Neuroscience of Internet Pornography Addiction: A Review and Update
Abstract
:1. Introduction
Addiction is a primary, chronic disease of brain reward, motivation, memory and related circuitry. Dysfunction in these circuits leads to characteristic biological, psychological, social and spiritual manifestations. This is reflected in an individual pathologically pursuing reward and/or relief by substance use and other behaviors.[11]
The studies suggest that when these individuals are engrossed in Internet games, certain pathways in their brains are triggered in the same direct and intense way that a drug addict’s brain is affected by a particular substance. The gaming prompts a neurological response that influences feelings of pleasure and reward, and the result, in the extreme, is manifested as addictive behavior.[13]
Excessive use of the Internet not involving playing of online games (e.g., excessive use of social media, such as Facebook; viewing pornography online) is not considered analogous to Internet gaming disorder, and future research on other excessive uses of the Internet would need to follow similar guidelines as suggested herein.[12]
2. Method
2.1. Neurobiology of Addiction
2.2. Neurobiology of Addictive Behaviors
2.3. Gambling Disorder
2.4. Internet Addiction
2.5. Internet Gaming Disorder
2.6. Internet Pornography Addiction
3. Literature Review
3.1. Neurobiology of Addiction
3.1.1. Three-Stage Model of Addiction
3.1.2. Anti-Reward
3.1.3. Neurobiology of Learning, Habit, and Motivation
3.1.4. Genetics
3.1.5. Molecular Underpinnings of Addiction
3.2. Neurobiology of Addictive Behaviors
- Addictive Behaviors: Severe Alcoholism, Polysubstance Abuse, Smoking and Over Eating—Obesity
- Impulsive Behaviors: Attention-Deficit Disorder Hyperactivity, Tics and Tourette Syndrome and Autism (including Asperger Syndrome)
- Compulsive Behaviors: Aberrant Sexual Behavior, Internet Gaming and Obsessive Texting, Pathological Gambling and Workaholism and Shopaholisnm
- Personality Disorders: Conduct Disorder, Antisocial Personality, Aggressive Behavior, Pathological Cruelty and Violence [67].
Addiction also affects neurotransmission and interactions between cortical and hippocampal circuits and brain reward structures, such that the memory of previous exposures to rewards (such as food, sex, alcohol and other drugs) leads to a biological and behavioral response to external cues, in turn triggering craving and/or engagement in addictive behaviors.[11]
In this document, the term “addictive behaviors” refers to behaviors that are commonly rewarding and are a feature in many cases of addiction. Exposure to these behaviors, just as occurs with exposure to rewarding drugs, is facilitative of the addiction process rather than causative of addiction. The state of brain anatomy and physiology is the underlying variable that is more directly causative of addiction. Thus, in this document, the term “addictive behaviors” does not refer to dysfunctional or socially disapproved behaviors, which can appear in many cases of addiction. Behaviors, such as dishonesty, violation of one’s values or the values of others, criminal acts etc. can be a component of addiction; these are best viewed as complications that result from rather than contribute to addiction.[11]
As in alcohol dependence, an inverse relationship between ventral striatal activation during reward anticipation and self-reported impulsivity was observed in both the pathological-gambling and alcohol-dependent groups suggesting that this feature of blunted ventral striatal activation across behavioral- and substance-addiction groups relates similarly to impulsivity.[78] (p. 15)
3.2.1. Gambling Disorder
3.2.2. Internet Addiction
Internet addiction comprises a heterogeneous spectrum of Internet activities with a potential illness value, such as gaming, shopping, gambling, or social networking. Gaming represents a part of the postulated construct of Internet addiction, and gaming addiction appears to be the most widely studied specific form of Internet addiction to date.[105] (p. 348)
The APA has now focused on Internet gaming. We argue, however, that also other applications can be used addictively...Therefore, we summarize results of previous studies on Internet addiction in a broader way, although a great proportion of studies published so far concentrated on Internet gaming.[15] (p. 2)
The results demonstrated that the neural substrates of cue-induced gaming urge/craving in online gaming addiction was similar to that of the cue-induced craving in substance dependence. Thus, the results suggested that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism.[116] (p. 279)
3.2.3. Internet Gaming Disorder
- Prior to 2009—6 studies,
- 2009—4 studies,
- 2010—8 studies,
- 2011—9 studies,
- 2012—14 studies,
- 2013—19 studies,
- 2014—23 studies, and
- 2015 (through June)—16 studies.
3.2.4. Compulsive Sexual Behavior
The term “Reward Deficiency Syndrome” was first coined...in 1995, and is now defined by the Microsoft Dictionary as “A brain reward genetic dissatisfaction or impairment that results in aberrant pleasure seeking behavior that includes drugs, excessive food, sex, gaming/gambling and other behaviors”.[249] (p. 2)
3.2.5. Internet Pornography
The current and extant findings suggest that a common network exists for sexual-cue reactivity and drug-cue reactivity in groups with CSB and drug addictions, respectively. These findings suggest overlaps in networks underlying disorders of pathological consumption of drugs and natural rewards”.[262] (p. 9)
Thus, both dACC activity in the present CSB study and P300 activity reported in a previous CSB study[303] may reflect similar underlying processes of attentional capture. Similarly, both studies show a correlation between these measures with enhanced desire. Here we suggest that dACC activity correlates with desire, which may reflect an index of craving, but does not correlate with liking suggestive of on an incentive-salience model of addictions.[262] (p. 7)
4. Conclusions
The essential feature of Internet gaming disorder is persistent and recurrent participation in computer gaming, typically group games, for many hours. These games involve competition between groups of players...participating in complex structured activities that include a significant aspect of social interactions during play. Team aspects appear to be a key motivation.[12] (p. 797)
Author Contributions
Conflicts of Interest
References and Notes
- White, W.L. Slaying the Dragon: The History of Addiction Treatment and Recovery in America, 1st ed.; Chestnut Health Systems: Bloomington, IL, USA, 1998. [Google Scholar]
- Pitchers, K.K.; Vialou, V.; Nestler, E.J.; Laviolette, S.R.; Lehman, M.N.; Coolen, L.M. Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 3434–3442. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 2005, 8, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.E.; Berridge, K.C. Review. The incentive sensitization theory of addiction: Some current issues. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 3137–3146. [Google Scholar] [PubMed]
- Koob, G.F.; Le Moal, M. Neurobiological mechanisms for opponent motivational processes in addiction. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3113–3123. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.E.; Brewer, J.A.; Potenza, M.N. The neurobiology of substance and behavioral addictions. CNS Spectr. 2006, 11, 924–930. [Google Scholar] [PubMed]
- Grant, J.E.; Potenza, M.N.; Weinstein, A.; Gorelick, D.A. Introduction to behavioral addictions. Am. J. Drug Alcohol Abuse 2010, 36, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 2011, 61, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Karim, R.; Chaudhri, P. Behavioral addictions: An overview. J. Psychoactive Drugs. 2012, 44, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Leeman, R.F.; Potenza, M.N. A targeted review of the neurobiology and genetics of behavioural addictions: An emerging area of research. Can. J. Psychiatry Rev. Can. Psychiatr. 2013, 58, 260–273. [Google Scholar]
- American Society of Addiction Medicine (ASAM). Public Policy Statement: Definition of Addiction. Available online: http://www.asam.org/for-the-public/definition-of-addiction (accessed on 30 June 2015).
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- American Psychiatric Association (APA). Internet Gaming Disorder. Available online: http://www.dsm5.org/Documents/Internet%20Gaming%20Disorder%20Fact%20Sheet.pdf (accessed on 30 June 2015).
- Davis, R.A. A cognitive-behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Brand, M.; Young, K.S.; Laier, C. Prefrontal control and internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Front. Hum. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; King, D.L.; Demetrovics, Z. DSM-5 internet gaming disorder needs a unified approach to assessment. Neuropsychiatry 2014, 4, 1–4. [Google Scholar] [CrossRef]
- Block, J.J. Issues for DSM-V: Internet addiction. Am. J. Psychiatry 2008, 165, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Yau, Y.H.C.; Crowley, M.J.; Mayes, L.C.; Potenza, M.N. Are Internet use and video-game-playing addictive behaviors? Biological, clinical and public health implications for youths and adults. Minerva Psichiatr. 2012, 53, 153–170. [Google Scholar] [PubMed]
- King, D.L.; Delfabbro, P.H. Issues for DSM-5: Video-gaming disorder? Aust. N. Z. J. Psychiatry 2013, 47, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Potenza, M.N. Non-substance addictive behaviors in the context of DSM-5. Addict. Behav. 2014, 39, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, B.C.; Bunzeck, N.; Dolan, R.J.; Düzel, E. Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage 2007, 38, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.D.; Tran, V.L.; Turchi, J.; Averbeck, B.B. Dopamine modulates novelty seeking behavior during decision making. Behav. Neurosci. 2014, 128, 556–566. [Google Scholar] [PubMed]
- Spicer, J.; Galvan, A.; Hare, T.A.; Voss, H.; Glover, G.; Casey, B. Sensitivity of the nucleus accumbens to violations in expectation of reward. NeuroImage 2007, 34, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilton, D.L. Pornography addiction—A supranormal stimulus considered in the context of neuroplasticity. Socioaffective Neurosci. Psychol. 2013, 3, 20767. [Google Scholar] [CrossRef] [PubMed]
- Tinbergen, N. The Study of Instinct; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Barrett, D. Supernormal Stimuli: How Primal Urges Overran Their Evolutionary Purpose, 1st ed.; W.W. Norton & Company: New York, NY, USA, 2010. [Google Scholar]
- Toates, F. How Sexual Desire Works: The Enigmatic Urge; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Downing, M.J.; Antebi, N.; Schrimshaw, E.W. Compulsive use of Internet-based sexually explicit media: Adaptation and validation of the Compulsive Internet Use Scale (CIUS). Addict. Behav. 2014, 39, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Meerkerk, G.-J.; Van Den Eijnden, R.J.J.M.; Garretsen, H.F.L. Predicting compulsive Internet use: it’s all about sex! Cyberpsychology Behav. Impact Internet Multimed. Virtual Real. Behav. Soc. 2006, 9, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Meerkerk, G.-J.; van den Eijnden, R.J.J.M.; Franken, I.H.A.; Garretsen, H.F.L. Is compulsive internet use related to sensitivity to reward and punishment, and impulsivity? Comput. Hum. Behav. 2010, 26, 729–735. [Google Scholar] [CrossRef]
- Meerkerk, G.-J.; Van Den Eijnden, R.J.J.M.; Vermulst, A.A.; Garretsen, H.F.L. The Compulsive Internet Use Scale (CIUS): Some psychometric properties. Cyberpsychology Behav. Impact Internet Multimed. Virtual Real. Behav. Soc. 2009, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-García, C.; Korak-Kakabadse, N. Compulsive internet use in adults: A study of prevalence and drivers within the current economic climate in the UK. Comput. Hum. Behav. 2014, 30, 171–180. [Google Scholar] [CrossRef]
- Derbyshire, K.L.; Grant, J.E. Compulsive Sexual Behavior: A Review of the Literature. J. Behav. Addict. 2015, 4, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, R.; Huang, X.; Wang, J.; Zhang, H.; Zhang, Y.; Li, M. Proposed diagnostic criteria for internet addiction. Addict. Abingdon Engl. 2010, 105, 556–564. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Haagsma, M.C.; Delfabbro, P.H.; Gradisar, M.; Griffiths, M.D. Toward a consensus definition of pathological video-gaming: A systematic review of psychometric assessment tools. Clin. Psychol. Rev. 2013, 33, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Carli, V.; Durkee, T.; Wasserman, D.; Hadlaczky, G.; Despalins, R.; Kramarz, E.; Wasserman, C.; Sarchiapone, M.; Hoven, C.W.; Brunner, R.; Kaess, M. The association between pathological internet use and comorbid psychopathology: a systematic review. Psychopathology 2013, 46, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jelenchick, L.A.; Eickhoff, J.; Christakis, D.A.; Brown, R.L.; Zhang, C.; Benson, M.; Moreno, M.A. The Problematic and Risky Internet Use Screening Scale (PRIUSS) for Adolescents and Young Adults: Scale Development and Refinement. Comput. Hum. Behav. 2014, 35, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-E.; Leventhal, B.; Kim, Y.S.; Park, T.W.; Lee, S.-H.; Lee, M.; Park, S.H.; Yang, J.-C.; Chung, Y.-C.; Chung, S.-K.; Park, J.-I. Cyberbullying, problematic internet use, and psychopathologic symptoms among Korean youth. Yonsei Med. J. 2014, 55, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fernandez, O.; Honrubia-Serrano, M.L.; Gibson, W.; Griffiths, M.D. Problematic Internet use in British adolescents: An exploration of the addictive symptomatology. Comput. Hum. Behav. 2014, 35, 224–233. [Google Scholar] [CrossRef]
- Spada, M.M. An overview of problematic internet use. Addict. Behav. 2014, 39, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Yau, Y.H.C.; Pilver, C.E.; Steinberg, M.A.; Rugle, L.J.; Hoff, R.A.; Krishnan-Sarin, S.; Potenza, M.N. Relationships between problematic Internet use and problem-gambling severity: Findings from a high-school survey. Addict. Behav. 2014, 39, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Yau, Y.H.C.; Potenza, M.N.; Mayes, L.C.; Crowley, M.J. Blunted feedback processing during risk-taking in adolescents with features of problematic Internet use. Addict. Behav. 2015, 45, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F. Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci. 2011, 108, 15037–15042. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Baler, R.D. Addiction science: Uncovering neurobiological complexity. Neuropharmacology 2014, 76, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of Addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Ley, D.; Prause, N.; Finn, P. The Emperor Has No Clothes: A Review of the “Pornography Addiction” Model. Curr. Sex. Health Rep. 2014, 6, 94–105. [Google Scholar] [CrossRef]
- Van Rooij, A.J.; Prause, N. A critical review of “Internet addiction” criteria with suggestions for the future. J. Behav. Addict. 2014, 3, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Yen, J.Y.; Yen, C.F.; Chen, C.S.; Chen, C.C. The association between Internet addiction and psychiatric disorder: A review of the literature. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2012, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Limbrick-Oldfield, E.H.; van Holst, R.J.; Clark, L. Fronto-striatal dysregulation in drug addiction and pathological gambling: Consistent inconsistencies? NeuroImage Clin. 2013, 2, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koob, G.F. Negative reinforcement in drug addiction: The darkness within. Curr. Opin. Neurobiol. 2013, 23, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Solomon, R.L.; Corbit, J.D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 1974, 81, 119–145. [Google Scholar] [PubMed]
- Franklin, J.C.; Hessel, E.T.; Aaron, R.V.; Arthur, M.S.; Heilbron, N.; Prinstein, M.J. The functions of nonsuicidal self-injury: Support for cognitive-affective regulation and opponent processes from a novel psychophysiological paradigm. J. Abnorm. Psychol. 2010, 119, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.E.; Malenka, R.C.; Nestler, E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006, 29, 565–598. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 2005, 8, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.J.; Robbins, T.W. From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 2013, 37, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 1993, 18, 247–291. [Google Scholar] [CrossRef]
- Smith, K.S.; Berridge, K.C.; Aldridge, J.W. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc. Natl. Acad. Sci. 2011, 108, E255–E264. [Google Scholar] [CrossRef] [PubMed]
- Stacy, A.W.; Wiers, R.W. Implicit cognition and addiction: A tool for explaining paradoxical behavior. Annu. Rev. Clin. Psychol. 2010, 6, 551–575. [Google Scholar] [CrossRef] [PubMed]
- Berridge, K.C.; Robinson, T.E.; Aldridge, J.W. Dissecting components of reward: “Liking”, “wanting”, and learning. Curr. Opin. Pharmacol. 2009, 9, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.J.F.; Berridge, K.C. Instant transformation of learned repulsion into motivational “wanting”. Curr. Biol. 2013, 23, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Swendsen, J.; Le Moal, M. Individual vulnerability to addiction. Ann. N. Y. Acad. Sci. 2011, 1216, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Muenke, M. The genetics of addiction. Hum. Genet. 2012, 131, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Verweij, K.J.H.; Gillespie, N.A.; Heath, A.C.; Lessov-Schlaggar, C.N.; Martin, N.G.; Nelson, E.C.; Slutske, W.S.; Whitfield, J.B.; Lynskey, M.T. The genetics of addiction—A translational perspective. Transl. Psychiatry 2012, 2, e140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H.; Cohn, J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990, 263, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Cull, J.G.; Braverman, E.R.; Comings, D.E. Reward Deficiency Syndrome. Am. Sci. 1996, 84, 132–145. [Google Scholar]
- Blum, K.; Chen, A.L.C.; Giordano, J.; Borsten, J.; Chen, T.J.H.; Hauser, M.; Simpatico, T.; Femino, J.; Braverman, E.R.; Barh, D. The addictive brain: All roads lead to dopamine. J. Psychoactive Drugs 2012, 44, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.B.; Brown, R.M.; Lawrence, A.J. Neuroplasticity in addiction: Cellular and transcriptional perspectives. Front. Mol. Neurosci. 2012, 5, 99. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J. Review. Transcriptional mechanisms of addiction: Role of DeltaFosB. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 3245–3255. [Google Scholar] [PubMed]
- Nestler, E.J. Transcriptional Mechanisms of Drug Addiction. Clin. Psychopharmacol. Neurosci. 2012, 10, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Barrot, M.; Self, D.W. DeltaFosB: A sustained molecular switch for addiction. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11042–11046. [Google Scholar] [CrossRef] [PubMed]
- Robison, A.J.; Nestler, E.J. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 2011, 12, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Robison, A.J.; Vialou, V.; Mazei-Robison, M.; Feng, J.; Kourrich, S.; Collins, M.; Wee, S.; Koob, G.; Turecki, G.; Neve, R.; Thomas, M.; Nestler, E.J. Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 4295–4307. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, P.W.; O’Brien, C. Drug Addiction as a Pathology of Staged Neuroplasticity. Neuropsychopharmacology 2007, 33, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Lobo, D.S.S.; Kennedy, J.L. The genetics of gambling and behavioral addictions. CNS Spectr. 2006, 11, 931–939. [Google Scholar] [PubMed]
- Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.; Comings, D.E. The reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs 2000, 32, 1–112. [Google Scholar] [CrossRef]
- Smith, D.E. The process addictions and the new ASAM definition of addiction. J. Psychoactive Drugs 2012, 44, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, N.A.; Chamberlain, S.R.; Goudriaan, A.E.; Stein, D.J.; Vanderschuren, L.J.M.J.; Gillan, C.M.; Shekar, S.; Gorwood, P.A.P.M.; Voon, V.; Morein-Zamir, S.; et al. New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr. 2014, 19, 69–89. [Google Scholar] [PubMed]
- Ahmed, S.H.; Guillem, K.; Vandaele, Y. Sugar addiction: Pushing the drug-sugar analogy to the limit. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Balodis, I.M.; Grilo, C.M.; Kober, H.; Worhunsky, P.D.; White, M.A.; Stevens, M.C.; Pearlson, G.D.; Potenza, M.N. A pilot study linking reduced fronto–Striatal recruitment during reward processing to persistent bingeing following treatment for binge-eating disorder. Int. J. Eat. Disord. 2014, 47, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Balodis, I.M.; Kober, H.; Worhunsky, P.D.; White, M.A.; Stevens, M.C.; Pearlson, G.D.; Sinha, R.; Grilo, C.M.; Potenza, M.N. Monetary reward processing in obese individuals with and without binge eating disorder. Biol. Psychiatry 2013, 73, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Oscar-Berman, M.; Barh, D.; Giordano, J.; Gold, M. Dopamine Genetics and Function in Food and Substance Abuse. J. Genet. Syndr. Gene Ther. [CrossRef]
- Clark, S.M.; Saules, K.K. Validation of the Yale Food Addiction Scale among a weight-loss surgery population. Eat. Behav. 2013, 14, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; Boswell, R.G.; Potenza, M.N. Neuroimaging of Eating Disorders, Substance Use Disorders, and Addictions: Overlapping and Unique Systems. In Eating Disorders, Addictions and Substance Use Disorders; Brewerton, T.D., Dennis, A.B., Eds.; Springer: Berlin, Germany, 2014; pp. 71–89. [Google Scholar]
- Rodgers, R.F.; Melioli, T.; Laconi, S.; Bui, E.; Chabrol, H. Internet addiction symptoms, disordered eating, and body image avoidance. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 56–60. [Google Scholar] [CrossRef]
- Savage, S.W.; Zald, D.H.; Cowan, R.L.; Volkow, N.D.; Marks-Shulman, P.A.; Kessler, R.M.; Abumrad, N.N.; Dunn, J.P. Regulation of novelty seeking by midbrain dopamine D2/D3 signaling and ghrelin is altered in obesity. Obesity (Silver Spring, Md.) 2014, 22, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Wang, G.-J.; Wang, R.; Caparelli, E.C.; Logan, J.; Volkow, N.D. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: Association to striatal D2/D3 receptors. Hum. Brain Mapp. 2015, 36, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Baler, R.D. The addictive dimensionality of obesity. Biol. Psychiatry 2013, 73, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Baler, R.D. Obesity and addiction: Neurobiological overlaps. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2013, 14, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Baler, R.D. NOW vs LATER brain circuits: Implications for obesity and addiction. Trends Neurosci. 2015, 38, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Potenza, M.N. Neurobiology of gambling behaviors. Curr. Opin. Neurobiol. 2013, 23, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Potenza, M.N. The neurobiology of pathological gambling and drug addiction: An overview and new findings. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 3181–3189. [Google Scholar] [CrossRef] [PubMed]
- el-Guebaly, N.; Mudry, T.; Zohar, J.; Tavares, H.; Potenza, M.N. Compulsive features in behavioural addictions: The case of pathological gambling. Addict. Abingdon Engl. 2012, 107, 1726–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brevers, D.; Noël, X. Pathological gambling and the loss of willpower: A neurocognitive perspective. Socioaffective Neurosci. Psychol. 2013, 3, 21592. [Google Scholar] [CrossRef] [PubMed]
- Gyollai, A.; Griffiths, M.D.; Barta, C.; Vereczkei, A.; Urbán, R.; Kun, B.; Kökönyei, G.; Székely, A.; Sasvári-Székely, M.; Blum, K.; Demetrovics, Z. The genetics of problem and pathological gambling: a systematic review. Curr. Pharm. Des. 2014, 20, 3993–3999. [Google Scholar] [CrossRef] [PubMed]
- Singer, B.F.; Anselme, P.; Robinson, M.J.F.; Vezina, P. Neuronal and psychological underpinnings of pathological gambling. Front. Behav. Neurosci. 2014, 8, 230. [Google Scholar] [CrossRef] [PubMed]
- Romanczuk-Seiferth, N.; Koehler, S.; Dreesen, C.; Wüstenberg, T.; Heinz, A. Pathological gambling and alcohol dependence: Neural disturbances in reward and loss avoidance processing. Addict. Biol. 2015, 20, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J. Problematic Use of the Internet and Self-Regulation: A Review of the Initial Studies. Open Addict. J. 2012, 5, 24–29. [Google Scholar] [CrossRef]
- Gainsbury, S.; Blaszczynski, A. Online self-guided interventions for the treatment of problem gambling. Int. Gambl. Stud. 2011, 11, 289–308. [Google Scholar] [CrossRef]
- Griffiths, M.D. Internet sex addiction: A review of empirical research. Addict. Res. Theory 2011, 20, 111–124. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H. Internet gaming disorder treatment: A review of definitions of diagnosis and treatment outcome. J. Clin. Psychol. 2014, 70, 942–955. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Delfabbro, P.H.; Griffiths, M.D.; Gradisar, M. Assessing clinical trials of Internet addiction treatment: A systematic review and CONSORT evaluation. Clin. Psychol. Rev. 2011, 31, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Liu, G.-C.; Yen, J.-Y.; Yen, C.-F.; Chen, C.-S.; Lin, W.-C. The brain activations for both cue-induced gaming urge and smoking craving among subjects comorbid with Internet gaming addiction and nicotine dependence. J. Psychiatr. Res. 2013, 47, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Internet Gaming Addiction: A Systematic Review of Empirical Research. Int. J. Ment. Health Addict. 2011, 10, 278–296. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies. Brain Sci. 2012, 2, 347–374. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.T. Internet gaming addiction, problematic use of the internet, and sleep problems: A systematic review. Curr. Psychiatry Rep. 2014, 16, 444. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Garland, E.L.; Howard, M.O. Family factors in Internet addiction among Chinese youth: A review of English- and Chinese-language studies. Comput. Hum. Behav. 2014, 31, 393–411. [Google Scholar] [CrossRef]
- Moreno, M.A.; Jelenchick, L.; Cox, E.; Young, H.; Christakis, D.A. Problematic internet use among US youth: A systematic review. Arch. Pediatr. Adolesc. Med. 2011, 165, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Owens, E.W.; Behun, R.J.; Manning, J.C.; Reid, R.C. The Impact of Internet Pornography on Adolescents: A Review of the Research. Sex. Addict. Compulsivity 2012, 19, 99–122. [Google Scholar] [CrossRef]
- Pezoa-Jares, R.E. Internet Addiction: A Review. J. Addict. Res. Ther. S. 2012, 6, 2. [Google Scholar] [CrossRef]
- Short, M.B.; Black, L.; Smith, A.H.; Wetterneck, C.T.; Wells, D.E. A review of Internet pornography use research: Methodology and content from the past 10 years. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.; Gentile, D.A.; Bricolo, F.; Serpelloni, G.; Gulamoydeen, F. A Conceptual Review of Research on the Pathological Use of Computers, Video Games, and the Internet. Int. J. Ment. Health Addict. 2012, 10, 748–769. [Google Scholar] [CrossRef]
- Meng, Y.; Deng, W.; Wang, H.; Guo, W.; Li, T. The prefrontal dysfunction in individuals with Internet gaming disorder: A meta-analysis of functional magnetic resonance imaging studies. Addict. Biol. 2015, 20, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.; Lejoyeux, M. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction. Am. J. Addict. Am. Acad. Psychiatr. Alcohol. Addict. 2013, 24, 117–125. [Google Scholar] [CrossRef]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol Abuse 2010, 36, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.M. Computer and video game addiction-a comparison between game users and non-game users. Am. J. Drug Alcohol Abuse 2010, 36, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Dörsing, B.; Rief, W.; Shen, Y.; Glombiewski, J.A. Treatment of internet addiction: A meta-analysis. Clin. Psychol. Rev. 2013, 33, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, H.; Tian, M. Molecular and Functional Imaging of Internet Addiction. Bio. Med. Res. Int. 2015, 2015, e378675. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Liu, J.; Gao, X.; Li, L.; Li, W.; Li, X.; Zhang, Y.; Zhou, S. Functional magnetic resonance imaging of brain of college students with internet addiction. Zhongnan Daxue Xuebao Yixue Ban 2011, 36, 744–749. [Google Scholar]
- Han, D.H.; Hwang, J.W.; Renshaw, P.F. Bupropion sustained release treatment decreases craving for video games and cue-induced brain activity in patients with Internet video game addiction. Exp. Clin. Psychopharmacol. 2010, 18, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Van Rooij, A.J.; Schoenmakers, T.M.; Vermulst, A.A.; Van den Eijnden, R.J.J.M.; Van de Mheen, D. Online video game addiction: Identification of addicted adolescent gamers. Addict. Abingdon Engl. 2011, 106, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.T.L.; Tang, V.M.Y.; Lo, C.Y. Evaluation of an Internet addiction treatment program for Chinese adolescents in Hong Kong. Adolescence 2009, 44, 359–373. [Google Scholar] [PubMed]
- Zhou, Y.; Lin, F.-C.; Du, Y.-S.; Qin, L.; Zhao, Z.-M.; Xu, J.-R.; Lei, H. Gray matter abnormalities in Internet addiction: a voxel-based morphometry study. Eur. J. Radiol. 2011, 79, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Widyanto, L.; Griffiths, M.D.; Brunsden, V. A psychometric comparison of the Internet Addiction Test, the Internet-Related Problem Scale, and self-diagnosis. Cyberpsychology Behav. Soc. Netw. 2011, 14, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Chan, W.S.C.; Wong, P.W.C.; Yip, P.S.F. Internet addiction: prevalence, discriminant validity and correlates among adolescents in Hong Kong. Br. J. Psychiatry J. Ment. Sci. 2010, 196, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Tsitsika, A.; Critselis, E.; Louizou, A.; Janikian, M.; Freskou, A.; Marangou, E.; Kormas, G.; Kafetzis, D. Determinants of Internet addiction among adolescents: A case-control study. ScientificWorldJournal 2011, 11, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Qin, W.; Wang, G.; Zeng, F.; Zhao, L.; Yang, X.; Liu, P.; Liu, J.; Sun, J.; von Deneen, K.M.; Gong, Q.; Liu, Y.; Tian, J. Microstructure Abnormalities in Adolescents with Internet Addiction Disorder. PLoS ONE 2011, 6, e20708. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Baik, S.-H.; Park, C.S.; Kim, S.J.; Choi, S.W.; Kim, S.E. Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport 2011, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Yen, J.-Y.; Chen, C.-C.; Chen, S.-H.; Yen, C.-F. Proposed diagnostic criteria of Internet addiction for adolescents. J. Nerv. Ment. Dis. 2005, 193, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; DeVito, E.; Huang, J.; Du, X. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. J. Psychiatr. Res. 2012, 46, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Huang, J.; Du, X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: An fMRI study during a guessing task. J. Psychiatr. Res. 2011, 45, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Huang, J.; Du, X. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts. Behav. Brain Funct. 2012, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Hu, Y.; Lin, X. Reward/punishment sensitivities among internet addicts: Implications for their addictive behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 46, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Lin, X.; Zhou, H.; Lu, Q. Cognitive flexibility in internet addicts: fMRI evidence from difficult-to-easy and easy-to-difficult switching situations. Addict. Behav. 2014, 39, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Kirsch, P.; Sauer, C.; Markett, S.; Reuter, M. The role of the CHRNA4 gene in Internet addiction: A case-control study. J. Addict. Med. 2012, 6, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Han, D.H.; Yang, K.C.; Daniels, M.A.; Na, C.; Kee, B.S.; Renshaw, P.F. Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. J. Affect. Disord. 2008, 109, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Lee, Y.S.; Yang, K.C.; Kim, E.Y.; Lyoo, I.K.; Renshaw, P.F. Dopamine genes and reward dependence in adolescents with excessive internet video game play. J. Addict. Med. 2007, 1, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, X.; Li, N.; Wang, M.; Zhou, P. Effect of excessive Internet use on the time—Frequency characteristic of EEG. Prog. Nat. Sci. 2009, 19, 1383–1387. [Google Scholar] [CrossRef]
- Campanella, S.; Pogarell, O.; Boutros, N. Event-related potentials in substance use disorders: A narrative review based on articles from 1984 to 2012. Clin. EEG Neurosci. 2014, 45, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Duven, E.C.P.; Müller, K.W.; Beutel, M.E.; Wölfling, K. Altered reward processing in pathological computer gamers—ERP-results from a semi-natural gaming-design. Brain Behav. 2015, 5, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Ge, X.; Xu, Y.; Zhang, K.; Zhao, J.; Kong, X. P300 change and cognitive behavioral therapy in subjects with Internet addiction disorder: A 3-month follow-up study. Neur. Reg. Res. 2011, 6, 2037–2041. [Google Scholar]
- Zhu, T.-M.; Li, H.; Jin, R.-J.; Zheng, Z.; Luo, Y.; Ye, H.; Zhu, H.-M. Effects of electroacupuncture combined psycho-intervention on cognitive function and event-related potentials P300 and mismatch negativity in patients with internet addiction. Chin. J. Integr. Med. 2012, 18, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-H.; Yuan, G.-Z.; Yao, J.-J.; Li, C.; Cheng, Z.-H. An event-related potential investigation of deficient inhibitory control in individuals with pathological Internet use. Acta. Neuropsychiatr. 2010, 22, 228–236. [Google Scholar] [CrossRef]
- Parsons, O.A.; Sinha, R.; Williams, H.L. Relationships between Neuropsychological Test Performance and Event-Related Potentials in Alcoholic and Nonalcoholic Samples. Alcohol. Clin. Exp. Res. 1990, 14, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Zhou, H.; Zhao, X. Impulse inhibition in people with Internet addiction disorder: Electrophysiological evidence from a Go/NoGo study. Neurosci. Lett. 2010, 485, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xie, J.; Shao, Y.-C.; Xie, C.-M.; Fu, L.-P.; Li, D.-J.; Fan, M.; Ma, L.; Li, S.-J. Dynamic neural responses to cue-reactivity paradigms in heroin-dependent users: An fMRI study. Hum. Brain Mapp. 2009, 30, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Littel, M.; van den Berg, I.; Luijten, M.; van Rooij, A.J.; Keemink, L.; Franken, I.H.A. Error processing and response inhibition in excessive computer game players: An event-related potential study. Addict. Biol. 2012, 17, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, X.; Wang, Y.; Li, N.; Wang, M. The effect of excessive internet use on N400 event-related potentials. J. Biomed. Eng. 2008, 25, 1014–1020. [Google Scholar]
- Zhou, Z.; Li, C.; Zhu, H. An error-related negativity potential investigation of response monitoring function in individuals with internet addiction disorder. Front. Behav. Neurosci. 2013, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Yau, Y.H.C.; Potenza, M.N. Gambling disorder and other behavioral addictions: Recognition and treatment. Harv. Rev. Psychiatry 2015, 23, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Zhou, H.; Zhao, X. Male Internet addicts show impaired executive control ability: Evidence from a color-word Stroop task. Neurosci. Lett. 2011, 499, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Thalemann, R.; Wölfling, K.; Grüsser, S.M. Specific cue reactivity on computer game-related cues in excessive gamers. Behav. Neurosci. 2007, 121, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-S.; Park, S.M.; Lee, J.; Hwang, J.Y.; Jung, H.Y.; Choi, S.-W.; Kim, D.J.; Oh, S.; Lee, J.-Y. Resting-state beta and gamma activity in Internet addiction. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2013, 89, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hwang, J.Y.; Park, S.M.; Jung, H.Y.; Choi, S.-W.; Kim, D.J.; Lee, J.-Y.; Choi, J.-S. Differential resting-state EEG patterns associated with comorbid depression in Internet addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 50, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Laws of the People’s Republic of China. Available online: http://www.asianlii.org/cn/legis/cen/laws/clotproc361/ (accessed on 30 June 2015).
- Petry, N.M.; Blanco, C.; Stinchfield, R.; Volberg, R. An empirical evaluation of proposed changes for gambling diagnosis in the DSM-5. Addict. Abingdon Engl. 2013, 108, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; Blanco, C.; Auriacombe, M.; Borges, G.; Bucholz, K.; Crowley, T.J.; Grant, B.F.; Hasin, D.S.; O’Brien, C. An overview of and rationale for changes proposed for pathological gambling in DSM-5. J. Gambl. Stud. Co-Spons. Natl. Counc. Probl. Gambl. Inst. Study Gambl. Commer. Gaming 2014, 30, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; O’Brien, C.P. Internet gaming disorder and the DSM-5. Addict. Abingdon Engl. 2013, 108, 1186–1187. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, X.-P.; Osunde, I.; Li, X.; Zhou, S.-K.; Zheng, H.-R.; Li, L.-J. Increased regional homogeneity in internet addiction disorder: a resting state functional magnetic resonance imaging study. Chin. Med. J. (Engl.) 2010, 123, 1904–1908. [Google Scholar] [PubMed]
- Kim, Y.-R.; Son, J.-W.; Lee, S.-I.; Shin, C.-J.; Kim, S.-K.; Ju, G.; Choi, W.-H.; Oh, J.-H.; Lee, S.; Jo, S.; Ha, T.H. Abnormal brain activation of adolescent internet addict in a ball-throwing animation task: possible neural correlates of disembodiment revealed by fMRI. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Devito, E.E.; Du, X.; Cui, Z. Impaired inhibitory control in “internet addiction disorder”: A functional magnetic resonance imaging study. Psychiatry Res. 2012, 203, 153–158. [Google Scholar] [CrossRef]
- Dong, G.; Shen, Y.; Huang, J.; Du, X. Impaired error-monitoring function in people with Internet addiction disorder: An event-related fMRI study. Eur. Addict. Res. 2013, 19, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Esmail, F.; Li, L.; Kou, Z.; Li, W.; Gao, X.; Wang, Z.; Tan, C.; Zhang, Y.; Zhou, S. Decreased frontal lobe function in people with Internet addiction disorder. Neural Regen. Res. 2013, 8, 3225–3232. [Google Scholar] [PubMed]
- Kühn, S.; Gallinat, J. Brains online: structural and functional correlates of habitual Internet use. Addict. Biol. 2015, 20, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Friston, K.J.; Liu, J.; Liu, Y.; Zhang, G.; Cao, F.; Su, L.; Yao, S.; Lu, H.; Hu, D. Impaired frontal-basal ganglia connectivity in adolescents with internet addiction. Sci. Rep. 2014, 4, 5027. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Son, J.-W.; Choi, W.-H.; Kim, Y.-R.; Oh, J.-H.; Lee, S.; Kim, J.-K. Neural responses to various rewards and feedback in the brains of adolescent Internet addicts detected by functional magnetic resonance imaging. Psychiatry Clin. Neurosci. 2014, 68, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.-Y.; Zhao, Z.; Yap, P.-T.; Wu, G.; Shi, F.; Price, T.; Du, Y.; Xu, J.; Zhou, Y.; Shen, D. Disrupted Brain Functional Network in Internet Addiction Disorder: A Resting-State Functional Magnetic Resonance Imaging Study. PLoS ONE 2014, 9, e107306. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.K.; Kanai, R. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex. PLoS ONE 2014, 9, e106698. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Y.; Yang, W.; Zhang, Q.; Wei, D.; Li, W.; Hitchman, G.; Qiu, J. Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults. Neuropsychologia 2015, 70, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Turel, O.; He, Q.; Xue, G.; Xiao, L.; Bechara, A. Examination of neural systems sub-serving facebook “addiction”. Psychol. Rep. 2014, 115, 675–695. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Liu, G.-C.; Hsiao, S.; Yen, J.-Y.; Yang, M.-J.; Lin, W.-C.; Yen, C.-F.; Chen, C.-S. Brain activities associated with gaming urge of online gaming addiction. J. Psychiatr. Res. 2009, 43, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Kim, Y.S.; Lee, Y.S.; Min, K.J.; Renshaw, P.F. Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychology Behav. Soc. Netw. 2010, 13, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Liu, G.-C.; Yen, J.-Y.; Chen, C.-Y.; Yen, C.-F.; Chen, C.-S. Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addict. Biol. 2013, 18, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Bolo, N.; Daniels, M.A.; Arenella, L.; Lyoo, I.K.; Renshaw, P.F. Brain activity and desire for internet video game play. Compr. Psychiatry 2011, 52, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Kim, S.M.; Lee, Y.S.; Renshaw, P.F. The effect of family therapy on the changes in the severity of on-line game play and brain activity in adolescents with on-line game addiction. Psychiatry Res. 2012, 202, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ying, H.; Seetohul, R.M.; Xuemei, W.; Ya, Z.; Qian, L.; Guoqing, X.; Ye, S. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents). Behav. Brain Res. 2012, 233, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.C.; Krüger, J.-K.; Neumann, B.; Schott, B.H.; Kaufmann, C.; Heinz, A.; Wüstenberg, T. Cue reactivity and its inhibition in pathological computer game players. Addict. Biol. 2013, 18, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Jin, C.; Cheng, P.; Yang, X.; Dong, T.; Bi, Y.; Xing, L.; von Deneen, K.M.; Yu, D.; Liu, J.; Liang, J.; Cheng, T.; Qin, W.; Tian, J. Amplitude of Low Frequency Fluctuation Abnormalities in Adolescents with Online Gaming Addiction. PLoS ONE 2013, 8, e78708. [Google Scholar] [CrossRef] [PubMed]
- Kätsyri, J.; Hari, R.; Ravaja, N.; Nummenmaa, L. Just watching the game ain’t enough: Striatal fMRI reward responses to successes and failures in a video game during active and vicarious playing. Front. Hum. Neurosci. 2013, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Hu, Y.; Lin, X.; Lu, Q. What makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biol. Psychol. 2013, 94, 282–289. [Google Scholar] [PubMed]
- Ko, C.-H.; Hsieh, T.-J.; Chen, C.-Y.; Yen, C.-F.; Chen, C.-S.; Yen, J.-Y.; Wang, P.-W.; Liu, G.-C. Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: a functional magnetic imaging study. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Sun, J.; Sun, Y.-W.; Chen, X.; Zhou, Y.; Zhuang, Z.; Li, L.; Zhang, Y.; Xu, J.; Du, Y. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behav. Brain Funct. 2014, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Huang, M.-F.; Yen, J.-Y.; Chen, C.-S.; Liu, G.-C.; Yen, C.-F.; Ko, C.-H. Brain correlates of response inhibition in Internet gaming disorder. Psychiatry Clin. Neurosci. 2015, 69, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S. Sy08-2neurophysiological and Neuroimaging Aspects between Internet Gaming Disorder and Alcohol Use Disorder. Alcohol Alcohol. 2014, 49, i10. [Google Scholar] [CrossRef]
- Kim, S.M.; Han, D.H. Sy20-4virtual Reality Therapy for Internet Gaming Disorder. Alcohol Alcohol. 2014, 49, i19. [Google Scholar] [CrossRef]
- Jung, Y.C.; Lee, S.; Chun, J.W.; Kim, D.J. P-72altered Cingulate-Hippocampal Synchrony Correlate with Aggression in Adolescents with Internet Gaming Disorder. Alcohol Alcohol. 2014, 49, i67–i68. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, H.; Dong, G.; Du, X. Impaired risk evaluation in people with Internet gaming disorder: fMRI evidence from a probability discounting task. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 56, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Lin, X.; Potenza, M.N. Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 57, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Zhou, Y.; Sun, Y.; Ding, W.; Zhuang, Z.; Xu, J.; Du, Y. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction. Bio. Med. Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-B.; Harrison, B.J.; Dandash, O.; Choi, E.-J.; Kim, S.-C.; Kim, H.-H.; Shim, D.-H.; Kim, C.-D.; Kim, J.-W.; Yi, S.-H. A selective involvement of putamen functional connectivity in youth with internet gaming disorder. Brain Res. 2015, 1602, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Han, D.H.; Bolo, N.; Kim, B.; Kim, B.N.; Renshaw, P.F. Differences in functional connectivity between alcohol dependence and internet gaming disorder. Addict. Behav. 2015, 41, 12–19. [Google Scholar] [PubMed]
- Yuan, K.; Qin, W.; Yu, D.; Bi, Y.; Xing, L.; Jin, C.; Tian, J. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Struct. Funct. [CrossRef]
- Lorenz, R.C.; Gleich, T.; Gallinat, J.; Kühn, S. Video game training and the reward system. Front. Hum. Neurosci. 2015, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, Y.; Sun, Y.; Zhou, Y.; Chen, X.; Ding, W.; Wang, W.; Li, W.; Xu, J.; Du, Y. Decreased prefrontal lobe interhemispheric functional connectivity in adolescents with internet gaming disorder: A primary study using resting-state FMRI. PloS One 2015, 10, e0118733. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, W.; Zhou, S.; Zhang, L.; Wang, Z.; Zhang, Y.; Jiang, Y.; Li, L. Functional characteristics of the brain in college students with internet gaming disorder. Brain Imaging Behav. 2015, 10, 1–8. [Google Scholar]
- Luijten, M.; Meerkerk, G.-J.; Franken, I.H.A.; van de Wetering, B.J.M.; Schoenmakers, T.M. An fMRI study of cognitive control in problem gamers. Psychiatry Res. 2015, 231, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-T.; Yao, Y.-W.; Li, C.-S.R.; Zang, Y.-F.; Shen, Z.-J.; Liu, L.; Wang, L.-J.; Liu, B.; Fang, X.-Y. Altered resting-state functional connectivity of the insula in young adults with Internet gaming disorder. Addict. Biol. [CrossRef] [PubMed]
- Dong, G.; Lin, X.; Hu, Y.; Xie, C.; Du, X. Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder. Sci. Rep. 2015, 5, 9197. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhou, Y.; Du, Y.; Qin, L.; Zhao, Z.; Xu, J.; Lei, H. Abnormal White Matter Integrity in Adolescents with Internet Addiction Disorder: A Tract-Based Spatial Statistics Study. PLoS ONE 2012, 7, e30253. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Romanowski, A.; Schilling, C.; Lorenz, R.; Mörsen, C.; Seiferth, N.; Banaschewski, T.; Barbot, A.; Barker, G.J.; Büchel, C.; et al. The neural basis of video gaming. Transl. Psychiatry 2011, 1, e53. [Google Scholar] [PubMed]
- Han, D.H.; Lyoo, I.K.; Renshaw, P.F. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J. Psychiatr. Res. 2012, 46, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Qian, R.; Fu, X.; Lin, B.; Ji, X.; Niu, C.; Wang, Y. A voxel-based morphometric analysis of brain gray matter in online game addicts. Zhonghua Yixue Zazhi 2012, 92, 3221–3223. [Google Scholar] [PubMed]
- Yuan, K.; Cheng, P.; Dong, T.; Bi, Y.; Xing, L.; Yu, D.; Zhao, L.; Dong, M.; von Deneen, K.M.; Liu, Y.; Qin, W.; Tian, J. Cortical Thickness Abnormalities in Late Adolescence with Online Gaming Addiction. PLoS ONE 2013, 8, e53055. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-B.; Zalesky, A.; Cocchi, L.; Fornito, A.; Choi, E.-J.; Kim, H.-H.; Suh, J.-E.; Kim, C.-D.; Kim, J.-W.; Yi, S.-H. Decreased Functional Brain Connectivity in Adolescents with Internet Addiction. PLoS ONE 2013, 8, e57831. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.-B.; Qian, R.-B.; Fu, X.-M.; Lin, B.; Han, X.-P.; Niu, C.-S.; Wang, Y.-H. Gray matter and white matter abnormalities in online game addiction. Eur. J. Radiol. 2013, 82, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Sun, J.; Sun, Y.; Zhou, Y.; Li, L.; Xu, J.; Du, Y. Altered Default Network Resting-State Functional Connectivity in Adolescents with Internet Gaming Addiction. PLoS ONE 2013, 8, e59902. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-B.; Kim, J.-W.; Choi, E.-J.; Kim, H.-H.; Suh, J.-E.; Kim, C.-D.; Klauser, P.; Whittle, S.; Yűcel, M.; Pantelis, C.; Yi, S.-H. Reduced orbitofrontal cortical thickness in male adolescents with internet addiction. Behav. Brain Funct. 2013, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Chen, X.; Sun, J.; Zhou, Y.; Sun, Y.; Ding, W.; Zhang, Y.; Zhuang, Z.; Xu, J.; Du, Y. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction. Behav. Brain Funct. 2013, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-C.; Yen, J.-Y.; Chen, C.-Y.; Yen, C.-F.; Chen, C.-S.; Lin, W.-C.; Ko, C.-H. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. Kaohsiung J. Med. Sci. 2014, 30, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Lee, Y.S.; Shi, X.; Renshaw, P.F. Proton magnetic resonance spectroscopy (MRS) in on-line game addiction. J. Psychiatr. Res. 2014, 58, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Dong, G.; Wang, Q.; Du, X. Abnormal gray matter and white matter volume in “Internet gaming addicts”. Addict. Behav. 2015, 40, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Yuan, K.; Bi, Y.; Yin, J.; Cai, C.; Feng, D.; Li, Y.; Song, M.; Wang, H.; Yu, D.; et al. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res. 2014, 1586, 109–117. [Google Scholar] [PubMed]
- Sun, Y.; Sun, J.; Zhou, Y.; Ding, W.; Chen, X.; Zhuang, Z.; Xu, J.; Du, Y. Assessment of in vivo microstructure alterations in gray matter using DKI in internet gaming addiction. Behav. Brain Funct. 2014, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Hsieh, T.-J.; Wang, P.-W.; Lin, W.-C.; Yen, C.-F.; Chen, C.-S.; Yen, J.-Y. Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 57, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.K.; Gwak, A.R.; Lim, J.-A.; Lee, J.-Y.; Jung, H.Y.; Sohn, B.K.; Choi, S.-W.; Kim, D.J.; Choi, J.-S. Resting-state regional homogeneity as a biological marker for patients with Internet gaming disorder: A comparison with patients with alcohol use disorder and healthy controls. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 60, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Yuan, K.; Yin, J.; Feng, D.; Bi, Y.; Li, Y.; Yu, D.; Jin, C.; Qin, W.; Tian, J. Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging Behav. [CrossRef] [PubMed]
- Wang, H.; Jin, C.; Yuan, K.; Shakir, T.M.; Mao, C.; Niu, X.; Niu, C.; Guo, L.; Zhang, M. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder. Front. Behav. Neurosci. 2015, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Jia, S.; Hu, S.; Fan, R.; Sun, W.; Sun, T.; Zhang, H. Reduced Striatal Dopamine Transporters in People with Internet Addiction Disorder. Bio. Med. Res. Int. 2012, 2012, e854524. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, S.H.; Bang, S.A.; Yoon, E.J.; Cho, S.S.; Kim, S.E. Altered regional cerebral glucose metabolism in internet game overusers: A 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectr. 2010, 15, 159–166. [Google Scholar] [PubMed]
- Tian, M.; Chen, Q.; Zhang, Y.; Du, F.; Hou, H.; Chao, F.; Zhang, H. PET imaging reveals brain functional changes in internet gaming disorder. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Koepp, M.J.; Gunn, R.N.; Lawrence, A.D.; Cunningham, V.J.; Dagher, A.; Jones, T.; Brooks, D.J.; Bench, C.J.; Grasby, P.M. Evidence for striatal dopamine release during a video game. Nature 1998, 393, 266–268. [Google Scholar] [PubMed]
- Zhao, X.; Yu, H.; Zhan, Q.; Wang, M. Influence of excessive internet use on auditory event-related potential. J. Biomed. Eng. 2008, 25, 1289–1293. [Google Scholar]
- Son, K.L.; Choi, J.S.; Lee, J.; Park, S.M.; Lim, J.A.; Lee, J.Y.; Kim, S.N.; Oh, S.; Kim, D.J.; Kwon, J.S. Neurophysiological features of Internet gaming disorder and alcohol use disorder: a resting-state EEG study. Translational psychiatry 2015, 9, e628. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.W.; Wang, J.W.; Huang, A.C.W. Differentiation of Internet addiction risk level based on autonomic nervous responses: The Internet-addiction hypothesis of autonomic activity. Cyberpsychology Behav. Soc. Netw. 2010, 13, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-X.; Jiang, W.-Q.; Lin, Z.-G.; Du, Y.-S.; Vance, A. Comparison of Psychological Symptoms and Serum Levels of Neurotransmitters in Shanghai Adolescents with and without Internet Addiction Disorder: A Case-Control Study. PLoS ONE 2013, 8, e63089. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-C.; Kuo, S.-Y.; Lee, P.-H.; Sheen, T.-C.; Chen, S.-R. Effects of internet addiction on heart rate variability in school-aged children. J. Cardiovasc. Nurs. 2014, 29, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Han, D.H.; Lee, Y.S.; Na, C.; Ahn, J.Y.; Chung, U.S.; Daniels, M.A.; Haws, C.A.; Renshaw, P.F. The effect of methylphenidate on Internet video game play in children with attention-deficit/hyperactivity disorder. Compr. Psychiatry 2009, 50, 251–256. [Google Scholar] [CrossRef]
- Metcalf, O.; Pammer, K. Physiological arousal deficits in addicted gamers differ based on preferred game genre. Eur. Addict. Res. 2014, 20, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Pallesen, S. Social network site addiction—An overview. Curr. Pharm. Des. 2014, 20, 4053–4061. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Torsheim, T.; Brunborg, G.S.; Pallesen, S. Development of a Facebook Addiction Scale. Psychol. Rep. 2012, 110, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, V.; Shamim, A. Malaysian Facebookers: Motives and Addictive Behaviours Unraveled. Comput. Hum. Behav. 2013, 29, 1342–1349. [Google Scholar] [CrossRef]
- Carmody, C.L. Internet Addiction: Just Facebook Me! The Role of Social Networking Sites in Internet Addiction. Comput. Technol. Appl. 2012, 3, 262–267. [Google Scholar]
- Cam, E.; Isbulan, O. A New Addiction for Teacher Candidates: Social Networks. Turk. Online J. Educ. Technol.—TOJET 2012, 11, 14–19. [Google Scholar]
- Karaiskos, D.; Tzavellas, E.; Balta, G.; Paparrigopoulos, T. P02-232—Social network addiction : a new clinical disorder? Eur. Psychiatry 2010, 25, 855. [Google Scholar] [CrossRef]
- Kittinger, R.; Correia, C.J.; Irons, J.G. Relationship between Facebook use and problematic Internet use among college students. Cyberpsychology Behav. Soc. Netw. 2012, 15, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Koc, M.; Gulyagci, S. Facebook addiction among Turkish college students: The role of psychological health, demographic, and usage characteristics. Cyberpsychology Behav. Soc. Netw. 2013, 16, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Milošević-Đorđević, J.S.; Žeželj, I.L. Psychological predictors of addictive social networking sites use: The case of Serbia. Comput. Hum. Behav. 2014, 32, 229–234. [Google Scholar] [CrossRef]
- Rosen, L.D.; Whaling, K.; Rab, S.; Carrier, L.M.; Cheever, N.A. Is Facebook Creating “iDisorders”? The Link Between Clinical Symptoms of Psychiatric Disorders and Technology Use, Attitudes and Anxiety. Comput. Hum. Behav. 2013, 29, 1243–1254. [Google Scholar]
- Salehan, M.; Negahban, A. Social Networking on Smartphones: When Mobile Phones Become Addictive. Comput Hum Behav 2013, 29, 2632–2639. [Google Scholar] [CrossRef]
- Weiss, R.; Samenow, C.P. Smart Phones, Social Networking, Sexting and Problematic Sexual Behaviors—A Call for Research. Sex. Addict. Compulsivity 2010, 17, 241–246. [Google Scholar] [CrossRef]
- Childress, A.R.; Ehrman, R.N.; Wang, Z.; Li, Y.; Sciortino, N.; Hakun, J.; Jens, W.; Suh, J.; Listerud, J.; Marquez, K.; Franklin, T.; Langleben, D.; Detre, J.; O’Brien, C.P. Prelude to Passion: Limbic Activation by “Unseen” Drug and Sexual Cues. PLoS ONE 2008, 3, e1506. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, J.R.; Kringelbach, M.L. The human sexual response cycle: Brain imaging evidence linking sex to other pleasures. Prog. Neurobiol. 2012, 98, 49–81. [Google Scholar] [CrossRef] [PubMed]
- Frascella, J.; Potenza, M.N.; Brown, L.L.; Childress, A.R. Shared brain vulnerabilities open the way for nonsubstance addictions: Carving addiction at a new joint? Ann. N. Y. Acad. Sci. 2010, 1187, 294–315. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Werner, T.; Carnes, S.; Carnes, P.; Bowirrat, A.; Giordano, J.; Oscar-Berman, M.; Gold, M. Sex, drugs, and rock “n” roll: Hypothesizing common mesolimbic activation as a function of reward gene polymorphisms. J. Psychoactive Drugs 2012, 44, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Giordano, J.; Morse, S.; Liu, Y.; Tan, J.; Bowirrat, A.; Smolen, A.; Waite, R.; Downs, W.; Madigan, M.; et al. Genetic Addiction Risk Score (GARS) analysis: Exploratory development of polymorphic risk alleles in poly-drug addicted males. IIOAB J. 2010, 1, 169–175. [Google Scholar]
- Blum, K.; Gardner, E.; Oscar-Berman, M.; Gold, M. “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): Hypothesizing differential responsivity in brain reward circuitry. Curr. Pharm. Des. 2012, 18, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; Blum, K. Reward deficiency syndrome: Genetic aspects of behavioral disorders. Prog. Brain Res. 2000, 126, 325–341. [Google Scholar] [PubMed]
- Downs, B.; Oscar-Berman, M.; Waite, R.; Madigan, M.; Giordano, J.; Beley, T.; Jones, S.; Simpatico, T.; Hauser, M.; Borsten, J.; et al. Have We Hatched the Addiction Egg: Reward Deficiency Syndrome Solution SystemTM. J. Genet. Syndr. Gene. Ther. 2013, 4, 14318. [Google Scholar]
- Grueter, B.A.; Robison, A.J.; Neve, R.L.; Nestler, E.J.; Malenka, R.C. ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc. Natl. Acad. Sci. USA 2013, 110, 1923–1928. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J. Cellular basis of memory for addiction. Dialogues Clin. Neurosci. 2013, 15, 431–443. [Google Scholar] [PubMed]
- Zhang, Y.; Crofton, E.J.; Li, D.; Lobo, M.K.; Fan, X.; Nestler, E.J.; Green, T.A. Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Front. Behav. Neurosci. 2014, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Muschamp, J.W.; Nemeth, C.L.; Robison, A.J.; Nestler, E.J.; Carlezon, W.A. ΔFosB enhances the rewarding effects of cocaine while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488. Biol. Psychiatr. 2012, 71, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Been, L.E.; Hedges, V.L.; Vialou, V.; Nestler, E.J.; Meisel, R.L. ΔJunD overexpression in the nucleus accumbens prevents sexual reward in female Syrian hamsters. Genes Brain Behav. 2013, 12, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Hedges, V.L.; Chakravarty, S.; Nestler, E.J.; Meisel, R.L. Delta FosB overexpression in the nucleus accumbens enhances sexual reward in female Syrian hamsters. Genes Brain Behav. 2009, 8, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.L.; Vialou, V.; Rios, L.; Carle-Florence, T.L.; Chakravarty, S.; Kumar, A.; Graham, D.L.; Green, T.A.; Kirk, A.; Iñiguez, S.D.; et al. The influence of DeltaFosB in the nucleus accumbens on natural reward-related behavior. J. Neurosci. 2008, 28, 10272–10277. [Google Scholar] [PubMed]
- Pitchers, K.K.; Frohmader, K.S.; Vialou, V.; Mouzon, E.; Nestler, E.J.; Lehman, M.N.; Coolen, L.M. DeltaFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. Genes Brain Behav. 2010, 9, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Pitchers, K.K.; Balfour, M.E.; Lehman, M.N.; Richtand, N.M.; Yu, L.; Coolen, L.M. Neuroplasticity in the mesolimbic system induced by natural reward and subsequent reward abstinence. Biol. Psychiatry 2010, 67, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Doidge, N. The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science; Penguin Books: New York, NY, USA, 2007. [Google Scholar]
- Hilton, D.L.; Watts, C. Pornography addiction: A neuroscience perspective. Surg. Neurol. Int. 2011, 2, 19. [Google Scholar] [PubMed]
- Reid, R.C.; Carpenter, B.N.; Fong, T.W. Neuroscience research fails to support claims that excessive pornography consumption causes brain damage. Surg. Neurol. Int. 2011, 2, 64. [Google Scholar] [CrossRef] [PubMed]
- Voon, V.; Mole, T.B.; Banca, P.; Porter, L.; Morris, L.; Mitchell, S.; Lapa, T.R.; Karr, J.; Harrison, N.A.; Potenza, M.N.; Irvine, M. Neural Correlates of Sexual Cue Reactivity in Individuals with and without Compulsive Sexual Behaviours. PLoS ONE 2014, 9, e102419. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Gallinat, J. Brain structure and functional connectivity associated with pornography consumption: The brain on porn. JAMA Psychiatry 2014, 71, 827–834. [Google Scholar]
- Prause, N.; Pfaus, J. Viewing Sexual Stimuli Associated with Greater Sexual Responsiveness, Not Erectile Dysfunction. Sex. Med. 2015, 3, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Arnow, B.A.; Desmond, J.E.; Banner, L.L.; Glover, G.H.; Solomon, A.; Polan, M.L.; Lue, T.F.; Atlas, S.W. Brain activation and sexual arousal in healthy, heterosexual males. Brain 2002, 125, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Ferris, C.F.; Snowdon, C.T.; King, J.A.; Sullivan, J.M.; Ziegler, T.E.; Olson, D.P.; Schultz-Darken, N.J.; Tannenbaum, P.L.; Ludwig, R.; Wu, Z.; et al. Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates. J. Magn. Reson. Imaging 2004, 19, 168–175. [Google Scholar] [PubMed]
- Wang, Y.; Zhu, J.; Li, Q.; Li, W.; Wu, N.; Zheng, Y.; Chang, H.; Chen, J.; Wang, W. Altered fronto-striatal and fronto-cerebellar circuits in heroin-dependent individuals: A resting-state FMRI study. PLoS One 2013, 8, e58098. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Wordecha, M.; Sescousse, G.; Kossowski, B.; Marchewka, A. Increased sensitivity to erotic reward cues in subjects with compulsive sexual behaviors. J. Behav. Addict. 2015, 4, 16. [Google Scholar]
- Sescousse, G.; Barbalat, G.; Domenech, P.; Dreher, J.-C. Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain J. Neurol. 2013, 136, 2527–2538. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.; Grabenhorst, T.; Snagowski, J.; Laier, C.; Maderwald, S. Cybersex addiction is correlated with ventral striatum activity when watching preferred pornographic pictures. J. Behav. Addict. 2015, 4, 9. [Google Scholar]
- Wehrum-Osinsky, S.; Klucken, T.; Rudolf, S. Neural and subjective responses in patients with excessive pornography consumption. J. Behav. Addict. 2015, 4, 42. [Google Scholar]
- Fineberg, N.A.; Potenza, M.N.; Chamberlain, S.R.; Berlin, H.A.; Menzies, L.; Bechara, A.; Sahakian, B.J.; Robbins, T.W.; Bullmore, E.T.; Hollander, E. Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review. Neuropsychopharmacology 2010, 35, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.C.K.; Shum, D.; Toulopoulou, T.; Chen, E.Y.H. Assessment of executive functions: Review of instruments and identification of critical issues. Arch. Clin. Neuropsychol. 2008, 23, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognit. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Jonides, J. Storage and executive processes in the frontal lobes. Science 1999, 283, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Stuss, D.T.; Alexander, M.P. Executive functions and the frontal lobes: A conceptual view. Psychol. Res. 2000, 63, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.B.; Rosselli, M. The elusive nature of executive functions: A review of our current understanding. Neuropsychol. Rev. 2007, 17, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Royall, D.R.; Lauterbach, E.C.; Cummings, J.L.; Reeve, A.; Rummans, T.A.; Kaufer, D.I.; LaFrance, W.C.; Coffey, C.E. Executive control function: A review of its promise and challenges for clinical research. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 377–405. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-García, A.; López-Torrecillas, F.; Giménez, C.O.; Pérez-García, M. Clinical implications and methodological challenges in the study of the neuropsychological correlates of cannabis, stimulant, and opioid abuse. Neuropsychol. Rev. 2004, 14, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nat. Neurosci. 2005, 8, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S. Internet sex addiction: Risk factors, stages of development, and treatment. Am. Behav. Sci. 2008, 52, 21–37. [Google Scholar] [CrossRef]
- Holstege, G.; Georgiadis, J.R.; Paans, A.M.J.; Meiners, L.C.; van der Graaf, F.H.C.E.; Reinders, A.A.T.S. Brain activation during human male ejaculation. J. Neurosci. 2003, 23, 9185–9193. [Google Scholar] [PubMed]
- Brand, M.; Laier, C.; Pawlikowski, M.; Schächtle, U.; Schöler, T.; Altstötter-Gleich, C. Watching pornographic pictures on the Internet: Role of sexual arousal ratings and psychological-psychiatric symptoms for using Internet sex sites excessively. CyberPsychology Behav. Soc. Netw. 2011, 14, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Laier, C.; Pekal, J.; Brand, M. Cybersex addiction in heterosexual female users of Internet pornography can be explained by gratification hypothesis. CyberPsychology Behav. Soc. Netw. 2014, 17, 505–511. [Google Scholar]
- Laier, C.; Pekal, J.; Brand, M. Sexual excitability and dysfunctional coping determine cybersex addiction in homosexual males. Cyberpsych. Behav. Soc. Netw. 2015, in press. [Google Scholar] [CrossRef] [PubMed]
- Laier, C.; Pawlikowski, M.; Pekal, J.; Schulte, F.P.; Brand, M. Cybersex addiction: Experienced sexual arousal when watching pornography and not real-life sexual contacts makes the difference. J. Behav. Addict. 2013, 2, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Snagowski, J.; Wegmann, E.; Pekal, J.; Laier, C.; Brand, M. Implicit associations in cybersex addiction: Adaption of an Implicit Association Test with pornographic pictures. Addict. Behav. 2015, 49, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Snagowski, J.; Brand, M. Symptoms of cybersex addiction can be linked to both approaching and avoiding pornographic stimuli: results from an analog sample of regular cybersex users. Front. Psychol. 2015, 6, 653. [Google Scholar] [CrossRef] [PubMed]
- Laier, C.; Brand, M. Empirical Evidence and Theoretical Considerations on Factors Contributing to Cybersex Addiction From a Cognitive-Behavioral View. Sex. Addict. Compuls. 2014, 21, 305–321. [Google Scholar] [CrossRef]
- Reid, R.C.; Karim, R.; McCrory, E.; Carpenter, B.N. Self-reported differences on measures of executive function and hypersexual behavior in a patient and community sample of men. Int. J. Neurosci. 2010, 120, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.C.; Garos, S.; Carpenter, B.N.; Coleman, E. A surprising finding related to executive control in a patient sample of hypersexual men. J. Sex. Med. 2011, 8, 2227–2236. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.W.; Adams, H.E. The effects of stimuli that vary in erotic content on cognitive processes. J. Sex Res. 1999, 36, 145–151. [Google Scholar] [CrossRef]
- Most, S.; Smith, S.; Cooter, A.; Levy, B.; Zald, D. The naked truth: Positive, arousing distractors impair rapid target perception. Cogn. Emot. 2007, 21, 37–41. [Google Scholar] [CrossRef]
- Kagerer, S.; Wehrum, S.; Klucken, T.; Walter, B.; Vaitl, D.; Stark, R. Sex attracts: Investigating individual differences in attentional bias to sexual stimuli. PLoS ONE 2014, 9, e107795. [Google Scholar] [CrossRef] [PubMed]
- Doornwaard, S.M.; van den Eijnden, R.J.J.M.; Johnson, A.; ter Bogt, T.F.M. Exposure to sexualized media content and selective attention for sexual cues: An experimental study. Comput. Hum. Behav. 2014, 41, 357–364. [Google Scholar] [CrossRef]
- Prause, N.; Janssen, E.; Hetrick, W.P. Attention and emotional responses to sexual stimuli and their relationship to sexual desire. Arch. Sex. Behav. 2008, 37, 934–949. [Google Scholar] [CrossRef] [PubMed]
- Macapagal, K.R.; Janssen, E.; Fridberg, B.S.; Finn, R.; Heiman, J.R. The effects of impulsivity, sexual arousability, and abstract intellectual ability on men’s and women’s go/no-go task performance. Arch. Sex. Behav. 2011, 40, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Laier, C.; Pawlikowski, M.; Brand, M. Sexual picture processing interferes with decision making under ambiguity. Arch. Sex. Behav. 2014, 43, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Laier, C.; Schulte, F.P.; Brand, M. Pornographic picture processing interferes with working memory performance. J. Sex Res. 2013, 50, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Schiebener, J.; Laier, C.; Brand, M. Getting stuck with pornography ? Overuse or neglect of cybersex cues in a multitasking situation is related to symptoms of cybersex addiction. J. Behav. Addict. 2015, 4, 14–21. [Google Scholar] [PubMed]
- Mechelmans, D.J.; Irvine, M.; Banca, P.; Porter, L.; Mitchell, S.; Mole, T.B.; Lapa, T.R.; Harrison, N.A.; Potenza, M.N.; Voon, V. Enhanced Attentional Bias towards Sexually Explicit Cues in Individuals with and without Compulsive Sexual Behaviours. PLoS ONE 2014, 9, e105476. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Díaz, M.; Hernández-González, M.; Guevara, M.A.; Amezcua, C.; Ågmo, A. Prefrontal EEG correlation during tower of hanoi and WCST performance: Effect of emotional visual stimuli. J. Sex. Med. 2012, 9, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Steele, V.R.; Staley, C.; Fong, T.; Prause, N. Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffective Neurosci. Psychol. 2013, 3, 20770. [Google Scholar] [CrossRef] [PubMed]
- Minnix, J.A.; Versace, F.; Robinson, J.D.; Lam, C.Y.; Engelmann, J.M.; Cui, Y.; Brown, V.L.; Cinciripini, P.M. The late positive potential (LPP) in response to varying types of emotional and cigarette stimuli in smokers: A content comparison. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2013, 89, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Rupp, H.A.; Wallen, K. Sex Differences in Response to Visual Sexual Stimuli: A Review. Arch. Sex. Behav. 2008, 37, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Lykins, A.D.; Meana, M.; Strauss, G.P. Sex differences in visual attention to erotic and non-erotic stimuli. Arch. Sex. Behav. 2008, 37, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Hilton, D.L. “High desire”, or “merely” an addiction? A response to Steele et al. Socioaffective Neurosci. Psychol. 2014, 4, 23833. [Google Scholar]
- Littel, M.; Euser, A.S.; Munafò, M.R.; Franken, I.H.A. Electrophysiological indices of biased cognitive processing of substance-related cues: A meta-analysis. Neurosci. Biobehav. Rev. 2012, 36, 1803–1816. [Google Scholar] [CrossRef] [PubMed]
- Prause, N.; Steele, V.R.; Staley, C.; Sabatinelli, D.; Hajcak, G. Modulation of late positive potentials by sexual images in problem users and controls inconsistent with “porn addiction”. Biol. Psychol. 2015, in press. [Google Scholar] [CrossRef] [PubMed]
- Julien, E.; Over, R. Male sexual arousal across five modes of erotic stimulation. Arch. Sex. Behav. 1988, 17, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Both, S.; Spiering, M.; Everaerd, W.; Laan, E. Sexual behavior and responsiveness to sexual stimuli following laboratory-induced sexual arousal. J. Sex Res. 2004, 41, 242–258. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Love, T.; Laier, C.; Brand, M.; Hatch, L.; Hajela, R. Neuroscience of Internet Pornography Addiction: A Review and Update. Behav. Sci. 2015, 5, 388-433. https://doi.org/10.3390/bs5030388
Love T, Laier C, Brand M, Hatch L, Hajela R. Neuroscience of Internet Pornography Addiction: A Review and Update. Behavioral Sciences. 2015; 5(3):388-433. https://doi.org/10.3390/bs5030388
Chicago/Turabian StyleLove, Todd, Christian Laier, Matthias Brand, Linda Hatch, and Raju Hajela. 2015. "Neuroscience of Internet Pornography Addiction: A Review and Update" Behavioral Sciences 5, no. 3: 388-433. https://doi.org/10.3390/bs5030388
APA StyleLove, T., Laier, C., Brand, M., Hatch, L., & Hajela, R. (2015). Neuroscience of Internet Pornography Addiction: A Review and Update. Behavioral Sciences, 5(3), 388-433. https://doi.org/10.3390/bs5030388