Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders
Abstract
:1. Introduction
2. Neurotensin and Schizophrenia
2.1. Overview
2.2. Antipsychotic Drugs (APDs)
2.3. Neurotensin and Dopaminergic Neurotransmission
2.4. Neurotensin and Glutamatergic Neurotransmission
2.5. Neurotensin and APDs
Effect | Typical APD | Atypical APD |
---|---|---|
mRNA expression | ↑ NT mRNA in DL striatum & NA [104,106,109] | NT mRNA in NA [106,109] |
↑ NT mRNA in neostriatum [107] | ||
↑NT mRNA in SN/VTA [110] | No change in SN/VTA [110] | |
NT receptor binding | ↑ NTR binding in SN [104] | ↓ NTR binding in SN & NA [104] |
↑ receptor density [111] | ↓ receptor density [111] | |
NT release | ↑ NT release in NA & striatum [112] | ↑ NT release in NA [112] |
NT tissue concentration | ↑ NT levels in NA & caudate [104,105,113,114,115,116,117] | ↑ NT levels in caudate [114] |
↑ NT-IR in NA [118,119] | ||
↑ NT-IR in striatum [120] | ↑ NT-IR in Vstriatum & mPFC [120] |
2.6. Neurotensin Analogs in Animal Models of Psychosis
Study | Reference |
---|---|
Blockade of apomorphine-induced climbing | [125,126,133] |
Increase in vacuous chewing movement | [127] |
Reversal of drug-induced disruption of PPI | [129,134,135,136,137,138,139,140,141,142] |
Decrease conditioned avoidance behavior | [143] |
Enhance latent inhibition | [144,145] |
Attenuate amphetamine-induced activity | [146] |
2.7. Neurotensin Levels in Patients with Schizophrenia
Finding | Reference |
---|---|
↓ CSF NT levels in drug free schizophrenic patients | [156,157,158,159,160] |
↓ in CSF NT levels correlated with severe psychopathology | [161] |
↑ CSF NT levels positively correlated with improving negative symptoms of schizophrenia | [159,161] |
2.8. Potential Side Effects of NT Analogs
3. Neurotensin and Substance Abuse
3.1. Overview
3.2. Neurotensin and Psychostimulants
3.3. Nicotine
3.4. Cocaine
3.5. Amphetamine
3.6. Methamphetamine
3.7. Neurotensin and Alcohol
Study | Reference |
---|---|
Nicotine | |
Blockade of nicotine-induced hyperactivity | [179] |
Blockade of initiation and expression of sensitization to nicotine | [180] |
Blockade of nicotine self-administration | [181] |
Attenuate nicotine self-administration in alcohol-dependent rats | [168] |
Psychostimulants | |
Attenuate amphetamine-induced activity | [146] |
Attenuate cocaine-induced hyperactivity | [146] |
Decrease lever pressing for methamphetamine | [196] |
Alcohol | |
Decrease alcohol intake | [169,170] |
4. Neurotensin and Autism
4.1. Overview
4.2. Neurotensin, Repetitive Behavior, and Basal Ganglia Circuitry
4.3. Animal Models of Repetitive Behavior
4.4. Neurotensin and ASD
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of interest
References
- Carraway, R.; Bhatnagar, Y.M. Isolation, structure and biologic activity of chicken intestinal neurotensin. Peptides 1980, 1, 167–174. [Google Scholar] [CrossRef]
- Hermans, E.; Maloteaux, J.M. Mechanisms of regulation of neurotensin receptors. Pharmacol. Ther. 1998, 79, 89–104. [Google Scholar] [CrossRef]
- Mazella, J. Sortilin/neurotensin receptor-3: A new tool to investigate neurotensin signaling and cellular trafficking? Cell Signal. 2001, 13, 1–6. [Google Scholar] [CrossRef]
- Tanaka, K.; Masu, M.; Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron 1990, 4, 847–854. [Google Scholar] [CrossRef]
- Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur, G.; Ferrara, P.; Caput, D. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett. 1996, 386, 91–94. [Google Scholar] [CrossRef]
- Mazella, J.; Botto, J.M.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J.P. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J. Neurosci. 1996, 16, 5613–5620. [Google Scholar]
- Vita, N.; Laurent, P.; Lefort, S.; Chalon, P.; Dumont, X.; Kaghad, M.; Gully, D.; Le Fur, G.; Ferrara, P.; Caput, D. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett. 1993, 317, 139–142. [Google Scholar] [CrossRef]
- Vincent, J.P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 1999, 20, 302–309. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Richelson, E. Neurotensin stimulates formation of cyclic GMP in murine neuroblastoma clone N1E-115. Eur. J. Pharmacol. 1984, 99, 245–246. [Google Scholar] [CrossRef]
- Watson, M.A.; Yamada, M.; Cusack, B.; Veverka, K.; Bolden-Watson, C.; Richelson, E. The rat neurotensin receptor expressed in Chinese hamster ovary cells mediates the release of inositol phosphates. J. Neurochem. 1992, 59, 1967–1970. [Google Scholar] [CrossRef]
- Yamada, M.; Richelson, E. Role of signal transduction systems in neurotensin receptor down-regulation induced by agonist in murine neuroblastoma clone N1E-115 cells. J. Pharmacol. Exp. Ther. 1993, 267, 128–133. [Google Scholar]
- Hermans, E.; Gailly, P.; Octave, J.N.; Maloteaux, J.M. Rapid desensitization of agonist-induced calcium mobilization in transfected PC12 cells expressing the rat neurotensin receptor. Biochem. Biophys. Res. Commun. 1994, 198, 400–407. [Google Scholar] [CrossRef]
- Slusher, B.S.; Zacco, A.E.; Maslanski, J.A.; Norris, T.E.; McLane, M.W.; Moore, W.C.; Rogers, N.E.; Ignarro, L.J. The cloned neurotensin receptor mediates cyclic GMP formation when coexpressed with nitric oxide synthase cDNA. Mol. Pharmacol. 1994, 46, 115–121. [Google Scholar]
- Poinot-Chazel, C.; Portier, M.; Bouaboula, M.; Vita, N.; Pecceu, F.; Gully, D.; Monroe, J.G.; Maffrand, J.P.; Le Fur, G.; Casellas, P. Activation of mitogen-activated protein kinase couples neurotensin receptor stimulation to induction of the primary response gene Krox-24. Biochem. J. 1996, 320, 145–151. [Google Scholar]
- Lopez Ordieres, M.G.; Rodriguez de Lores Arnaiz, G. Neurotensin inhibits neuronal Na+, K+-ATPase activity through high affinity peptide receptor. Peptides 2000, 21, 571–576. [Google Scholar] [CrossRef]
- Trudeau, L.E. Neurotensin regulates intracellular calcium in ventral tegmental area astrocytes: Evidence for the involvement of multiple receptors. Neuroscience 2000, 97, 293–302. [Google Scholar] [CrossRef]
- St-Gelais, F.; Jomphe, C.; Trudeau, L.E. The role of neurotensin in central nervous system pathophysiology: What is the evidence? J. Psychiatry Neurosci. 2006, 31, 229–245. [Google Scholar]
- Mazella, J.; Vincent, J.P. Functional roles of the NTS2 and NTS3 receptors. Peptides 2006, 27, 2469–2475. [Google Scholar] [CrossRef]
- Sarret, P.; Krzywkowski, P.; Segal, L.; Nielsen, M.S.; Petersen, C.M.; Mazella, J.; Stroh, T.; Beaudet, A. Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J. Comp. Neurol. 2003, 461, 483–505. [Google Scholar] [CrossRef]
- Martin, S.; Vincent, J.P.; Mazella, J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J. Neurosci. 2003, 23, 1198–1205. [Google Scholar]
- Mustain, W.C.; Rychahou, P.G.; Evers, B.M. The role of neurotensin in physiologic and pathologic processes. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 75–82. [Google Scholar] [CrossRef]
- Boules, M.; Li, Z.; Smith, K.; Fredrickson, P.; Richelson, E. Diverse roles of neurotensin agonists in the central nervous system. Front. Endocrinol. 2013, 4, 1–16. [Google Scholar]
- Freedman, R. Schizophrenia. New Engl. J. Med. 2003, 349, 1738–1749. [Google Scholar] [CrossRef]
- Lewis, D.A.; Lieberman, J.A. Catching up on schizophrenia: Natural history and neurobiology. Neuron 2000, 28, 325–334. [Google Scholar] [CrossRef]
- Newman, S.C.; Bland, R.C. Mortality in a cohort of patients with schizophrenia: A record linkage study. Can. J. Psychiatry 1991, 36, 239–245. [Google Scholar]
- Carlsson, A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988, 1, 179–186. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Snyder, S.H. The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. Am. J. Psychiatry 1976, 133, 197–202. [Google Scholar]
- Toda, M.; Abi-Dargham, A. Dopamine hypothesis of schizophrenia: Making sense of it all. Curr. Psychiatry Rep. 2007, 9, 329–336. [Google Scholar] [CrossRef]
- Carlsson, A.; Waters, N.; Waters, S.; Carlsson, M.L. Network interactions in schizophrenia—Therapeutic implications. Brain Res. Brain Res. Rev. 2000, 31, 342–349. [Google Scholar] [CrossRef]
- Weinberger, D.R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 1987, 44, 660–669. [Google Scholar] [CrossRef]
- Alagarsamy, S.; Rouse, S.T.; Junge, C.; Hubert, G.W.; Gutman, D.; Smith, Y.; Conn, P.J. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol. Biochem. Behav. 2002, 73, 299–306. [Google Scholar] [CrossRef]
- Henry, S.A.; Lehmann-Masten, V.; Gasparini, F.; Geyer, M.A.; Markou, A. The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 2002, 43, 1199–1209. [Google Scholar] [CrossRef]
- Luccini, E.; Musante, V.; Neri, E.; Brambilla Bas, M.; Severi, P.; Raiteri, M.; Pittaluga, A. Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. Br. J. Pharmacol. 2007, 151, 1087–1094. [Google Scholar]
- Tsai, G.; Coyle, J.T. Glutamatergic mechanisms in schizophrenia. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 165–179. [Google Scholar] [CrossRef]
- Carlsson, M.; Carlsson, A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia—Implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 1990, 13, 272–276. [Google Scholar] [CrossRef]
- Marek, G.J.; Behl, B.; Bespalov, A.Y.; Gross, G.; Lee, Y.; Schoemaker, H. Glutamatergic (N-methyl-D-aspartate receptor) hypofrontality in schizophrenia: Too little juice or a miswired brain? Mol. Pharmacol. 2010, 77, 317–326. [Google Scholar] [CrossRef]
- Chartoff, E.H.; Heusner, C.L.; Palmiter, R.D. Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology 2005, 30, 1324–1333. [Google Scholar]
- Olney, J.W.; Newcomer, J.W.; Farber, N.B. NMDA receptor hypofunction model of schizophrenia. J. Psychiatr. Res. 1999, 33, 523–533. [Google Scholar] [CrossRef]
- Javitt, D.C.; Zukin, S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1991, 148, 1301–1308. [Google Scholar]
- Brody, S.A.; Conquet, F.; Geyer, M.A. Effect of antipsychotic treatment on the prepulse inhibition deficit of mGluR5 knockout mice. Psychopharmacology 2004, 172, 187–195. [Google Scholar] [CrossRef]
- Chiamulera, C.; Epping-Jordan, M.P.; Zocchi, A.; Marcon, C.; Cottiny, C.; Tacconi, S.; Corsi, M.; Orzi, F.; Conquet, F. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci. 2001, 4, 873–874. [Google Scholar] [CrossRef]
- Lu, Y.M.; Jia, Z.; Janus, C.; Henderson, J.T.; Gerlai, R.; Wojtowicz, J.M.; Roder, J.C. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci. 1997, 17, 5196–5205. [Google Scholar]
- Matosin, N.; Newell, K.A. Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci. Biobehav. Rev. 2013, 37, 256–268. [Google Scholar] [CrossRef]
- Homayoun, H.; Stefani, M.R.; Adams, B.W.; Tamagan, G.D.; Moghaddam, B. Functional Interaction Between NMDA and mGlu5 Receptors: Effects on Working Memory, Instrumental Learning, Motor Behaviors, and Dopamine Release. Neuropsychopharmacol 2004, 29, 1259–1269. [Google Scholar] [CrossRef]
- Pietraszek, M.; Gravius, A.; Schafer, D.; Weil, T.; Trifanova, D.; Danysz, W. mGluR5, but not mGluR1, antagonist modifies MK-801-induced locomotor activity and deficit of prepulse inhibition. Neuropharmacology 2005, 49, 73–85. [Google Scholar] [CrossRef]
- Vales, K.; Svoboda, J.; Benkovicova, K.; Bubenikova-Valesova, V.; Stuchlik, A. The difference in effect of mGlu2/3 and mGlu5 receptor agonists on cognitive impairment induced by MK-801. Eur. J. Pharmacol. 2010, 639, 91–98. [Google Scholar] [CrossRef]
- Zou, D.; Huang, J.; Wu, X.; Li, L. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats. Neuropharmacology 2007, 52, 476–486. [Google Scholar] [CrossRef]
- Robbins, T.W.; Murphy, E.R. Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol. Sci. 2006, 27, 141–148. [Google Scholar] [CrossRef]
- Joyce, J.N. The dopamine hypothesis of schizophrenia: Limbic interactions with serotonin and norepinephrine. Psychopharmacology (Berl) 1993, 112, S16–S34. [Google Scholar] [CrossRef]
- Tort, A.B.; Souza, D.O.; Lara, D.R. Theoretical insights into the mechanism of action of atypical antipsychotics. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 541–548. [Google Scholar] [CrossRef]
- Remington, G. Refractory schizophrenia: Adding aripiprazole to clozapine reduces negative but not overall symptoms. Evid.-based Ment. Health 2009, 12, 51. [Google Scholar] [CrossRef]
- Gardell, L.R.; Vanover, K.E.; Pounds, L.; Johnson, R.W.; Barido, R.; Anderson, G.T.; Veinbergs, I.; Dyssegaard, A.; Brunmark, P.; Tabatabaei, A.; et al. ACP-103, a 5-hydroxytryptamine 2A receptor inverse agonist, improves the antipsychotic efficacy and side-effect profile of haloperidol and risperidone in experimental models. J. Pharmacol. Exp. Ther. 2007, 322, 862–870. [Google Scholar] [CrossRef]
- Abbas, A.; Roth, B.L. Pimavanserin tartrate: A 5-HT2A inverse agonist with potential for treating various neuropsychiatric disorders. Expert Opinion Pharmacother. 2008, 9, 3251–3259. [Google Scholar] [CrossRef]
- Creese, I.; Burt, D.R.; Snyder, S.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976, 192, 481–483. [Google Scholar] [CrossRef]
- Andersson, C.; Chakos, M.; Mailman, R.; Lieberman, J. Emerging roles for novel antipsychotic medications in the treatment of schizophrenia. Psychiatri. Clin. North Am. 1998, 21, 151–179. [Google Scholar] [CrossRef]
- Salimi, K.; Jarskog, L.F.; Lieberman, J.A. Antipsychotic drugs for first-episode schizophrenia: A comparative review. CNS Drugs 2009, 23, 837–855. [Google Scholar] [CrossRef]
- Cordoba, O.A. Antipsychotic medications: Clinical use and effectiveness. Hosp Pract (Off Ed) 1981, 16, 99–101. [Google Scholar]
- Meltzer, H.Y.; Matsubara, S.; Lee, J.C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J. Pharmacol. Exp. Ther. 1989, 251, 238–246. [Google Scholar]
- Meltzer, H.Y. Update on typical and atypical antipsychotic drugs. Annu. Rev. Med. 2013, 64, 393–406. [Google Scholar] [CrossRef]
- Kane, J.M. Addressing side effects from antipsychotic treatment in schizophrenia. J. Clinic. Psychiatr. 2011, 72, e07. [Google Scholar] [CrossRef]
- Krystal, J.H.; Mathew, S.J.; D’Souza, D.C.; Garakani, A.; Gunduz-Bruce, H.; Charney, D.S. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs 2010, 24, 669–693. [Google Scholar]
- Patil, S.T.; Zhang, L.; Martenyi, F.; Lowe, S.L.; Jackson, K.A.; Andreev, B.V.; Avedisova, A.S.; Bardenstein, L.M.; Gurovich, I.Y.; Morozova, M.A.; et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized Phase 2 clinical trial. Nat. Med. 2007, 13, 1102–1107. [Google Scholar] [CrossRef]
- Gray, L.; van den Buuse, M.; Scarr, E.; Dean, B.; Hannan, A.J. Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: Association with N-methyl-D-aspartic acid receptor up-regulation. Int. J. Neuropsychopharmacol. 2009, 12, 45–60. [Google Scholar] [CrossRef]
- Matosin, N.; Frank, E.; Deng, C.; Huang, X.F.; Newell, K.A. Metabotropic glutamate receptor 5 binding and protein expression in schizophrenia and following antipsychotic drug treatment. Schizophr. Res. 2013, 146, 170–176. [Google Scholar] [CrossRef]
- Iasevoli, F.; Tomasetti, C.; Marmo, F.; Bravi, D.; Arnt, J.; de Bartolomeis, A. Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole. Psychopharmacology 2010, 212, 329–344. [Google Scholar]
- Greenbaum, D.; Colangelo, C.; Williams, K.; Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4, 117. [Google Scholar] [CrossRef]
- Polese, D.; de Serpis, A.A.; Ambesi-Impiombato, A.; Muscettola, G.; de Bartolomeis, A. Homer 1a gene expression modulation by antipsychotic drugs: involvement of the glutamate metabotropic system and effects of D-cycloserine. Neuropsychopharmacol. 2002, 27, 906–913. [Google Scholar] [CrossRef]
- Shao, F.; Han, X.; Li, N.; Wang, W. Adolescent chronic apomorphine treatment impairs latent inhibition and reduces prefrontal cortex mGluR5 receptor expression in adult rats. Eur. J. Pharmacol. 2010, 649, 202–205. [Google Scholar] [CrossRef]
- D’Souza, D.C.; Singh, N.; Elander, J.; Carbuto, M.; Pittman, B.; Udo de Haes, J.; Sjogren, M.; Peeters, P.; Ranganathan, M.; Schipper, J. Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacol. 2012, 37, 1036–1046. [Google Scholar] [CrossRef]
- Alberati, D.; Moreau, J.L.; Lengyel, J.; Hauser, N.; Mory, R.; Borroni, E.; Pinard, E.; Knoflach, F.; Schlotterbeck, G.; Hainzl, D.; et al. Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology 2012, 62, 1152–1161. [Google Scholar]
- Lane, H.Y.; Chang, Y.C.; Liu, Y.C.; Chiu, C.C.; Tsai, G.E. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: A randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatr. 2005, 62, 1196–1204. [Google Scholar] [CrossRef]
- Lane, H.Y.; Lin, C.H.; Huang, Y.J.; Liao, C.H.; Chang, Y.C.; Tsai, G.E. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 2010, 13, 451–460. [Google Scholar] [CrossRef]
- Tsai, G.; Lane, H.Y.; Yang, P.; Chong, M.Y.; Lange, N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatr. 2004, 55, 452–456. [Google Scholar] [CrossRef]
- Citrome, L.; Volavka, J. Pharmacological management of acute and persistent aggression in forensic psychiatry settings. CNS Drugs 2011, 25, 1009–1021. [Google Scholar] [CrossRef]
- Chue, P. Glycine reuptake inhibition as a new therapeutic approach in schizophrenia: Focus on the glycine transporter 1 (GlyT1). Curr. Pharm. Des. 2013, 19, 1311–1320. [Google Scholar]
- Noetzel, M.J.; Jones, C.K.; Conn, P.J. Emerging approaches for treatment of schizophrenia: Modulation of glutamatergic signaling. Discov. Med. 2012, 14, 335–343. [Google Scholar]
- Krebs, M.; Leopold, K.; Hinzpeter, A.; Schaefer, M. Current schizophrenia drugs: Efficacy and side effects. Expert Opinion Pharmacother. 2006, 7, 1005–1016. [Google Scholar] [CrossRef]
- Brouard, A.; Pelaprat, D.; Dana, C.; Vial, M.; Lhiaubet, A.M.; Rostene, W. Mesencephalic dopaminergic neurons in primary cultures express functional neurotensin receptors. J. Neurosci. 1992, 12, 1409–1415. [Google Scholar]
- Palacios, J.M.; Kuhar, M.J. Neurotensin receptors are located on dopamine-containing neurones in rat midbrain. Nature 1981, 294, 587–589. [Google Scholar] [CrossRef]
- Alexander, M.J.; Leeman, S.E. Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J. Comp. Neurol. 1998, 402, 475–500. [Google Scholar] [CrossRef]
- Kinkead, B.; Nemeroff, C.B. Neurotensin, schizophrenia, and antipsychotic drug action. Int. Rev. Neurobiol. 2004, 59, 327–349. [Google Scholar] [CrossRef]
- Shi, W.X.; Bunney, B.S. Neurotensin modulates autoreceptor mediated dopamine effects on midbrain dopamine cell activity. Brain Res. 1991, 543, 315–321. [Google Scholar] [CrossRef]
- Quirion, R.; Rowe, W.B.; Lapchak, P.A.; Araujo, D.M.; Beaudet, A. Distribution of neurotensin receptors in mammalian brain. What it is telling us about its interactions with other neurotransmitter systems. Annu. N. Y. Acad. Sci. 1992, 668, 109–119. [Google Scholar] [CrossRef]
- Binder, E.B.; Kinkead, B.; Owens, M.J.; Nemeroff, C.B. Neurotensin and dopamine interactions. Pharmacol. Rev. 2001, 53, 453–486. [Google Scholar]
- Fawaz, C.S.; Martel, P.; Leo, D.; Trudeau, L.E. Presynaptic action of neurotensin on dopamine release through inhibition of D(2) receptor function. BMC Neurosci. 2009, 10, 96. [Google Scholar] [CrossRef]
- Caceda, R.; Kinkead, B.; Nemeroff, C.B. Neurotensin: Role in psychiatric and neurological diseases. Peptides 2006, 27, 2385–2404. [Google Scholar]
- Diaz-Cabiale, Z.; Fuxe, K.; Narvaez, J.A.; Finetti, S.; Antonelli, T.; Tanganelli, S.; Ferraro, L. Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: Counteraction by a NTR1-like receptor antagonist. Neuroreport 2002, 13, 763–766. [Google Scholar] [CrossRef]
- Fuxe, K.; Von Euler, G.; Agnati, L.F.; Merlo Pich, E.; O’Connor, W.T.; Tanganelli, S.; Li, X.M.; Tinner, B.; Cintra, A.; Carani, C.; et al. Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin. Annu. N.Y. Acad. Sci. 1992, 668, 186–204. [Google Scholar] [CrossRef]
- Li, X.M.; Ferraro, L.; Tanganelli, S.; O’Connor, W.T.; Hasselrot, U.; Ungerstedt, U.; Fuxe, K. Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens: A receptor binding and microdialysis study. J. Neural. Transm. Gen. Sect. 1995, 102, 125–137. [Google Scholar] [CrossRef]
- Burgevin, M.C.; Castel, M.N.; Quarteronet, D.; Chevet, T.; Laduron, P.M. Neurotensin increases tyrosine hydroxylase messenger RNA-positive neurons in substantia nigra after retrograde axonal transport. Neuroscience 1992, 49, 627–633. [Google Scholar] [CrossRef]
- Burgevin, M.C.; Laduron, P.M.; Quarteronnet, D.; Chevet, T.; Castel, M.N. Striatal injection of neurotensin increases tyrosine hydroxylase mRNA in substantia nigra. Annu. N. Y. Acad. Sci. 1992, 668, 311–313. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.O.; Ravani, A.; Tarakanov, A.O.; Brito, I.; Narvaez, M.; Romero-Fernandez, W.; Corrales, F.; Agnati, L.F.; Tanganelli, S.; Ferraro, L.; et al. Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochemi. Biophys. Res. Comm. 2013, 435, 140–146. [Google Scholar]
- Carlsson, A.; Waters, N.; Carlsson, M.L. Neurotransmitter interactions in schizophrenia—Therapeutic implications. Biol. Psychiatry 1999, 46, 1388–1395. [Google Scholar] [CrossRef]
- O’Connor, W.T. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia. J. Neurosci. Meth. 2001, 109, 31–39. [Google Scholar] [CrossRef]
- Ferraro, L.; Tomasini, M.C.; Fuxe, K.; Agnati, L.F.; Mazza, R.; Tanganelli, S.; Antonelli, T. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. Brain Res. Rev. 2007, 55, 144–154. [Google Scholar] [CrossRef]
- Ferraro, L.; Beggiato, S.; Tomasini, M.C.; Fuxe, K.; Tanganelli, S.; Antonelli, T. Neurotensin regulates cortical glutamate transmission by modulating N-methyl-D-aspartate receptor functional activity: An in vivo microdialysis study. J. Neurosci. Res. 2011, 89, 1618–1626. [Google Scholar] [CrossRef]
- Chen, L.; Yung, K.K.; Yung, W.H. Neurotensin selectively facilitates glutamatergic transmission in globus pallidus. Neuroscience 2006, 141, 1871–1878. [Google Scholar] [CrossRef]
- Matsuyama, S.; Fukui, R.; Higashi, H.; Nishi, A. Regulation of DARPP-32 Thr75 phosphorylation by neurotensin in neostriatal neurons: involvement of glutamate signalling. Eur. J. Neurosci. 2003, 18, 1247–1253. [Google Scholar] [CrossRef]
- Ferraro, L.; Tomasini, M.C.; Fernandez, M.; Bebe, B.W.; O’Connor, W.T.; Fuxe, K.; Glennon, J.C.; Tanganelli, S.; Antonelli, T. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: A dual-probe microdialysis study in intact conscious rat brain. Neuroscience 2001, 102, 113–120. [Google Scholar] [CrossRef]
- Ferraro, L.; Tomasini, M.C.; Siniscalchi, A.; Fuxe, K.; Tanganelli, S.; Antonelli, T. Neurotensin increases endogenous glutamate release in rat cortical slices. Life Sci. 2000, 66, 927–936. [Google Scholar] [CrossRef]
- Sanz, B.; Exposito, I.; Mora, F. Effects of neurotensin on the release of glutamic acid in the prefrontal cortex and striatum of the rat. Neuroreport 1993, 4, 1194–1196. [Google Scholar]
- Tanganelli, S.; O’Connor, W.T.; Ferraro, L.; Bianchi, C.; Beani, L.; Ungerstedt, U.; Fuxe, K. Facilitation of GABA release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens. Neuroscience 1994, 60, 649–657. [Google Scholar] [CrossRef]
- Kinkead, B.; Shahid, S.; Owens, M.J.; Nemeroff, C.B. Effects of acute and subchronic administration of typical and atypical antipsychotic drugs on the neurotensin system of the rat brain. J. Pharmacol. Exp. Ther. 2000, 295, 67–73. [Google Scholar]
- Levant, B.; Nemeroff, C.B. Further studies on the modulation of regional brain neurotensin concentrations by antipsychotic drugs: focus on haloperidol and BMY 14802. J. Pharmacol. Exp. Ther. 1992, 262, 348–355. [Google Scholar]
- Merchant, K.M.; Dobner, P.R.; Dorsa, D.M. Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum. J. Neurosci. 1992, 12, 652–663. [Google Scholar]
- Merchant, K.M.; Miller, M.A.; Ashleigh, E.A.; Dorsa, D.M. Haloperidol rapidly increases the number of neurotensin mRNA-expressing neurons in neostriatum of the rat brain. Brain Res. 1991, 540, 311–314. [Google Scholar] [CrossRef]
- Myers, B.; Levant, B.; Bissette, G.; Nemeroff, C.B. Pharmacological specificity of the increase in neurotensin concentrations after antipsychotic drug treatment. Brain Res. 1992, 575, 325–328. [Google Scholar] [CrossRef]
- Merchant, K.M.; Dorsa, D.M. Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc. Natl. Acad. Sci. USA. 1993, 90, 3447–3451. [Google Scholar] [CrossRef]
- Bolden-Watson, C.; Watson, M.A.; Murray, K.D.; Isackson, P.J.; Richelson, E. Haloperidol but not clozapine increases neurotensin receptor mRNA levels in rat substantia nigra. J. Neurochem. 1993, 61, 1141–1143. [Google Scholar] [CrossRef]
- Giardino, L.; Calza, L.; Piazza, P.V.; Zanni, M.; Amato, G. DA2/NT receptor balance in the mesostriatal and mesolimbocortical systems after chronic treatment with typical and atypical neuroleptic drugs. Brain Res. 1990, 532, 140–145. [Google Scholar] [CrossRef]
- Radke, J.M.; MacLennan, A.J.; Beinfeld, M.C.; Bissette, G.; Nemeroff, C.B.; Vincent, S.R.; Fibiger, H.C. Effects of short- and long-term haloperidol administration and withdrawal on regional brain cholecystokinin and neurotensin concentrations in the rat. Brain Res. 1989, 480, 178–183. [Google Scholar] [CrossRef]
- Levant, B.; Bissette, G.; Nemeroff, C.B. Effects of anticholinergic drugs on regional brain neurotensin concentrations. Eur. J. Pharmacol. 1989, 165, 327–330. [Google Scholar] [CrossRef]
- Levant, B.; Bissette, G.; Widerlov, E.; Nemeroff, C.B. Alterations in regional brain neurotensin concentrations produced by atypical antipsychotic drugs. Regul. Pept. 1991, 32, 193–201. [Google Scholar]
- Bissette, G.; Nemeroff, C.B. Neurotensin and the mesocorticolimbic dopamine system. Annu. NY Acad. Sci. 1988, 537, 397–404. [Google Scholar] [CrossRef]
- See, R.E.; Lynch, A.M.; Aravagiri, M.; Nemeroff, C.B.; Owens, M.J. Chronic haloperidol-induced changes in regional dopamine release and metabolism and neurotensin content in rats. Brain Res. 1995, 704, 202–209. [Google Scholar] [CrossRef]
- Huang, W.; Hanson, G.R. Differential effect of haloperidol on release of neurotensin in extrapyramidal and limbic systems. Eur. J. Pharmacol. 1997, 332, 15–21. [Google Scholar] [CrossRef]
- Govoni, S.; Hong, J.S.; Yang, H.Y.; Costa, E. Increase of neurotensin content elicited by neuroleptics in nucleus accumbens. J. Pharmacol. Exp. Ther. 1980, 215, 413–417. [Google Scholar]
- Merchant, K.M.; Letter, A.A.; Gibb, J.W.; Hanson, G.R. Changes in the limbic neurotensin systems induced by dopaminergic drugs. Eur. J. Pharmacol. 1988, 153, 1–9. [Google Scholar] [CrossRef]
- Gruber, S.H.; Nomikos, G.G.; Mathe, A.A. Effects of haloperidol and risperidone on neurotensin levels in brain regions and neurotensin efflux in the ventral striatum of the rat. Neuropsychopharmacology 2002, 26, 595–604. [Google Scholar] [CrossRef]
- Bissette, G.; Nemeroff, C.B.; Loosen, P.T.; Prange, A.J.; Lipton, M.A. Hypothermia and intolerance to cold induced by intracisternal administration of the hypothalamic peptide neurotensin. Nature 1976, 262, 607–609. [Google Scholar] [CrossRef]
- Sarhan, S.; Hitchcock, J.M.; Grauffel, C.A.; Wettstein, J.G. Comparative antipsychotic profiles of neurotensin and a related systemically active peptide agonist. Peptides 1997, 18, 1223–1227. [Google Scholar] [CrossRef]
- Nemeroff, C.B.; Bissette, G.; Prange, A.J.; Loosen, P.T.; Barlow, T.S.; Lipton, M.A. Neurotensin: Central nervous system effects of a hypothalamic peptide. Brain Res. 1977, 128, 485–496. [Google Scholar] [CrossRef]
- Nemeroff, C.B.; Levant, B.; Myers, B.; Bissette, G. Neurotensin, antipsychotic drugs, and schizophrenia. Basic and clinical studies. Annu. NY Acad. Sci. 1992, 668, 146–156. [Google Scholar] [CrossRef]
- Jolicoeur, F.B.; de Michele, G.; Barbeau, A.; St-Pierre, S. Neurotensin affects hyperactivity but not stereotypy induced by pre and post synaptic dopaminergic stimulation. Neurosci. Biobehav. Rev. 1983, 7, 385–390. [Google Scholar] [CrossRef]
- Jolicoeur, F.B.; Gagne, M.A.; Rivest, R.; Drumheller, A.; St-Pierre, S. Atypical neuroleptic-like behavioral effects of neurotensin. Brain Res. Bull. 1993, 32, 487–491. [Google Scholar] [CrossRef]
- Stoessl, A.J. Effects of neurotensin in a rodent model of tardive dyskinesia. Neuropharmacology 1995, 34, 457–462. [Google Scholar] [CrossRef]
- Luttinger, D.; Nemeroff, C.B.; Prange, A.J. The effects of neuropeptides on discrete-trial conditioned avoidance responding. Brain Res. 1982, 237, 183–192. [Google Scholar] [CrossRef]
- Feifel, D.; Minor, K.L.; Dulawa, S.; Swerdlow, N.R. The effects of intra-accumbens neurotensin on sensorimotor gating. Brain Res. 1997, 760, 80–84. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Braff, D.L.; Taaid, N.; Geyer, M.A. Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch. Gen. Psychiatry 1994, 51, 139–154. [Google Scholar]
- Nemeroff, C.B. Neurotensin: Perchance an endogenous neuroleptic? Biol. Psychiatry 1980, 15, 283–302. [Google Scholar]
- Kinkead, B.; Binder, E.B.; Nemeroff, C.B. Does neurotensin mediate the effects of antipsychotic drugs? Biol. Psychiatry 1999, 46, 340–351. [Google Scholar] [CrossRef]
- Cusack, B.; Boules, M.; Tyler, B.M.; Fauq, A.; McCormick, D.J.; Richelson, E. Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res. 2000, 856, 48–54. [Google Scholar] [CrossRef]
- Feifel, D.; Melendez, G.; Shilling, P.D. A systemically administered neurotensin agonist blocks disruption of prepulse inhibition produced by a serotonin-2A agonist. Neuropsychopharmacology 2003, 28, 651–653. [Google Scholar] [CrossRef]
- Shilling, P.D.; Richelson, E.; Feifel, D. The effects of systemic NT69L, a neurotensin agonist, on baseline and drug-disrupted prepulse inhibition. Behav. Brain Res. 2003, 143, 7–14. [Google Scholar] [CrossRef]
- Briody, S.; Boules, M.; Oliveros, A.; Fauq, I.; Richelson, E. Chronic NT69L potently prevents drug-induced disruption of prepulse inhibition without causing tolerance. Behav. Brain Res. 2010, 207, 118–124. [Google Scholar]
- Kinkead, B.; Dobner, P.R.; Egnatashvili, V.; Murray, T.; Deitemeyer, N.; Nemeroff, C.B. Neurotensin-deficient mice have deficits in prepulse inhibition: Restoration by clozapine but not haloperidol, olanzapine, or quetiapine. J. Pharmacol. Exp. Ther. 2005, 315, 256–264. [Google Scholar] [CrossRef]
- Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D. Sensorimotor gating in neurotensin-1 receptor null mice. Neuropharmacology 2010, 58, 173–178. [Google Scholar] [CrossRef]
- Feifel, D.; Reza, T.L.; Robeck, S.L. Pro-dopamine effects of neurotensin on sensorimotor gating deficits. Peptides 1997, 18, 1457–1460. [Google Scholar] [CrossRef]
- Feifel, D.; Melendez, G; Shilling, P.D. Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol: A potential predictive model for novel antipsychotic effects. Neuropsychopharmacology 2004, 29, 731–738. [Google Scholar] [CrossRef]
- Shilling, P.D.; Melendez, G.; Priebe, K; Richelson, E.; Feifel, D. Neurotensin agonists block the prepulse inhibition deficits produced by a 5-HT(2A) and an alpha(1) agonist. Psychopharmacology (Berl) 2004, 175, 353–359. [Google Scholar] [CrossRef]
- Secchi, R.L.; Sung, E.; Hedley, L.R.; Button, D.; Schreiber, R. The neurotensin agonist NT69L improves sensorimotor gating deficits in rats induced by a glutamatergic antagonist but not by dopaminergic agonists. Behav. Brain Res. 2009, 202, 192–197. [Google Scholar] [CrossRef]
- Geyer, M.A.; Ellenbroek, B. Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 1071–1079. [Google Scholar] [CrossRef]
- Binder, E.B.; Kinkead, B.; Owens, M.J.; Kilts, C.D.; Nemeroff, C.B. Enhanced neurotensin neurotransmission is involved in the clinically relevant behavioral effects of antipsychotic drugs: Evidence from animal models of sensorimotor gating. J. Neurosci. 2001, 21, 601–608. [Google Scholar]
- Binder, E.B.; Gross, R.E.; Nemeroff, C.B.; Kilts, C.D. Effects of neurotensin receptor antagonism on latent inhibition in Sprague-Dawley rats. Psychopharmacology (Berl) 2002, 161, 288–295. [Google Scholar]
- Boules, M.; Warrington, L.; Fauq, A.; McCormick, D.; Richelson, E. A novel neurotensin analog blocks cocaine- and D-amphetamine-induced hyperactivity. Eur. J. Pharmacol. 2001, 426, 73–76. [Google Scholar] [CrossRef]
- Boules, M.; McMahon, B.; Warrington, L.; Stewart, J.; Jackson, J.; Fauq, A.; McCormick, D.; Richelson, E. Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neuroleptic-like properties. Brain Res. 2001, 919, 1–11. [Google Scholar] [CrossRef]
- Boules, M.; Liang, Y.; Briody, S.; Miura, T.; Fauq, I.; Oliveros, A.; Wilson, M.; Khaniyev, S.; Williams, K.; Li, Z.; et al. NT79: A novel neurotensin analog with selective behavioral effects. Brain Res. 2010, 1308, 35–46. [Google Scholar]
- Li, Z.; Boules, M.; Williams, K.; Peris, J.; Richelson, E. The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex. Brain Res. 2010, 1311, 28–36. [Google Scholar]
- Snyder, S.H. Phencyclidine. Nature 1980, 285, 355–356. [Google Scholar] [CrossRef]
- Feifel, D.; Reza, T.L.; Wustrow, D.J.; Davis, M.D. Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J. Pharmacol. Exp. Ther. 1999, 288, 710–713. [Google Scholar]
- Holly, E.N.; Ebrecht, B.; Prus, A.J. The neurotensin-1 receptor agonist PD149163 inhibits conditioned avoidance responding without producing catalepsy in rats. Eur. Neuropsychopharmacol 2011, 21, 526–531. [Google Scholar] [CrossRef]
- Liang, Y.; Boules, M.; Li, Z.; Williams, K.; Miura, T.; Oliveros, A.; Richelson, E. Hyperactivity of the dopaminergic system in NTS1 and NTS2 null mice. Neuropharmacology 2010, 58, 1199–1205. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Boules, M.; Gordillo, A.; Richelson, E. Effect of amphetamine on extracellular concentrations of amino acids in striatum in neurotensin subtype 1 and 2 receptor null mice: A possible interaction between neurotensin receptors and amino acid systems for study of schizophrenia. Neuropharmacology 2010, 58, 1174–1178. [Google Scholar]
- Li, Z.; Boules, M.; Williams, K.; Gordillo, A.; Li, S.; Richelson, E. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: Relevance to schizophrenia. Neurobiol. Dis. 2010, 40, 467–477. [Google Scholar] [CrossRef]
- Garver, D.L.; Bissette, G.; Yao, J.K.; Nemeroff, C.B. Relation of CSF neurotensin concentrations to symptoms and drug response of psychotic patients. Am. J. Psychiatry. 1991, 148, 484–488. [Google Scholar]
- Lindstrom, L.H.; Widerlov, E.; Bisette, G.; Nemeroff, C. Reduced CSF neurotensin concentration in drug-free schizophrenic patients. Schizophr. Res. 1988, 1, 55–59. [Google Scholar] [CrossRef]
- Nemeroff, C.B.; Bissette, G.; Widerlov, E.; Beckmann, H.; Gerner, R.; Manberg, P.J.; Lindstrom, L.; Prange, A.J.; Gattaz, W.F. Neurotensin-like immunoreactivity in cerebrospinal fluid of patients with schizophrenia, depression, anorexia nervosa-bulimia, and premenstrual syndrome. J. Neuropsychiatry Clin. Neurosci. 1989, 1, 16–20. [Google Scholar]
- Sharma, R.P.; Janicak, P.G.; Bissette, G.; Nemeroff, C.B. CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder. Am. J. Psychiatry. 1997, 154, 1019–1021. [Google Scholar]
- Widerlov, E.; Lindstrom, L.H.; Besev, G.; Manberg, P.J.; Nemeroff, C.B.; Breese, G.R.; Kizer, J.S.; Prange, A.J. Subnormal CSF levels of neurotensin in a subgroup of schizophrenic patients: Normalization after neuroleptic treatment. Am. J. Psychiatry. 1982, 139, 1122–1126. [Google Scholar]
- Breslin, N.A.; Suddath, R.L.; Bissette, G.; Nemeroff, C.B.; Lowrimore, P.; Weinberger, D.R. CSF concentrations of neurotensin in schizophrenia: An investigation of clinical and biochemical correlates. Schizophr. Res. 1994, 12, 35–41. [Google Scholar] [CrossRef]
- Binder, E.B.; Kinkead, B.; Owens, M.J.; Nemeroff, C.B. The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol. Psychiatry 2001, 50, 856–872. [Google Scholar] [CrossRef]
- Dalack, G.W.; Healy, D.J.; Meador-Woodruff, J.H. Nicotine dependence in schizophrenia: Clinical phenomena and laboratory findings. Am. J. Psychiatry 1998, 155, 1490–1501. [Google Scholar]
- Boules, M.; Cusack, B.; Zhao, L.; Fauq, A.; McCormick, D.J.; Richelson, E. A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Res. 2000, 865, 35–44. [Google Scholar] [CrossRef]
- Kim, E.R.; Leckstrom, A.; Mizuno, T.M. Impaired anorectic effect of leptin in neurotensin receptor 1-deficient mice. Behav. Brain Res. 2008, 194, 66–71. [Google Scholar] [CrossRef]
- Feifel, D.; Goldenberg, J.; Melendez, G.; Shilling, P.D. The acute and subchronic effects of a brain-penetrating, neurotensin-1 receptor agonist on feeding, body weight and temperature. Neuropharmacology 2010, 58, 195–198. [Google Scholar] [CrossRef]
- Koob, G.F.; Sanna, P.P.; Bloom, F.E. Neuroscience of addiction. Neuron 1998, 21, 467–476. [Google Scholar] [CrossRef]
- Boules, M.; Stennett, B.; Muhktar, N.; Li, Z.; Cai, S.; Richelson, E. Novel Therapy for Nicotine Addiction in Alcohol Dependent Rats. J. Addiction Res. Ther. 2013, 4, 161. [Google Scholar] [CrossRef]
- Lee, M.R.; Hinton, D.J.; Song, J.Y.; Lee, K.W.; Choo, C.; Johng, H.; Unal, S.S.; Richelson, E.; Choi, D.S. Neurotensin receptor type 1 regulates ethanol intoxication and consumption in mice. Pharmacol. Biochem. Behav. 2010, 95, 235–241. [Google Scholar] [CrossRef]
- Lee, M.R.; Hinton, D.J.; Unal, S.S.; Richelson, E.; Choi, D.S. Increased ethanol consumption and preference in mice lacking neurotensin receptor type 2. Alcohol. Clin. Exp. Res. 2011, 35, 99–107. [Google Scholar] [CrossRef]
- Miller, D.K.; Wilkins, L.H.; Bardo, M.T.; Crooks, P.A.; Dwoskin, L.P. Once weekly administration of nicotine produces long-lasting locomotor sensitization in rats via a nicotinic receptor-mediated mechanism. Psychopharmacology (Berl) 2001, 156, 469–476. [Google Scholar]
- De Vries, T.J.; Schoffelmeer, A.N.; Binnekade, R.; Raaso, H.; Vanderschuren, L.J. Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 2002, 26, 18–26. [Google Scholar]
- Domino, E.F. Nicotine induced behavioral locomotor sensitization. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25, 59–71. [Google Scholar] [CrossRef]
- Kalivas, P.W.; Duffy, P. Dopamine regulation of extracellular glutamate in the nucleus accumbens. Brain research. 1997, 761, 173–177. [Google Scholar] [CrossRef]
- Iyaniwura, T.T.; Wright, A.E.; Balfour, D.J. Evidence that mesoaccumbens dopamine and locomotor responses to nicotine in the rat are influenced by pretreatment dose and strain. Psychopharmacology (Berl) 2001, 158, 73–79. [Google Scholar] [CrossRef]
- Balfour, D.J. The neurobiology of tobacco dependence: A preclinical perspective on the role of the dopamine projections to the nucleus accumbens [corrected]. Nicotine Tob. Res. 2004, 6, 899–912. [Google Scholar] [CrossRef]
- Kalivas, P.W.; Duffy, P. Effect of acute and daily neurotensin and enkephalin treatments on extracellular dopamine in the nucleus accumbens. J. Neurosci. 1990, 10, 2940–2949. [Google Scholar]
- Richelson, E.; Boules, M.; Fredrickson, P. Neurotensin agonists: Possible drugs for treatment of psychostimulant abuse. Life Sci. 2003, 73, 679–690. [Google Scholar]
- Fredrickson, P.; Boules, M.; Yerbury, S.; Richelson, E. Blockade of nicotine-induced locomotor sensitization by a novel neurotensin analog in rats. Eur. J. Pharmacol. 2003, 458, 111–118. [Google Scholar] [CrossRef]
- Fredrickson, P.; Boules, M.; Yerbury, S.; Richelson, E. Novel neurotensin analog blocks the initiation and expression of nicotine-induced locomotor sensitization. Brain Res. 2003, 979, 245–248. [Google Scholar] [CrossRef]
- Boules, M.; Oliveros, A.; Liang, Y.; Williams, K.; Shaw, A.; Robinson, J.; Fredrickson, P.; Richelson, E. A neurotensin analog, NT69L, attenuates intravenous nicotine self-administration in rats. Neuropeptides 2011, 45, 9–16. [Google Scholar] [CrossRef]
- Hall, F.S.; Centeno, M.; Perona, M.T.; Adair, J.; Dobner, P.R.; Uhl, G.R. Effects of neurotensin gene knockout in mice on the behavioral effects of cocaine. Psychopharmacology (Berl) 2012, 219, 35–45. [Google Scholar] [CrossRef]
- Krawczyk, M.; Mason, X.; DeBacker, J.; Sharma, R.; Normandeau, C.P.; Hawken, E.R.; di Prospero, C.; Chiang, C.; Martinez, A.; Jones, A.A.; et al. D1 dopamine receptor-mediated LTP at GABA synapses encodes motivation to self-administer cocaine in rats. J. Neurosci. 2013, 33, 11960–11971. [Google Scholar] [CrossRef]
- Felszeghy, K.; Espinosa, J.M.; Scarna, H.; Berod, A.; Rostene, W.; Pelaprat, D. Neurotensin receptor antagonist administered during cocaine withdrawal decreases locomotor sensitization and conditioned place preference. Neuropsychopharmacology 2007, 32, 2601–2610. [Google Scholar] [CrossRef]
- Ramos-Ortolaza, D.L.; Negron, A.; Cruz, D.; Falcon, E.; Iturbe, M.C.; Cajigas, M.H.; Maldonado-Vlaar, C.S. Intra-accumbens shell injections of SR48692 enhanced cocaine self-administration intake in rats exposed to an environmentally-elicited reinstatement paradigm. Brain Res. 2009, 1280, 124–136. [Google Scholar]
- Torregrossa, M.M.; Kalivas, P.W. Neurotensin in the ventral pallidum increases extracellular gamma-aminobutyric acid and differentially affects cue- and cocaine-primed reinstatement. J. Pharmacol. Exp. Ther. 2008, 325, 556–566. [Google Scholar] [CrossRef]
- Gendron, L.; Perron, A.; Payet, M.D.; Gallo-Payet, N.; Sarret, P.; Beaudet, A. Low-Affinity Neurotensin Receptor (NTS2) Signaling: Internalization-Dependent Activation of Extracellular Signal-Regulated Kinases 1/2. Mol. Pharmacol. 2004, 66, 1421–1430. [Google Scholar] [CrossRef]
- Gruber, S.H.; Nomikos, G.G.; Mathe, A.A. d-Amphetamine-induced increase in neurotensin and neuropeptide Y outflow in the ventral striatum is mediated via stimulation of dopamine D1 and D2/3 receptors. J. Neurosci. Res. 2002, 69, 133–139. [Google Scholar] [CrossRef]
- Hertel, P.; Mathe, J.M.; Nomikos, G.G.; Iurlo, M.; Mathe, A.A.; Svensson, T.H. Effects of D-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Behav. Brain Res. 1995, 72, 103–114. [Google Scholar] [CrossRef]
- Panayi, F.; Colussi-Mas, J.; Lambas-Senas, L.; Renaud, B.; Scarna, H.; Berod, A. Endogenous neurotensin in the ventral tegmental area contributes to amphetamine behavioral sensitization. Neuropsychopharmacology 2005, 30, 871–879. [Google Scholar] [CrossRef]
- Rompre, P.; Perron, S. Evidence for a role of endogenous neurotensin in the initiation of amphetamine sensitization. Neuropharmacology 2000, 39, 1880–1892. [Google Scholar] [CrossRef]
- Panayi, F.; Dorso, E.; Lambas-Senas, L.; Renaud, B.; Scarna, H.; Berod, A. Chronic blockade of neurotensin receptors strongly reduces sensitized, but not acute, behavioral response to D-amphetamine. Neuropsychopharmacology 2002, 26, 64–74. [Google Scholar] [CrossRef]
- Costa, F.G.; Frussa-Filho, R.; Felicio, L.F. The neurotensin receptor antagonist, SR48692, attenuates the expression of amphetamine-induced behavioural sensitisation in mice. Eur. J. Pharmacol. 2001, 428, 97–103. [Google Scholar] [CrossRef]
- Feifel, D.; Melendez, G.; Murray, R.J.; Tina Tran, D.N.; Rullan, M.A.; Shilling, P.D. The reversal of amphetamine-induced locomotor activation by a selective neurotensin-1 receptor agonist does not exhibit tolerance. Psychopharmacology (Berl) 2008, 200, 197–203. [Google Scholar] [CrossRef]
- Fleckenstein, A.E.; Volz, T.J.; Riddle, E.L.; Gibb, J.W.; Hanson, G.R. New insights into the mechanism of action of amphetamines. Ann. Rev. Pharmacol. Toxicol. 2007, 47, 681–698. [Google Scholar] [CrossRef]
- Frankel, P.S.; Hoonakker, A.J.; Alburges, M.E.; McDougall, J.W.; McFadden, L.M.; Fleckenstein, A.E.; Hanson, G.R. Effect of methamphetamine self-administration on neurotensin systems of the basal ganglia. J. Pharmacol. Exp. Therapeut. 2011, 336, 809–815. [Google Scholar] [CrossRef]
- Wagstaff, J.D.; Gibb, J.W.; Hanson, G.R. Microdialysis assessment of methamphetamine-induced changes in extracellular neurotensin in the striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 1996, 278, 547–554. [Google Scholar]
- Frankel, P.S.; Alburges, M.E.; Bush, L.; Hanson, G.R.; Kish, S.J. Brain levels of neuropeptides in human chronic methamphetamine users. Neuropharmacology 2007, 53, 447–454. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Somes, C.; Li, T.K.; Lumeng, L.; Kinkead, B.; Owens, M.J.; Nemeroff, C.B. Neurontensin studies in alcohol naive, preferring and non-preferring rats. Neuroscience 1999, 93, 227–236. [Google Scholar] [CrossRef]
- Li, Z.; Boules, M.; Richelson, E. NT69L blocks ethanol-induced increase of dopamine and glutamate levels in striatum of mouse. Neurosci. Lett. 2011, 487, 322–324. [Google Scholar] [CrossRef]
- Boules, M.; Fredrickson, P.; Richelson, E. Bioactive analogs of neurotensin. Peptides 2006, 27, 2523–2533. [Google Scholar] [CrossRef]
- American Pschiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013.
- Lam, K.S.; Bodfish, J.W.; Piven, J. Evidence for three subtypes of repetitive behavior in autism that differ in familiality and association with other symptoms. J. Child Psychol. Psychiatry Allied Discip. 2008, 49, 1193–1200. [Google Scholar] [CrossRef]
- Ghosh, A.; Michalon, A.; Lindemann, L.; Fontoura, P.; Santarelli, L. Drug discovery for autism spectrum disorder: Challenges and opportunities. Nat. Rev. Drug Discov. 2013, 12, 777–790. [Google Scholar] [CrossRef]
- Nemeroff, C.B.; Luttinger, D.; Hernandez, D.E.; Mailman, R.B.; Mason, G.A.; Davis, S.D.; Widerlov, E.; Frye, G.D.; Kilts, C.A.; Beaumont, K.; et al. Interactions of neurotensin with brain dopamine systems: Biochemical and behavioral studies. J. Pharmacol. Exp. Ther. 1983, 225, 337–345. [Google Scholar]
- Casanova, M.F.; Naidu, S.; Goldberg, T.E.; Moser, H.W.; Khoromi, S.; Kumar, A.; Kleinman, J.E.; Weinberger, D.R. Quantitative magnetic resonance imaging in Rett syndrome. J. Neuropsychiatry Clin. Neurosci. 1991, 3, 66–72. [Google Scholar]
- Reiss, A.L.; Abrams, M.T.; Greenlaw, R.; Freund, L.; Denckla, M.B. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat. Med. 1995, 1, 159–167. [Google Scholar] [CrossRef]
- Harris, J.C.; Lee, R.R.; Jinnah, H.A.; Wong, D.F.; Yaster, M.; Bryan, R.N. Craniocerebral magnetic resonance imaging measurement and findings in Lesch-Nyhan syndrome. Arch. Neurol. 1998, 55, 547–553. [Google Scholar] [CrossRef]
- Hollander, E.; Anagnostou, E.; Chaplin, W.; Esposito, K.; Haznedar, M.M.; Licalzi, E.; Wasserman, S.; Soorya, L.; Buchsbaum, M. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol. Psychiatr. 2005, 58, 226–232. [Google Scholar] [CrossRef]
- Rojas, D.C.; Peterson, E.; Winterrowd, E.; Reite, M.L.; Rogers, S.J.; Tregellas, J.R. Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 2006, 6, 56. [Google Scholar] [CrossRef]
- Hoeft, F.; Hernandez, A.; Parthasarathy, S.; Watson, C.L.; Hall, S.S.; Reiss, A.L. Fronto-striatal dysfunction and potential compensatory mechanisms in male adolescents with fragile X syndrome. Hum. Brain Mapp. 2007, 28, 543–554. [Google Scholar] [CrossRef]
- Langen, M.; Schnack, H.G.; Nederveen, H.; Bos, D.; Lahuis, B.E.; de Jonge, M.V.; van Engeland, H.; Durston, S. Changes in the developmental trajectories of striatum in autism. Biol. Psychiatr. 2009, 66, 327–333. [Google Scholar] [CrossRef]
- Wolff, J.J.; Hazlett, H.C.; Lightbody, A.A.; Reiss, A.L.; Piven, J. Repetitive and self-injurious behaviors: Associations with caudate volume in autism and fragile X syndrome. J. Neurodev. Disord. 2013, 5, 12. [Google Scholar] [CrossRef]
- Ferraro, L.; Antonelli, T.; O’Connor, W.T.; Fuxe, K.; Soubrie, P.; Tanganelli, S. The striatal neurotensin receptor modulates striatal and pallidal glutamate and GABA release: Functional evidence for a pallidal glutamate-GABA interaction via the pallidal-subthalamic nucleus loop. J. Neurosci. 1998, 18, 6977–6989. [Google Scholar]
- Chen, L.; Yung, K.K.; Yung, W.H. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience 2004, 125, 853–859. [Google Scholar] [CrossRef]
- Welch, J.M.; Lu, J.; Rodriguiz, R.M.; Trotta, N.C.; Peca, J.; Ding, J.D.; Feliciano, C.; Chen, M.; Adams, J.P.; Luo, J.; et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 2007, 448, 894–900. [Google Scholar] [CrossRef]
- El-Kordi, A.; Winkler, D.; Hammerschmidt, K.; Kastner, A.; Krueger, D.; Ronnenberg, A.; Ritter, C.; Jatho, J.; Radyushkin, K.; Bourgeron, T.; et al. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav. Brain Res. 2013, 251, 41–49. [Google Scholar] [CrossRef]
- Greco, B.; Manago, F.; Tucci, V.; Kao, H.T.; Valtorta, F.; Benfenati, F. Autism-related behavioral abnormalities in synapsin knockout mice. Behav. Brain Res. 2013, 251, 65–74. [Google Scholar] [CrossRef]
- Uchino, S.; Waga, C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013, 35, 106–110. [Google Scholar] [CrossRef]
- Presti, M.F.; Lewis, M.H. Striatal opioid peptide content in an animal model of spontaneous stereotypic behavior. Behav. Brain Res. 2005, 157, 363–368. [Google Scholar] [CrossRef]
- Tanimura, Y.; King, M.A.; Williams, D.K.; Lewis, M.H. Development of repetitive behavior in a mouse model: Roles of indirect and striosomal basal ganglia pathways. Int. J. Dev. Neurosci. 2011, 29, 461–467. [Google Scholar] [CrossRef]
- Muehlmann, A.M.; Buchwald, Z.; Edington, G.; Lewis, M.H. Neuronal hypoactivation of the subthalamic nucleus in an inbred model of restricted, repetitive behavior. Available online: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=29b0782c-eec2-44c2-8e90-f767543e080f&cKey=6a02ee69-3e68-479d-b17b-2306bfa9eaba&mKey=%7b8D2A5BEC-4825-4CD6-9439-B42BB151D1CF%7d (accessed on 12 June 2014).
- Turner, C.A.; Lewis, M.H.; King, M.A. Environmental enrichment: Effects on stereotyped behavior and dendritic morphology. Dev. Psychobiol. 2003, 43, 20–27. [Google Scholar] [CrossRef]
- Tanimura, Y.; Vaziri, S.; Lewis, M.H. Indirect basal ganglia pathway mediation of repetitive behavior: Attenuation by adenosine receptor agonists. Behav. Brain Res. 2010, 210, 116–122. [Google Scholar] [CrossRef]
- Muehlmann, A.M.; Edington, G.; Mihalik, A.C.; Buchwald, Z.; Koppuzha, D.; Korah, M.; Lewis, M.H. Further characterization of repetitive behavior in C58 mice: Developmental trajectory and effects of environmental enrichment. Behav. Brain Res. 2012, 235, 143–149. [Google Scholar] [CrossRef]
- Ghanizadeh, A. Targeting neurotensin as a potential novel approach for the treatment of autism. J. Neuroinflammation. 2010, 7, 58. [Google Scholar] [CrossRef]
- Angelidou, A.; Francis, K.; Vasiadi, M.; Alysandratos, K.D.; Zhang, B.; Theoharides, A.; Lykouras, L.; Sideri, K.; Kalogeromitros, D.; Theoharides, T.C. Neurotensin is increased in serum of young children with autistic disorder. J. Neuroinflammation 2010, 7, 48. [Google Scholar] [CrossRef]
- Zhang, B.; Angelidou, A.; Alysandratos, K.D.; Vasiadi, M.; Francis, K.; Asadi, S.; Theoharides, A.; Sideri, K.; Lykouras, L.; Kalogeromitros, D.; et al. Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children. J. Neuroinflammation. 2010, 7, 80. [Google Scholar] [CrossRef]
- Koon, H.W.; Kim, Y.S.; Xu, H.; Kumar, A.; Zhao, D.; Karagiannides, I.; Dobner, P.R.; Pothoulakis, C. Neurotensin induces IL-6 secretion in mouse preadipocytes and adipose tissues during 2,4,6,-trinitrobenzensulphonic acid-induced colitis. Proceed. Natl. Acad. Sci. USA. 2009, 106, 8766–8771. [Google Scholar]
- Li, X.; Chauhan, A.; Sheikh, A.M.; Patil, S.; Chauhan, V.; Li, X.M.; Ji, L.; Brown, T.; Malik, M. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 2009, 207, 111–116. [Google Scholar] [CrossRef]
- Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11, 22. [Google Scholar] [CrossRef]
- Thomas, R.P.; Hellmich, M.R.; Townsend, C.M., Jr.; Evers, B.M. Role of gastrointestinal hormones in the proliferation of normal and neoplastic tissues. Endocr. Rev. 2003, 24, 571–599. [Google Scholar] [CrossRef]
- Kim, E.R.; Mizuno, T.M. Role of neurotensin receptor 1 in the regulation of food intake by neuromedins and neuromedin-related peptides. Neurosci. Lett. 2010, 468, 64–67. [Google Scholar] [CrossRef]
- Sharp, W.G.; Berry, R.C.; McCracken, C.; Nuhu, N.N.; Marvel, E.; Saulnier, C.A.; Klin, A.; Jones, W.; Jaquess, D.L. Feeding problems and nutrient intake in children with autism spectrum disorders: A meta-analysis and comprehensive review of the literature. J. Autism Dev. Disord. 2013, 43, 2159–2173. [Google Scholar] [CrossRef]
- Tordjman, S.; Anderson, G.M.; Botbol, M.; Brailly-Tabard, S.; Perez-Diaz, F.; Graignic, R.; Carlier, M.; Schmit, G.; Rolland, A.C.; Bonnot, O.; et al. Pain reactivity and plasma beta-endorphin in children and adolescents with autistic disorder. PloS One 2009, 4, e5289. [Google Scholar] [CrossRef]
- Wang, R.; Boules, M.; Gollatz, E.; Williams, K.; Tiner, W.; Richelson, E. Effects of 5 daily injections of the neurotensin-mimetic NT69L on the expression of neurotensin receptors in rat brain. Brain Res. Mol. Brain Res. 2005, 138, 24–34. [Google Scholar] [CrossRef]
- Perron, A.; Sharif, N.; Gendron, L.; Lavallee, M.; Stroh, T.; Mazella, J.; Beaudet, A. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors. Biochem. Biophys. Res. Commun. 2006, 343, 799–808. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Boules, M.M.; Fredrickson, P.; Muehlmann, A.M.; Richelson, E. Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders. Behav. Sci. 2014, 4, 125-153. https://doi.org/10.3390/bs4020125
Boules MM, Fredrickson P, Muehlmann AM, Richelson E. Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders. Behavioral Sciences. 2014; 4(2):125-153. https://doi.org/10.3390/bs4020125
Chicago/Turabian StyleBoules, Mona M, Paul Fredrickson, Amber M Muehlmann, and Elliott Richelson. 2014. "Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders" Behavioral Sciences 4, no. 2: 125-153. https://doi.org/10.3390/bs4020125
APA StyleBoules, M. M., Fredrickson, P., Muehlmann, A. M., & Richelson, E. (2014). Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders. Behavioral Sciences, 4(2), 125-153. https://doi.org/10.3390/bs4020125