Faecal Microbial Markers and Psychobiological Disorders in Subjects with Morbid Obesity. A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Accomplishment
2.4. Variables
2.4.1. Participants’ Characteristics
- Gender, age (years), height (m), weight (kg), BMI (kg/m2), coffee (cups/day), smoking (daily, previously, never), and previous and present diseases.
- Physical activity was the sum of two questions: Easy activity (not sweaty/breathless): None; <1 h; 1–2 h; >3 h/week (score 0–3). Strenuous activity (sweaty/breathless): none; <1 h; 1–2 h; >3 h/week (score 0, 3, 4, 5). Sum score physical activity 0–8.
- Use of Metformin and other drugs (Yes/No)
- Use of Non-Nutritive Sweeteners (NNS). One unit of NNS was defined as 100 mL NNS-containing beverage or two NNS tablets/teaspoons for use in tea or coffee. A validated food frequency questionnaire that is based on the official Norwegian food composition table was used for the calculation [14].
2.4.2. Psychobiological Disorders
- WHO-5 Well-being index (score 0–100; scores ≤ 50 indicate low mood and scores ≤ 28 indicate likely depression) [15]
- Hopkins symptom checklist 10, (score 1–4; scores ≥ 1.85 indicate mental distress) [16]
- Fatigue (Score 9–63; scores ≥ 36 indicate further evaluation). The diagnose was based on a validated Norwegian translation of the Fatigue Severity Scale [17].
- Musculoskeletal pain from six parts of the body (score 0–12).
- Food intolerance (yes/no) as reported by the participants.
- Irritable Bowel Syndrome (IBS) (yes/no) was diagnosed with a validated Norwegian translation of the Rome III criteria [18].
- Abdominal complaints were scored with IBS Severity Score system (IBS-SSS) (score 0–500) [19]. All of the subjects with abdominal complaints, and not only those with IBS, filled in the questionnaire.
2.4.3. Faecal Microbiota
2.4.4. Faecal Short Chain Fatty Acids
- Index A (saccharolytic fermentation), which was the concentration of acetic minus propionate minus butyrate divided by the total amount of SCFAs [24].
- Index B (proteolytic fermentation), which was the sum of concentrations of isobutyrate and isovalerate [24].
- The ratio “Propionic acid/Butyric acid”. A high ratio has been proposed as unfavourable [25].
2.5. Statistics
2.6. Ethics
3. Results
3.1. Subject Characteristics
3.2. Dysbiosis Test
3.3. Short Chain Fatty Acids
3.4. Associations between the Psychobiological Disorders and the Microbial Markers
4. Discussion
4.1. Associations between the Faecal Microbial Composition and Psychobiological Disorders
4.2. Associations between the Faecal SCFA and Psychobiological Disorders
4.3. Faecal Microbial Composition and Obesity
4.4. Faecal SCFA and Obesity
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Abbreviations
MO | Morbid Obesity |
SCFA | Short Chain Fatty Acids |
BMI | Body Mass Index |
HV | Healthy Volunteers |
DI | Dysbiosis Index |
ADI | Alternative Dysbiosis Index |
NNS | Non-nutritive sweeteners |
OR | Odds Ratio |
B | Unstandardized coefficient in the linear regression analyses |
WHO-5 | WHO Well-being index |
HSCL-10 | Hopkin Symptom Checklist 10 |
IBS | Irritable Bowel Syndrome |
IBS-SSS | Irritable Bowel Severity Scoring System |
References
- WHO Fact Sheet N 311, Obesity and Overweight. Updated June 2016. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 10 September 2018).
- Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Zhu, C.; Li, H.; Yin, M.; Pan, C.; Huang, L.; Kong, C.; Wang, X.; Zhang, Y.; Qu, S.; et al. Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity (Silver Spring) 2018, 26, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Xiong, L.; Li, L.; Li, M.; Chen, M. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2017, 32, 28–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, Y.; Muniz Pedrogo, D.A.; Kashyap, P.C. Irritable bowel syndrome: A gut microbiota-related disorder? Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G52–G62. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Fournier, C.; Peter, J. Intestinal microbiome-gut-brain axis and irritable bowel syndrome. Wien. Med. Wochenschr. 2018, 168, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linlokken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [Google Scholar] [CrossRef]
- Cenit, M.C.; Sanz, Y.; Codoner-Franch, P. Influence of gut microbiota on neuropsychiatric disorders. World J. Gastroenterol. 2017, 23, 5486–5498. [Google Scholar] [CrossRef]
- Gill, P.A.; van Zelm, M.C.; Muir, J.G.; Gibson, P.R. Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 2018, 48, 15–34. [Google Scholar] [CrossRef]
- Szczesniak, O.; Hestad, K.; Hanssen, J.F.; Rudi, K. Isovaleric acid in stool correlates with human depression. Nutr. Neurosci. 2015, 19, 279–283. [Google Scholar] [CrossRef]
- Casen, C.; Vebo, H.C.; Sekelja, M.; Hegge, F.T.; Karlsson, M.K.; Ciemniejewska, E.; Dzankovic, S.; Froyland, C.; Nestestog, R.; Engstrand, L.; et al. Deviations in human gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment. Pharmacol. Ther. 2015, 42, 71–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeur, J.; Morken, M.H.; Norin, E.; Midtvedt, T.; Berstad, A. Intestinal fermentation in patients with self-reported food hypersensitivity: Painful, but protective? Clin. Exp. Gastroenterol. 2010, 3, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Norwegian Food Composition Table. Available online: http://www.matvaretabellen.no/?language=en (accessed on 10 September 2018).
- Topp, C.W.; Ostergaard, S.D.; Sondergaard, S.; Bech, P. The WHO-5 Well-Being Index: A systematic review of the literature. Psychother. Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, A.J.; Bjelland, I.; Tell, G.S.; Røysamb, E. A comparison of the CONOR Mental Health Index to the HSCL-10 and HADS. Nor. Epidemiol. 2003, 13, 279–284. [Google Scholar]
- Lerdal, A.; Wahl, A.; Rustoen, T.; Hanestad, B.R.; Moum, T. Fatigue in the general population: A translation and test of the psychometric properties of the Norwegian version of the fatigue severity scale. Scand. J. Public Health 2005, 33, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Longstreth, G.F.; Thompson, W.G.; Chey, W.D.; Houghton, L.A.; Mearin, F.; Spiller, R.C. Functional bowel disorders. Gastroenterology 2006, 130, 1480–1491. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.Y.; Morris, J.; Whorwell, P.J. The irritable bowel severity scoring system: A simple method of monitoring irritable bowel syndrome and its progress. Aliment. Pharmacol. Ther. 1997, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Genetic Analysis AS. GAMap TM Dysbiosis Test. Available online: http://www.genetic-analysis.com/patent (accessed on 10 September 2018).
- Farup, P.G.; Kvehaugen, A.S.; Aasbrenn, M. Could a test discriminate between the “good” and the “bad” fecal dysbiosis? A study in subjects with morbid obesity. Obes. Facts 2018, 11, 112–113. [Google Scholar]
- Zijlstra, J.B.; Beukema, J.; Wolthers, B.G.; Byrne, B.M.; Groen, A.; Dankert, J. Pretreatment methods prior to gaschromatographic analysis of volatile fatty acids from faecal samples. Clin. Chim. Acta 1977, 78, 243–250. [Google Scholar] [CrossRef]
- Hoverstad, T.; Bjorneklett, A.; Midtvedt, T.; Fausa, O.; Bohmer, T. Short-chain fatty acids in the proximal gastrointestinal tract of healthy subjects. Scand. J. Gastroenterol. 1984, 19, 1053–1058. [Google Scholar] [PubMed]
- Tjellstrom, B.; Hogberg, L.; Stenhammar, L.; Magnusson, K.E.; Midtvedt, T.; Norin, E.; Sundqvist, T. Effect of exclusive enteral nutrition on gut microflora function in children with Crohn’s disease. Scand. J. Gastroenterol. 2012, 47, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Farup, P.G.; Rudi, K.; Hestad, K. Faecal short-chain fatty acids—A diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol. 2016, 16, 51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Wang, X.; Wang, Z.; Zhang, J.; Jiang, R.; Wang, X.; Wang, K.; Liu, Z.; Xia, Z.; et al. Similar Fecal Microbiota Signatures in Patients With Diarrhea-Predominant Irritable Bowel Syndrome and Patients With Depression. Clin. Gastroenterol. Hepatol. 2016, 14, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Sundin, J.; Rangel, I.; Fuentes, S.; Heikamp-de Jong, I.; Hultgren-Hornquist, E.; de Vos, W.M.; Brummer, R.J. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 2015, 41, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Litvak, Y.; Byndloss, M.X.; Tsolis, R.M.; Baumler, A.J. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 2017, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Tang, H.; Li, M.; Pang, X.; Wang, L.; Zhang, M.; Zhao, Y.; Zhang, X.; Shen, J. The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Arch. Microbiol. 2014, 196, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Halder, C.V.; Faria, A.V.S.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.; Umesaki, Y.; Imaoka, A.; Handa, T.; Kanazawa, M.; Fukudo, S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil. 2010, 22, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 2016, 99, 110–132. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schafer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Rahat-Rozenbloom, S.; Fernandes, J.; Gloor, G.B.; Wolever, T.M. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int. J. Obes. (Lond.) 2014, 38, 1525–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugas, L.R.; Lie, L.; Plange-Rhule, J.; Bedu-Addo, K.; Bovet, P.; Lambert, E.V.; Forrester, T.E.; Luke, A.; Gilbert, J.A.; Layden, B.T. Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: The METS-Microbiome study protocol. BMC Public Health 2018, 18, 978. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutvin, S.A.; Troost, F.J.; Kilkens, T.O.; Lindsey, P.J.; Hamer, H.M.; Jonkers, D.M.; Venema, K.; Brummer, R.J. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol. Motil. 2009, 21, 952-e76. [Google Scholar] [CrossRef] [PubMed]
- Montandon, S.A.; Jornayvaz, F.R. Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes (Basel) 2017, 8, 250. [Google Scholar] [CrossRef]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Manneras-Holm, L.; Stahlman, M.; Olsson, L.M.; Serino, M.; Planas-Felix, M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: Findings and challenges. Gut Microbes 2015, 6, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Althani, A.; Anwar, H.; Rizzi, R.; Marei, H.E. Role of the Gastrointestinal Tract Microbiome in the Pathophysiology of Diabetes Mellitus. J. Diabetes Res. 2017, 2017, 9631435. [Google Scholar] [CrossRef] [PubMed]
- Kannampalli, P.; Shaker, R.; Sengupta, J.N. Colonic butyrate-algesic or analgesic? Neurogastroenterol. Motil. 2011, 23, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yi, C.X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbee, J.F.P.; et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Bouter, K.; Bakker, G.J.; Levin, E.; Hartstra, A.V.; Kootte, R.S.; Udayappan, S.D.; Katiraei, S.; Bahler, L.; Gilijamse, P.W.; Tremaroli, V.; et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl. Gastroenterol. 2018, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 2007, 73, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
Subject Characteristics | Number (%) Mean and/or Median | SD and/or Range |
---|---|---|
Gender (male/female) | 15 (14.7%)/87 (85.3) | |
Age (years) | 44.2 | 8.6 |
Height (cm) | 170 | 7.8 |
Weight (kg) | 120.8 | 16.1 |
BMI (kg/m2) | 41.8 | 3.6 |
Coffee (cups/day) | 3.2 | 2.5 |
Smoking (daily/previously/never) | 14 (13.7%)/46 (45.1%)/42 (41.2%) | |
Physical activity (0–8) | 4.5 | 2.3 |
Diabetes (yes/no) | 23 (23.2%)/76 (76.8%) | |
Metformin use (yes/no) | 16 (18.0%)/73 (82.0%) | |
Non-nutritive sweeteners (units *) | 7.5 (median 3.3) | 10.1 (0–43) |
WHO-5 (0–100) | 60.4 (median 60) | 16 (12–92) |
HSCL-10 (1–4) | 1.58 (median 1.4) | 0.54 (1.0–3.2) |
HSCL-10 Mental distress (yes/no) | 26 (26.5%)/72 (73.5%) | |
Fatigue (6–63) | 35.9 | 14.8 |
Musculoskeletal pain (0–12) | 4.4 | 2.9 |
Food intolerance (Yes/No) | 55 (55.6%)/44 (44.4%) | |
IBS (Yes/No) | 27 (27%)/73 (73%) | |
IBS Severity scoring system (0–500) | 103 | 0–389 |
SCFA | Subjects with Morbid Obesity | Healthy Volunteers | MO vs. HV Relative Amounts | |
---|---|---|---|---|
mmol/kg Wet Weight | Relative Amount (%) | Relative Amount (%) | p-Value | |
SCFA total | 35.99 (21.24) | |||
Acetic acid | 19.57 (10.72) | 55.1 (6.4) | 76.9 (9.6) | <0.001 |
Propionic acid | 6.25 (4.16) | 17.3 (4.4) | 8.5 (3.7) | <0.001 |
Iso-butyric acid | 0.72 (0.61) | 2.1 (0.9) | 1.4 (0.7) | 0.006 |
Butyric acid | 7.13 (5.28) | 19.2 (5.3) | 9.5 (4.6) | <0.001 |
Iso-valeric acid | 1.05 (0.93) | 3.0 (1.5) | 2.0 (1.2) | 0.017 |
Valeric acid | 0.96 (0.84) | 2.6 (1.2) | 1.3 (0.8) | <0.001 |
Iso-capronic acid | 0.00 (0.01) | 0.0 (0.0) | 0.0 (0.0) | 0.163 |
Capronic acid | 0.29 (0.51) | 0.7 (1.0) | 0.4 (0.5) | 0.187 |
Index A | 0.19 (0.11) | |||
Index B | 1.77 (1.53) | |||
Pro/But ratio | 1.01 (0.53) | 1.01 (0.53) | 1.0 (0.4) | 0.864 |
Microbiota | WHO-5 | HSC-10 | Fatigue | |||
---|---|---|---|---|---|---|
B; p-Value * | B; p-Value Ϯ | B; p-Value * | B; p-Value Ϯ | B; p-Value * | B; p-Value Ϯ | |
Dysbiosis Index | −2.86; 0.024 | |||||
ADI | −0.056; 0.011 | −1.98; 0.001 | −1.81; 0.002 | |||
Alistipes | −5.42; 0.022 | |||||
Bacteroides spp. & Prevotella spp. | −3.43; 0.010 | 2.84; 0.021 | ||||
Bacteroides stercoris | 0.174; 0.019 | 0.159; 0.028 | ||||
Bacilli | 4.86; 0.039 | |||||
Dorea spp. | 12.18; 0.014 | 11.44;0.016 | ||||
Faecalibacterium prausnitzii | 6.37; 0.007 | 5.65; 0.013 | −0.205; 0.011 | −0.191; 0.015 | ||
Phascolarctobacterium sp. | −6.77; 0.005 | −5.94; 0.009 | ||||
SCFA total | −0.179; 0.019 | |||||
Acetic acid | −0.342; 0.024 | |||||
Propionic acid | −0.890; 0.022 | |||||
Butyric acid | −0.681; 0.026 | −0.675; 0.020 |
Microbiota | Food Intolerance | Musculoskeletal Pain | IBS | IBS-SSS | ||||
---|---|---|---|---|---|---|---|---|
OR; p-Value * | OR; p-Value Ϯ | B; p-Value * | B; p-Value Ϯ | OR; p-Value * | OR; p-Value Ϯ | B; p-Value * | B; p-Value Ϯ | |
ADI | −10.86; 0.010 | −10.86; 0.010 | ||||||
Actinomycetales | 1.34; 0.034 | |||||||
Bifidobacterium spp. | 1.22; 0.012 | 0.94; 0.039 | ||||||
Alistipes | 0.34; 0.019 | 0.34; 0.019 | −40.3; 0.012 | |||||
Alistipes onderdonkii | 0.52; 0.041 | |||||||
Bacteroides stercoris | 1.25; 0.001 | 1.07; 0.004 | ||||||
Bacteroides zoogleoformans | 4.64; 0.026 | 15.55; 0.009 | ||||||
Parabacteroides johnsonii | ||||||||
Parabacteroides spp. | 2.10; 0.037 | 3.31; 0.007 | ||||||
Firmicutes | 2.30; 0.037 | |||||||
Dia/ister invisus | 1.95; 0.026 | 2.91; 0.008 | ||||||
Eubacterium rectale | −1.63; 0.023 | |||||||
Phascolarctobacterium sp. | −1.016; 0.030 | −0.85; 0.049 | ||||||
Proteobacteria | −1.026; 0.050 | |||||||
Shigella spp. & Escherichia spp. | −0.71; 0.049 | −0.75; 0.030 | ||||||
SCFA total | 0.967; 0.049 | |||||||
Acetic acid | 0.935; 0.033 | |||||||
Iso-butyric acid | 0.080; 0.006 | |||||||
Iso-valeric acid | 0.213; 0.006 | |||||||
Valeric acid | 0.217; 0.012 | 0.14; 0.003 | ||||||
Iso-capronic acid | −67.1; 0.034 | |||||||
Index B | 0.379; 0.005 | |||||||
Valeric acid Pct | 0.623; 0.029 | |||||||
Iso-capronic acid Pct | −27.57; 0.034 | |||||||
Propionic acid Pct | 1.14; 0.021 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farup, P.G.; Valeur, J. Faecal Microbial Markers and Psychobiological Disorders in Subjects with Morbid Obesity. A Cross-Sectional Study. Behav. Sci. 2018, 8, 89. https://doi.org/10.3390/bs8100089
Farup PG, Valeur J. Faecal Microbial Markers and Psychobiological Disorders in Subjects with Morbid Obesity. A Cross-Sectional Study. Behavioral Sciences. 2018; 8(10):89. https://doi.org/10.3390/bs8100089
Chicago/Turabian StyleFarup, Per G, and Jørgen Valeur. 2018. "Faecal Microbial Markers and Psychobiological Disorders in Subjects with Morbid Obesity. A Cross-Sectional Study" Behavioral Sciences 8, no. 10: 89. https://doi.org/10.3390/bs8100089
APA StyleFarup, P. G., & Valeur, J. (2018). Faecal Microbial Markers and Psychobiological Disorders in Subjects with Morbid Obesity. A Cross-Sectional Study. Behavioral Sciences, 8(10), 89. https://doi.org/10.3390/bs8100089