989731. [Google Scholar] [CrossRef]
- Saleh, S.N.; Lehmann, C.U.; McDonald, S.A.; Basit, M.A.; Medford, R.J. Understanding Public Perception of Coronavirus Disease 2019 (COVID-19) Social Distancing on Twitter. Infect. Control Hosp. Epidemiol. 2021, 42, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Medford, R.J.; Saleh, S.N.; Sumarsono, A.; Perl, T.M.; Lehmann, C.U. An “Infodemic”: Leveraging High-Volume Twitter Data to Understand Early Public Sentiment for the Coronavirus Disease 2019 Outbreak. Open Forum Infect. Dis. 2020, 7, ofaa258. [Google Scholar] [CrossRef] [PubMed]
- Chehal, D.; Gupta, P.; Gulati, P. COVID-19 Pandemic Lockdown: An Emotional Health Perspective of Indians on Twitter. Int. J. Soc. Psychiatry 2021, 67, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Barkur, G.; Vibha; Kamath, G.B. Sentiment Analysis of Nationwide Lockdown Due to COVID 19 Outbreak: Evidence from India. Asian J. Psychiatry 2020, 51, 102089. [Google Scholar] [CrossRef] [PubMed]
- Avasthi, S.; Chauhan, R.; Acharjya, D.P. Information Extraction and Sentiment Analysis to Gain Insight into the COVID-19 Crisis. In International Conference on Innovative Computing and Communications; Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2022; Volume 1387, pp. 343–353. ISBN 9789811625930. [Google Scholar]
- Zhou, J.; Yang, S.; Xiao, C.; Chen, F. Examination of Community Sentiment Dynamics Due to COVID-19 Pandemic: A Case Study from a State in Australia. SN Comput. Sci. 2021, 2, 201. [Google Scholar] [CrossRef] [PubMed]
- Vijay, T.; Chawla, A.; Dhanka, B.; Karmakar, P. Sentiment Analysis on COVID-19 Twitter Data. In Proceedings of the 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 1–3 December 2020; IEEE: Jaipur, India, 2020; pp. 1–7. [Google Scholar]
- Garcia, K.; Berton, L. Topic Detection and Sentiment Analysis in Twitter Content Related to COVID-19 from Brazil and the USA. Appl. Soft Comput. 2021, 101, 107057. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Song, X.; Yang, S.; Li, J. Sentiment Analysis and Topic Modeling for COVID-19 Vaccine Discussions. World Wide Web 2022, 25, 1067–1083. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, J.; Moctezuma, D.; Fernández-Isabel, A.; Martín De Diego, I. Detecting Emotional Evolution on Twitter during the COVID-19 Pandemic Using Text Analysis. IJERPH 2021, 18, 6981. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Wu, J.; Yuan, A.; Wu, F.; Li, J. Analyzing COVID-19 on Online Social Media: Trends, Sentiments and Emotions. arXiv 2020, arXiv:2005.14464. [Google Scholar] [CrossRef]
- Lee, S.J.; Kishore, S.; Lim, J.; Paas, L.; Ahn, H.S. Overwhelmed by Fear: Emotion Analysis of COVID-19 Vaccination Tweets. In Proceedings of the TENCON 2021–2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021; IEEE: Auckland, New Zealand, 2021; pp. 429–434. [Google Scholar]
- Boon-Itt, S.; Skunkan, Y. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study. JMIR Public Health Surveill. 2020, 6, e21978. [Google Scholar] [CrossRef]
- Ahn, H.S.; Lee, D.-W.; Choi, D.; Lee, D.-Y.; Hur, M.; Lee, H. Appropriate Emotions for Facial Expressions of 33-DOFs Android Head EveR-4 H33. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; IEEE: Paris, France, 2012; pp. 1115–1120. [Google Scholar]
Pharmaceutical Companies’ Activity | Non-COVID-19 | COVID-19 | ||
---|---|---|---|---|
Total | English | Total | English | |
Original tweets | 241,971 | 156,052 | 41,886 | 27,723 |
Retweets | 40,132 | 24,806 | 8413 | 6054 |
Replies | 47,286 | 29,364 | 7789 | 5925 |
Quotes | 17,827 | 12,477 | 7048 | 5073 |
Total interactions | 347,216 | 222,699 | 65,136 | 44,775 |
Public’s Response | Non-COVID-19 | COVID-19 |
---|---|---|
Retweets | 828,552 | 921,121 |
Replies | 262,838 | 250,578 |
Quotes | 135,993 | 195,357 |
Total interactions | 1,227,383 | 1,367,056 |
Retrieved Public’s Response (In English) | COVID-19 |
---|---|
Replies | 195,597 |
Quotes | 60,650 |
Total | 256,247 |
Channel | Number of Posts | Anger | Disgust | Fear | Joy | Sadness | Surprise | Neutral |
---|---|---|---|---|---|---|---|---|
non-COVID-19 | 197,904 | 0.0072 | 0.0023 | 0.0642 | 0.4583 | 0.0102 | 0.0949 | 0.3629 |
COVID-19 | 38,721 | 0.0081 | 0.0046 | 0.0778 | 0.4053 | 0.0148 | 0.0694 | 0.4199 |
Channel | Pharmaceutical Companies’ Tweets | Public’s Response | Response Ratio |
---|---|---|---|
non-COVID-19 | 307,084 | 1,227,383 | 4.00 |
COVID-19 | 56,723 | 1,367,056 | 24.10 |
Channel | Type | Average Rates | ||||
---|---|---|---|---|---|---|
Like | Quote | Reply | Retweet | Total | ||
non-COVID-19 | Original | 18.37 | 0.53 | 0.96 | 3.20 | 23.06 |
Quote | 5.30 | 0.11 | 0.33 | 1.49 | 7.23 | |
Reply | 3.38 | 0.10 | 0.53 | 0.60 | 4.61 | |
COVID-19 | Original | 80.60 | 4.35 | 5.46 | 19.95 | 110.35 |
Quote | 25.48 | 0.65 | 1.15 | 6.11 | 33.39 | |
Reply | 22.01 | 1.09 | 1.77 | 5.47 | 30.33 |
Channel | Emotional Profile | Anger | Disgust | Fear | Joy | Sadness | Surprise | Neutral |
---|---|---|---|---|---|---|---|---|
non-COVID-19 | Pharmaceutical companies | 0.0072 | 0.0023 | 0.0642 | 0.4583 | 0.0102 | 0.0949 | 0.3629 |
Users’ promotion | 0.0068 | 0.0019 | ↑0.0788 | ↓0.4206 | 0.0105 | 0.0923 | ↑0.3890 | |
COVID-19 | Pharmaceutical companies | 0.0081 | 0.0046 | 0.0778 | 0.4053 | 0.0148 | 0.0694 | 0.4199 |
Users’ promotion | 0.0044 | 0.0028 | ↑0.0927 | 0.4093 | 0.0109 | ↑0.0889 | ↓0.3910 |
Public’s Reaction | Anger | Disgust | Fear | Joy | Sadness | Surprise | Neutral |
---|---|---|---|---|---|---|---|
Quotes | 0.0296 | 0.0115 | 0.1463 | 0.2830 | 0.0630 | 0.2619 | 0.2046 |
% change due to retweets | ↓−47.29% | ↓−41.97% | ↓−16.66% | ↑+08.12% | ↓−40.94% | ↓−30.30% | ↑+61.29% |
Retweeted quotes | 0.0156 | 0.0067 | 0.1220 | 0.3060 | 0.0372 | 0.1826 | 0.3300 |
Replies | 0.0307 | 0.0135 | 0.1830 | 0.1779 | 0.0695 | 0.2603 | 0.2651 |
% change due to retweets | ↓−21.54% | ↓−16.97% | ↓−09.07% | ↑+11.00% | ↓−24.77% | ↓−20.69% | ↑+29.05% |
Retweeted replies | 0.0241 | 0.0112 | 0.1664 | 0.1975 | 0.0523 | 0.2064 | 0.3421 |
Post Class | Number of Posts | Average Rates | ||||
---|---|---|---|---|---|---|
Like | Quote | Reply | Retweet | Total | ||
Fear | 1307 | 127.48 | 4.30 | 8.05 | 29.61 | 169.44 |
Joy | 14,224 | 82.63 | 5.27 | 5.70 | 20.89 | 114.49 |
Surprise | 1177 | 102.01 | 3.98 | 6.07 | 22.40 | 134.45 |
Neutral | 22,027 | 77.84 | 4.06 | 5.66 | 18.45 | 106.01 |
Class of Posts | Source | Number of Posts | Average Circulated Emotion | ||||||
---|---|---|---|---|---|---|---|---|---|
Anger | Disgust | Fear | Joy | Sadness | Surprise | Neutral | |||
Fear | Pharmaceutical companies | 1307 | 0.0126 | 0.0076 | 0.6577 | 0.0691 | 0.0108 | 0.0575 | 0.1848 |
Users’ retweets | 38,695 | 0.0129 | 0.0089 | ↓0.5723 | 0.0781 | 0.0120 | ↑0.0925 | ↑0.2233 | |
Joy | Pharmaceutical companies | 14,224 | 0.0008 | 0.0001 | 0.0108 | 0.7478 | 0.0018 | 0.0272 | 0.2115 |
Users’ retweets | 297,141 | 0.0016 | 0.0004 | ↑0.0209 | 0.7534 | 0.0042 | ↑0.0445 | ↓0.1750 | |
Surprise | Pharmaceutical companies | 1177 | 0.0138 | 0.0143 | 0.1277 | 0.1361 | 0.0331 | 0.6387 | 0.0363 |
Users’ retweets | 26,362 | 0.0151 | 0.0158 | ↑0.1438 | ↑0.1465 | 0.0343 | ↓0.6123 | 0.0321 | |
Neutral | Pharmaceutical companies | 22,027 | 0.0118 | 0.0067 | 0.0847 | 0.2189 | 0.0222 | 0.0673 | 0.5885 |
Users’ retweets | 406,320 | 0.0049 | 0.0032 | ↑0.0967 | ↓0.2066 | 0.0139 | ↑0.0871 | 0.5877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyftopoulos, S.; Drosatos, G.; Fico, G.; Pecchia, L.; Kaldoudi, E. Analysis of Pharmaceutical Companies’ Social Media Activity during the COVID-19 Pandemic and Its Impact on the Public. Behav. Sci. 2024, 14, 128. https://doi.org/10.3390/bs14020128
Gyftopoulos S, Drosatos G, Fico G, Pecchia L, Kaldoudi E. Analysis of Pharmaceutical Companies’ Social Media Activity during the COVID-19 Pandemic and Its Impact on the Public. Behavioral Sciences. 2024; 14(2):128. https://doi.org/10.3390/bs14020128
Chicago/Turabian StyleGyftopoulos, Sotirios, George Drosatos, Giuseppe Fico, Leandro Pecchia, and Eleni Kaldoudi. 2024. "Analysis of Pharmaceutical Companies’ Social Media Activity during the COVID-19 Pandemic and Its Impact on the Public" Behavioral Sciences 14, no. 2: 128. https://doi.org/10.3390/bs14020128
APA StyleGyftopoulos, S., Drosatos, G., Fico, G., Pecchia, L., & Kaldoudi, E. (2024). Analysis of Pharmaceutical Companies’ Social Media Activity during the COVID-19 Pandemic and Its Impact on the Public. Behavioral Sciences, 14(2), 128. https://doi.org/10.3390/bs14020128