A Neuroimaging Study of Personality Traits and Self-Reflection
Abstract
:1. Introduction
- Thinking/Logical PO (L): They primarily focus on semantic ideational thinking and rational conceptual thinking style; they tend to focus on generating new ideas, making sense of the why and how things work, and emphasizing the need to know rational explanations of phenomena. Logical ideational individuals focus on making sense of life based on the coherence of existing valid knowledge, and scientific findings. They are able to evaluate information objectively, based on factual criteria and logically analyzing, thinking through (often without emotional influences) the merits of concepts and events based on rational assessment [29,30].
- Material/Pragmatic PO (P): They focus on physical empirical evidence and knowledge structures. They are characterized by a strong emphasis on physical attributes, characteristics, and phenomena, which are measurable and tangible. They prefer to deal with the physically objective realities, amenable to objective investigation. They aim for material success, material possessions, and enjoying the physical advantages of the world. Materialists get immense pleasure from physical pleasures and the tangible attributes of products (often without concerns for social or emotional impacts). They rely heavily on the input of their somatosensory faculties to make decisions. Embodied type of learning and sense making is the dominant cognitive processing style.
- Emotion/Feeling-Action PO (E): They engage in experiential and action-based learning, understanding, and thinking processes. They tend to be action oriented, observing and planning actions, and have high levels of energy. High sensorimotor arousal, influences goal-motivated actions to satisfy their needs. They are usually social intelligent, competitively oriented toward social goal achievements. They are driven by a high sense of self-efficacy, and a ‘can do’ self-reliant attitude. They are able to makes sense and find solutions to various challenges through action-based strategies. Social learning, role playing, and trial error experiential learning generate ideas and thinking to make sense of their world. Experiential information underpins conceptual thinking and understanding of what decisions to make.
- Intuitive/Imaginative PO (I): They are creative types of thinkers, able to visualize information and able to think abstract constructs. Imaginative visualizers are characterized by a heightened level of sensitivity and awareness of unconscious perceptions regarding world phenomena. They tend to rely on visual, graphic, or animated types of learning stimuli. They are more likely to use imagination habitually to process information and problem solving. Abstract thinkers can develop complete solutions rather than following a sequential inductive step by step analytical approach. Information is mentally and visually processed with ease and counterfactual concepts emerge to solve problems. They can produce imaginative, novel creative ideas about world experiences and phenomena that are not empirically obviously detectable.
Research Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Experimental Materials
2.3. Neuroimaging fMRI Methodology
2.4. Neuroimaging Tasks
2.5. Neuroimaging and Statistical Analysis
3. Results
3.1. Personality Orientations and fMRI Activity
3.2. Emotion/Feeling-Action Personality Orientation
3.3. Intuitive/Imaginative Personality Orientation
3.4. Logical/Thinking Personality Orientation
3.5. Material/Pragmatic Personality Orientation
3.6. Personality Orientations and ROI Activity-Localizer Scan
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeYoung, C.G.; Gray, J.R. Personality neuroscience: Explaining individual differences in affect, behaviour and cognition. In The Cambridge Handbook of Personality Psychology; Corr, P.J., Matthews, G., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 323–346. [Google Scholar]
- Read, S.J.; Monroe, B.M.; Brownstein, A.L.; Yany, Y.; Chopra, G.; Miller, L.C. A neural network model of the structure and dynamics of human personality. Psychol. Rev. 2010, 117, 61–92. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.H.M.; Rutherford, H.J.V.; Mayes, L.C.; McPartland, J.C. Neural responses to faces reflect social personality traits. Soc. Neurosci. 2010, 5, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wei, D.; Li, W.; Qiu, J. Individual differences in brain structure and resting-state functional connectivity associated with type A behaviour patterns. Neuroscience 2014, 272, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Kennis, M.; Rademaker, A.R.; Geuze, E. Neurral Correlates of personality: An integrative review. Neurosci. Biobehav. Methods 2013, 37, 73–95. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Speranza, O. Personality Effects on Attentional Shifts to Emotional Charged Cues: ERP, Behavioural and HR Data. Personal. Ind. Differ. 2000, 29, 217–238. [Google Scholar] [CrossRef]
- Knutson, B.; Cooper, J.C. Functional magnetic resonance imaging of reward prediction. Curr. Opin. Neurol. 2005, 18, 411–417. [Google Scholar] [CrossRef]
- Knutson, B.; Taylor, J.; Kaufman, M.; Peterson, R.; Glover, G. Distributed neural representation of expected value. J. Neurosci. 2005, 25, 4806–4812. [Google Scholar] [CrossRef]
- Brancaleone, V.; Gountas, J. Personality characteristics of the market mavens. In Advances in Consumer Research; Association of Consumer Research: Orlando, FL, USA, 2007; Volume 34, pp. 522–527. [Google Scholar]
- Gountas, J.; Gountas, S. Personality Orientations, emotional states, customer satisfaction and intention to repurchase. J. Bus. Res. 2007, 60, 72–75. [Google Scholar] [CrossRef]
- Gountas, J.; Gountas, S. Personality types and tourist segmentation. Tour. Anal. 2000, 5, 151–156. [Google Scholar]
- Hopper, A.; Ciorciari, J.; Johnson, G.; Spensley, J.; Sergejew, A.; Stough, C. EEG Coherence and Dissociative Identity Disorder. J. Dissociation Trauma. 2002, 3, 75–88. [Google Scholar] [CrossRef]
- Lawrence, L.M.; Ciorciari, J.; Kyrios, M. Cognitive processes associated with compulsive buying behaviours and related EEG coherence. Psychiatry Res. 2014, 221, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Barrash, J.; Tranel, D.; Anderson, S.W. Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev. Neuropsychol. 2000, 18, 355–381. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, A.; Soares, J.M.; Coutinho, J.; Sousa, N.; Goncalves, O.F. The Big Five default brain: Functional evidence. Brain Struct. Funct. 2014, 219, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network; anatomy, function and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Adelstein, J.S.; Shehzad, Z.; Mennes, M.; DeYoung, C.G.; Zuo, X.; Kelly, C.; Margulies, D.S.; Bloomfield, A.; Gray, J.R.; Castellanos, F.X.; et al. Personality Is Reflected in the Brain’s Intrinsic Functional Architecture. PLoS ONE 2011, 6, e27633. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.W.; Ishak, A.; Denison, L.; Anderson, I.; Filkowski, M.M. Agreeableness and brain activity during emotion attribution decisions. J. Personal. 2015, 57, 26–31. [Google Scholar] [CrossRef]
- Yasuno, F.; Kudo, T.; Yamamoto, A.; Matsuoka, K.; Takahashi, M.; Iida, H.; Ihara, M.; Nagatsuka, K.; Kishimoto, T. Significant correlation between openness personality in normal subjects and brain myelin mapping with T1/T2-weighted MR imaging. Heliyon 2017, 3, e00411. [Google Scholar] [CrossRef]
- Beer, J.S.; Lombardo, M.V.; Bhanji, J.P. Roles of medial prefrontal cortex and orbitofrontal cortex in self-evaluation. J. Cogn. Neurosci. 2010, 22, 2108–2119. [Google Scholar] [CrossRef]
- Stough, C.; Donaldson, C.; Scarlata, B.; Ciorciari, J. Psychophysiological correlates of the NEO PI-R openness, agreeableness and conscientiousness: Preliminary Results. Int. J. Psychophysiol. 2001, 41, 87–91. [Google Scholar] [CrossRef]
- Kovalenko, A.A.; Pavlenko, V.B.; Chernyi, S.V. Correlations of the Characteristics of Evoked EEG Potentials with the Neuroticism Level in Healthy Adults. Neurophysiology 2010, 42, 162–168. [Google Scholar] [CrossRef]
- Brühl, A.B.; Viebke, M.C.; Baaumgartner, T.; Kaffenberger, T.; Herwig, U. Neural correlates of personality diensionsand affective measures during the anticipation of emotional stimuli. Brain Imaging Behav. 2011, 5, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, P.W.; Rustichini, A. Neuroeconomics: The Consilience of Brain and Decision. Science 2004, 306, 447. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.E.; Park, C.B.; Lim, S.L.; Park, E.H.; Lee, Y.H.; Lee, K.H.; Kim, E.J.; Kim, H.T. EEG and personality orientations: A consideration based on the brain oscillatory systems. Personal. Ind. Differ. 2005, 39, 669–681. [Google Scholar] [CrossRef]
- Gountas, J.; Gountas, S. A new psychographic segmentation method using Jungian MBTI variables in the tourism industry. In Consumer Psychology of Tourism, Hospitality and Leisure; Mazanec, J., Crouch, G., Ritchie, B.J., Woodside, A., Eds.; CABI: Oxford, UK, 2001; Volume 2, pp. 215–230. [Google Scholar]
- Gountas, J.; Ciorciari, J. Inside the Minds of the Trendsetters. In Australasian Science; Nolch, G., Ed.; Control Publications Pty Ltd: Malvern, Victoria, Australia, 2010; Volume 31, pp. 14–17. [Google Scholar]
- Evans, J.; St, B.T. Dual-processing accounts of reasoning, judgment and social cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Gountas, J. Personality Types and Tourism Holiday Preferences; University of Reading: Reading, UK, 2003. [Google Scholar]
- Moss, S. Jungian Typology: Myers-Briggs and Personality; Collins Dove Publications: Melbourne, Australia, 1989. [Google Scholar]
- Cope, L.; Schaich Borg, J.; Harenski, C.; Sinnott-Armstrong, W.; Lieberman, D.; Nyalakanti, P.; Kiehl, K. Hemispheric Asymmetries during Processing of Immoral Stimuli. Front. Evolut. Neurosci. 2010, 2, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.C.; Baxter, L.C.; Wilder, L.S.; Pipe, J.G.; Heiserman, J.E.; Prigatano, G.P. Neural correlates of self-reflection. Brain 2002, 125, 1808–1814. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.K.; Raye, C.L.; Mitchell, K.J.; Touryan, S.R.; Greene, E.J.; Nolen-Hoeksema, S. Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc. Cogn. Affect. Neurosci. 2006, 1, 56–64. [Google Scholar] [CrossRef]
- Diener, C.; Kuehner, C.; Brusniak, W.; Ubl, B.; Wessa, M.; Flor, H. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. NeuroImage 2012, 61, 677–685. [Google Scholar] [CrossRef]
- Morales, S.; Bowman, L.C.; Velnoskey, K.R.; Fox, N.A.; Redcay, E. An fMRI study of action observation and action execution in childhood. Dev. Cogn. Neurosci. 2019, 37, 1–10. [Google Scholar] [CrossRef]
- Biagi, L.; Cioni, G.; Fogassi, L.; Guzzetta, A.; Sgandurra, G.; Tosetti, M. Action observation network in childhood: A comparative fMRI study with adults. Dev. Sci. 2016, 19, 1075–1086. [Google Scholar] [CrossRef]
- Di Pellegrino, G.; Fadiga, L.; Fogassi, L.; Gallese, V.; Rizzolatti, G. Understanding motor events: A neurophysiological study. Exp. Brain Res. 1992, 91, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Southgate, V.; Johnson, M.H.; Karoui, I.E.; Csibra, G. Motor system activation reveals infants’ on-line prediction of others’ goals. Psychol. Sci. 2010, 21, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Van Elk, M.; Van Schie, H.T.; Hunnius, S.; Vesper, C.; Bekkering, H. You’ll never crawl alone: Neurophysiological evidence for experience-dependent motor resonance in infancy. NeuroImage 2008, 43, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Mukawa, N.; Saito, M. Brain Activity Comparison of Different-Genre Video Game Players. In Proceedings of the Paper Presented at the Second International Conference on Innovative Computing, Kumamoto, Japan, 5–7 September 2007. [Google Scholar] [CrossRef]
- Prado, J.; Chadha, A.; Booth, J.R. The Brain Network for Deductive Reasoning: A Quantitative Meta-analysis of 28 Neuroimaging Studies. J. Cogn. Neurosci. 2011, 23, 3483–3497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wai, Y.; Weng, Y.; Yu, J.; Wang, J. The cortical modulation from the external cues during gait observation and imagination. Neurosci. Lett. 2008, 443, 232–235. [Google Scholar] [CrossRef]
- Kringelbach, M.L.; Rolls, E.T. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 2004, 72, 341–372. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.R.; Smallwood, J.; Spreng, R.N. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014, 1316, 29–52. [Google Scholar] [CrossRef]
- Schacter, D.L.; Addis, D.R.; Hassabis, D.; Martin, V.C.; Spreng, R.N.; Szpunar, K.K. The Future of Memory: Remembering, Imagining, and the Brain. Neuron 2012, 76, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Bar, M. A cognitive neuroscience hypothesis of mood and depression. Trends Cogn. Sci. 2009, 13, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Gountas, S.; Gountas, J. The Influence of Emotions on Service Product Evaluation. Tour. Anal. 2004, 8, 125–129. [Google Scholar] [CrossRef]
- Mazaika, P.; Whitfield, S.; Cooper, J.C. Detection and repair of transient artifacts in fMRI data. Neuroimage 2005, 26 (Suppl. 1), S36. [Google Scholar]
- Vul, E.; Harris, C.; Winkielman, P.; Pashler, H. Puzzingly high correlations in fMRI studies of emotion, personality and social cognition. Perspect. Psychol. Sci. 2009, 4, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Brett, M.; Anton, J.L.; Valabregue, R.; Poline, J.B. Region of interest analysis using an SPM toolbox. In Proceedings of the Presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, 2–6 June 2002. [Google Scholar]
- Andrews, T.J.; Ewbank, M.P. Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. NeuroImage 2004, 23, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Garey, L.J. Brodmann’s Localisation in the Cerebral Cortex; Springer: New York, NY, USA, 2006; ISBN1 0-387-26917-7. ISBN2 978-0387-26917-7. [Google Scholar]
- Karle, K.N.; Ethofer, T.; Jacob, H.; Brück, C.; Erb, M.; Lotze, M.; Kreifelts, B. Neurobiological correlates of emotional intelligence in voice and face perception networks. Soc. Cogn. Affect. Neurosci. 2018, 13, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarrasuik, J.; Ciorciari, J.; Stough, C. Understanding the Neurobiology of Emotional Intelligence. In Assessing Emotional Intelligence: Theory, Research, and Applications; Stough, C., Saklofske, D.H., Parker, J.D.A., Eds.; The Springer Series on Human Exceptionality; Springer: Boston, MA, USA, 2009; ISBN1 10 038788369X. ISBN2 13 978-0387883694. [Google Scholar]
- Ciorciari, J. Biological Basis of Personality: EEG Studies and Behaviour. In Case Studies in Psychology; Whelan, T., Ed.; Thomson Learning: Melbourne, Australia, 2006; ISBN 0170130002. [Google Scholar]
- Ciorciari, J.; Gountas, J. Psychophysiological investigations of individual differences (personality orientations) using EEG & fMRI. Symposium B4: The Oscillations of Biological Systems: Methods and Perspectives, Part 2. In Proceedings of the 17th World Congress of Psychophysiology, Hiroshima, Japan, 23–27 September 2014. [Google Scholar]
- Kelley, W.M.; Macrae, C.N.; Wyland, C.L.; Caglar, S.; Inati, S.; Heatherton, T.F. Finding the Self? An event-related fMRI study. J. Cogn. Neurosci. 2002, 14, 785–794. [Google Scholar] [CrossRef]
- Bjørnebekk, A.; Fjell, A.M.; Walhovd, K.B.; Grydeland, H.; Torgersen, S. Neuronal correlates of the five-factor model (FFM) of human personality: Multimodal imaging in a large healthy sample. NeuroImage 2013, 65, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.; Fisher, H.; Mashek, D.J.; Strong, G.; Li, H.; Brown, L.L. Reward, Motivation, and Emotion Systems Associated With Early-Stage Intense Romantic Love. J. Neurophysiol. 2005, 94, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Jackson, P.L.; Brunet, E.; Meltzoff, A.N.; Decety, J. Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 2006, 44, 752–761. [Google Scholar] [CrossRef] [Green Version]
- McNorgan, C. A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Front. Neurosci. 2012, 6, 285. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, A.W., III; Cohen, J.D.; Stenger, V.A.; Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000, 288, 1835. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. NEO PI-R Professional Manual; Psychological Assessment. Resources: Odessa, FL, USA, 1992. [Google Scholar]
- Jausovec, N.; Jausovec, K. Differences in induced gamma and alpha oscillation in the human brain related to verbal/performance and emotional intelligence. Int. J. Psychophysiol. 2005, 56, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Borod, J.C.; Andelman, F.; Obler, L.K.; Tweedy, J.R.; Welkowitz, J. Right hemisphere specialization for the identification of emotional words and sentences: Evidence from stroke patients. Neuropsychologia 1992, 30, 827–844. [Google Scholar] [CrossRef]
- Omura, K.; Todd Constable, R.; Canli, T. Amygdala gray matter concentration is associated with extraversion and neuroticism. Neuroreport 2005, 16, 1905–1908. [Google Scholar] [CrossRef] [PubMed]
- Furnham, A.; Moutafi, J.; Crump, J. The relationship between the revised NEO-personality inventory and the Myers_Briggs type indicator. Soc. Behav. Personal. 2003, 31, 577–584. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, X.; Li, J.; Zheng, L.; Wang, Q.; Yang, Z. Hippocampal activity is associated with self-descriptiveness effect in memory, whereas self-reference effect in memory depends on Medial prefrontal activity. Hippocampus 2012, 22, 1540–1552. [Google Scholar] [CrossRef]
- Hassabis, D.; Spreng, R.N.; Rusu, A.A.; Robbins, C.A.; Mar, R.A.; Schacter, D.L. Imagine all the people: How the brain creates and uses personality models to predict behaviour. Cereb. Cortex 2013, 24, 1979–1987. [Google Scholar] [CrossRef]
- Kroger, J.K.; Sabb, F.W.; Fales, C.L.; Bookheimer, S.Y.; Cohen, M.S.; Holyoak, K.J. Recruitment of Anterior Dorsolateral Prefrontal Cortex in Human Reasoning: A Parametric Study of Relational Complexity. Cereb. Cortex 2002, 12, 477–485. [Google Scholar] [CrossRef]
- Wagner, D.D.; Haxby, J.V.; Heatherton, T.F. The representation of self and person knowledge in the medial prefrontal cortex. Wiley Interdiscip. Rev. 2012, 3, 451–470. [Google Scholar] [CrossRef] [Green Version]
- Hixon, J.G.; Swann, W.B. When does introspection bear fruit? Self-reflection, self-insight, and interpersonal choices. J. Personal. Soc. Psychol. 1993, 64, 35–43. [Google Scholar] [CrossRef]
- Smallwood, J.; Schooler, J.W.; Turk, D.J.; Cunningham, S.J.; Burns, P.; Macrae, C.N. Self-reflection and the temporal focus of the wandering mind. Conscious. Cogn. 2011, 20, 1120–1126. [Google Scholar] [CrossRef]
- Eklund, A.; Nichols, T.E.; Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7900–7905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plassmann, H.; Venkatraman, V.; Huettel, S.; Yoon, C. Consumer Neuroscience: Applications, Challenges, and Possible Solutions. J. Mark. Res. 2015, 52, 427–435. [Google Scholar] [CrossRef]
- Canli, T.; Zhao, Z.; Desmond, J.E.; Kang, E.; Gross, J.; Gabrieli, J.D.E. An fMRI study of personality influences on brain reactivity to emotional stimuli. Behav. Neurosci. 2001, 115, 33–42. [Google Scholar] [CrossRef] [PubMed]
(a) | |||
Talairach Coordinates (x, y, z) | BA | H | Region—Functional Role (Brodmann Areas) |
Emotion/Feeling-Action | |||
16, 12, 68 14, 2, 54 −36, −4, 16 −24, −2, 68 | 6 | R R L L | Prefrontal motor, supplementary motor area—planning complex movements—error analysis. |
30, 12, 62 | 8 | R | Includes frontal eye fields—control of visual attention, eye movements. |
−30, −16, −18 −22, −8, 40 | 20 | L L | Inferior temporal gyrus. Associated visual processing. |
−14, −34, −20 | 30 | L | Cingulate cortex—part of the limbic lobe. Executive functions of emotion formation and processing, learning and memory. |
38, −8, 34 | 44 | R | Hippocampus—memory formation & function. |
Intuitive/Imaginative | |||
30, −45, 54 | 2 | R | Postcentral Gyrus—Somatosensory processing, texture, size & shape. |
16, −52, 56 | 5 | R | Somatosensory Association. |
32, 30, 22 | 11 | R | Orbitofrontal cortex (OFC)—executive decision—making, understanding metaphors and invention. |
18, −30, −18 | 30 | R | Cingulate cortex—part of the limbic lobe. Executive functions of emotion formation and processing, learning and memory. |
−40, −44, −16 −32, −48, −16 42, −64, 10 | 37 | L L R | Fusiform Gyrus—face and body recognition, within—category identification. |
−42, −78, 20 | 39 | L | Orbitofrontal cortex (OFC)—executive decision—making, understanding metaphors and invention. |
42, −38, 20 | 41 | R | Primary Auditory Cortex—association sound. |
44, −22, 24 50, −28, 28 | 48 | R R | Retrosubicular area—Hippocampus-memory. |
(b) | |||
Talairach Coordinates x, y, z | BA | H | Region—Functional Role (Brodmann Areas) |
Material/Pragmatic | |||
42, 2, 22 34, 15, 42 | 20 | R | Inferior temporal gyrus. Associated visual processing (complex objects). |
50, 6, 22 | 21 | R | Middle temporal gyrus. Processes include contemplation, facial recognition and word meaning. |
12, −4, −4 | 25 | R | Ventral medial prefrontal—risk & fear processing |
−12, 26, 28 | 32 | L | Anterior cingulate cortex (ACC). Involved in reward anticipation, decision—making, empathy and emotion and reward—based learning. |
−20, 6, 38 | 36 | L | Parahippocampal gyrus. Involved in identifying social context, encoding and recognition of scenarios. |
−20, 10, 26 | 48 | L | Retrosubicular area—Hippocampus—memory |
Logical/Thinking | |||
−14, 38, 54 | 9 | L | Dorsolateral prefrontal cortex. Involved in executive processes associated with motor planning, organization, and regulation, integration of sensory information and working memory. |
12, −48, −4 | 18 | R | Visual area V2. Involved in visual memory. |
−4, −48, 30 | 23 | L | Posterior cingulate cortex. Involved in the capacity to understand what other people believe, default mode & awareness. |
−8, 16, 16 | 25 | L | Ventral medial prefrontal—decision processing associated with risk & fear. |
−26, −8, 12 | 34 | L | Entorhinal cortex (EC). Involved in memory and navigation, memory formation, consolidation organization. |
30, −2, 22 | 36 | R | Parahippocampal gyrus. Involved in identifying social context, encoding and recognition of scenarios. |
−28, −30, 0 −20, −46, 6 | 37 | L L | Fusiform Gyrus. Involved in face and body recognition & identification. |
−44, −64, 28 | 46 | L | Dorsolateral prefrontal cortex. Involved in executive processes associated with motor planning, organization, and regulation, integration of sensory information and working memory. |
28, 0, 14 | 48 | R | Retrosubicular area—Hippocampus. Involved in memory formation. |
ROI | Talairach Coordinates (x, y, z) | H | Region (Nearest Gray Matter) | BA |
---|---|---|---|---|
1 | −30, 50, 24 | L | Left Cerebrum, Frontal Lobe, Superior Frontal Gyrus, Anterior Prefrontal Cortex | 10 |
2 | 32, 52, 26 | R | Right Cerebrum, Frontal Lobe, Superior Frontal Gyrus, Dorsolateral Prefrontal cortex | 9 |
3 | 6, 14, 50 | R | Right Cerebrum, Frontal Lobe, Superior Frontal Gyrus, Premotor Cortex | 6 |
4 | 30, −64, 52 | R | Right Cerebrum, Parietal Lobe, Superior Parietal Lobule, Somatosensory Association Cortex | 7 |
5 | −28, −56, 54 | L | Left Cerebrum, Parietal Lobe, Superior Parietal Lobule, Somatosensory Association Cortex | 7 |
6 | −18, −96, −2 | L | Left Cerebrum, Occipital Lobe, Cuneus, primary visual cortex | 17 |
7 | 12, −92, −8 | R | Right Cerebrum, Occipital Lobe, Inferior Occipital Gyrus | 17 |
8 | −48, 24, 24 | L | Left Cerebrum, Frontal Lobe, Middle Frontal Gyrus, Dorsolateral Prefrontal cortex | 46 |
9 | 46, 30, 30 | R | Right Cerebrum, Frontal Lobe, Middle Frontal Gyrus, Dorsolateral Prefrontal cortex | 9 |
10 | 32, −2, 62 | R | Right Cerebrum, Frontal Lobe, Middle Frontal Gyrus, Premotor Cortex | 6 |
11 | −36, −2, 60 | L | Left Cerebrum, Frontal Lobe, Middle Frontal Gyrus, Premotor Cortex | 6 |
12 | −14, −6, 16 | L | Left Cerebrum, Sub-lobar, Caudate | |
13 | 16, −4, 18 | R | Right Cerebrum, Sub-lobar, Caudate | |
14 | 10, −78, 8 | L | Left Cerebrum, Occipital Lobe, Cuneus, primary visual cortex | 17 |
15 | −42, −36, 44 | L | Left Cerebrum, Parietal Lobe, Inferior Parietal Lobule | 40 |
16 | −10, −22, −8 | L | Left Brainstem, Midbrain, Thalamus, Gray Matter, Medial Geniculum Body | |
17 | −39, −72, −12 | L | Left Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, inferior prefrontal gyrus | 47 |
18 | 37, −64, −20 | R | Right Cerebellum, Posterior Lobe, Declive | |
19 | 32, 25, 7 | R | Right Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, Broca’s area | 45 |
20 | −41, 23, 7 | L | Left Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, insular | 13 |
21 | −9, −15, −17 | L | Parahippocampal gyrus, limbic | - |
22 | 32, 21, 9 | R | Sub-lobar, insula | 13 |
Brodmann Area/ROI | Volumes/Period | Probability (p < 0.05) | F (1.38) |
---|---|---|---|
Logical/Thinking | |||
10—Left Mid frontal cortex (LmFC) | 3 | 0.011 * | 7.137 |
4 | 0.046 * | 4.245 | |
5 | 0.044 * | 4.322 | |
Emotion/Feeling-Action | |||
46—Left Dorsolateral Prefrontal Cortex | 10 | 0.044 * | 4.342 |
9—Right Dorsolateral Prefrontal Cortex | 9 | 0.032 * | 4.955 |
6—Middle Right Superior Frontal gyrus | 10 | 0.049 * | 4.151 |
Left Thalamus (caudate nucleus) | 10 | 0.023 * | 5.585 |
47—Left Inferior Frontal Gyrus | 10 | 0.004 * | 4.537 |
Material/Pragmatic | |||
Left Medial Geniculum | 5 | 0.033 * | 4.890 |
Intuitive/Imaginative | |||
9—Right Dorsolateral Prefrontal Cortex | 6 | 0.032 * | 4.928 |
7 | 0.018 * | 6.072 | |
8 | 0.013 * | 6.760 | |
6—Right Superior Frontal gyrus | 6 | 0.011 * | 7.176 |
7 | 0.030 * | 5.096 | |
8 | 0.024 * | 5.495 | |
9 | 0.032 * | 4.946 | |
10 | 0.028 * | 5.223 | |
7—left Superior Parietal Lobule somatosensory | 7 | 0.004 ** | 9.502 |
8 | 0.002 ** | 10.766 | |
9 | 0.033 * | 4.875 | |
10 | 0.044* | 4.320 | |
17—Left Primary Visual Cortex | 7 | 0.029 * | 5.118 |
8 | 0.015 * | 6.425 | |
9 | 0.036 * | 4.724 | |
17—Cuneus | 7 | 0.015 * | 6.430 |
8 | 0.006 ** | 8.482 | |
9 | 0.006 ** | 8.582 | |
15—Left Inferior Parietal Lobule | 7 | 0.018 * | 6.103 |
8 | 0.003 ** | 10.164 | |
9 | 0.007 ** | 8.025 | |
17—Left Inferior Frontal Gyrus | 7 | 0.007 ** | 8.107 |
8 | 0.001 ** | 13.497 | |
9 | 0.007 ** | 8.241 | |
Parahippocampal gyrus, Limbic | 6 | 0.032 * | 4.978 |
16—Left Primary Visual Cortex (Cuneus) | 9 | 0.020 * | 5.917 |
10 | 0.032 * | 4.958 | |
Right Caudate | 7 | 0.010 * | 7.290 |
8 | 0.018 * | 6.059 | |
13—Right Insula | 6 | 0.048 * | 4.159 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciorciari, J.; Gountas, J.; Johnston, P.; Crewther, D.; Hughes, M. A Neuroimaging Study of Personality Traits and Self-Reflection. Behav. Sci. 2019, 9, 112. https://doi.org/10.3390/bs9110112
Ciorciari J, Gountas J, Johnston P, Crewther D, Hughes M. A Neuroimaging Study of Personality Traits and Self-Reflection. Behavioral Sciences. 2019; 9(11):112. https://doi.org/10.3390/bs9110112
Chicago/Turabian StyleCiorciari, Joseph, John Gountas, Patrick Johnston, David Crewther, and Matthew Hughes. 2019. "A Neuroimaging Study of Personality Traits and Self-Reflection" Behavioral Sciences 9, no. 11: 112. https://doi.org/10.3390/bs9110112
APA StyleCiorciari, J., Gountas, J., Johnston, P., Crewther, D., & Hughes, M. (2019). A Neuroimaging Study of Personality Traits and Self-Reflection. Behavioral Sciences, 9(11), 112. https://doi.org/10.3390/bs9110112