On the Inclusion of Adaptive Potential in Species Distribution Models: Towards a Genomic-Informed Approach to Forest Management and Conservation
Abstract
:1. Framework
2. Historic Attempts to Inform Species Distribution Models with Genetic Information
3. Relevance and Critical Aspects of Including Evolutionary Processes into Species Distribution Models
4. Ecological Methods Used to Identify Adaptive Variation
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Vries, S.M.G.; Alan, M.; Bozzano, M.; Burianek, V.; Collin, E.; Cottrell, J.; Ivankovic, M.; Kelleher, C.T.; Koskela, J.; Rotach, P. Pan-European Strategy for Genetic Conservation of Forest Trees: And Establishment of a Core Network of Dynamic Conservation Units; Bioversity International: Rome, Italy, 2015; ISBN 978-92-9255-029-5. [Google Scholar]
- Alia, R.; Aravanopoulos, F.; Fjellstad, K.B.; Bozzano, M.; Fady, B.; Farsakoglou, A.-M.; Gonzáles Martínez, S.C.; Heinze, B.; Kandemir, G.; Kozioł, C. Forest Genetic Resources Strategy for Europe; EUFORGEN Secretariat, European Forest Institute: Barcelona, Spain, 2021; ISBN 978-952-7426-48-7. [Google Scholar]
- Lefèvre, F.; Alia, R.; Bakkebø Fjellstad, K.; Graudal, L.; Oggioni, S.D.; Rusanen, M.; Vendramin, G.G.; Bozzano, M. Dynamic Conservation and Utilization of Forest Tree Genetic Resources: Indicators for In Situ and Ex Situ Genetic Conservation and Forest Reproductive Material; European Forest Genetic Resources Programme (EUFORGEN), European Forest Institute: Barcelona, Spain, 2020; ISBN 978-952-5980-81-3. [Google Scholar]
- FOREST EUROPE. 2020: State of Europe’s Forests 2020; Ministerial Conference on the Protection of Forests in Europe—FOREST EUROPE Liaison Unit Bratislava: Zvolen, Slovak Republic, 2020. [Google Scholar]
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T.; Mauri, A. (Eds.) European Atlas of Forest Tree Species; Publications Office of the European Union: Luxembourg, Germany, 2016; ISBN 978-92-76-17290-1. [Google Scholar]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Kawecki, T.J.; Ebert, D. Conceptual Issues in Local Adaptation. Ecol. Lett. 2004, 7, 1225–1241. [Google Scholar] [CrossRef] [Green Version]
- Fréjaville, T.; Vizcaíno-Palomar, N.; Fady, B.; Kremer, A.; Benito Garzón, M. Range Margin Populations Show High Climate Adaptation Lags in European Trees. Glob. Chang. Biol. 2020, 26, 484–495. [Google Scholar] [CrossRef]
- Picard, N.; Marchi, M.; Serra-Varela, M.J.; Westergren, M.; Cavers, S.; Notivol, E.; Piotti, A.; Alizoti, P.; Bozzano, M.; González-Martínez, S.C.; et al. Marginality Indices for Biodiversity Conservation in Forest Trees. Ecol. Indic. 2022, 143, 109367. [Google Scholar] [CrossRef]
- Whiteley, A.R.; Fitzpatrick, S.W.; Funk, W.C.; Tallmon, D.A. Genetic Rescue to the Rescue. Trends Ecol. Evol. 2015, 30, 42–49. [Google Scholar] [CrossRef]
- Williams, M.I.; Dumroese, R.K. Preparing for Climate Change: Forestry and Assisted Migration. J. For. 2013, 111, 287–297. [Google Scholar] [CrossRef]
- Booth, T.H. Species Distribution Modelling Tools and Databases to Assist Managing Forests under Climate Change. For. Ecol. Manag. 2018, 430, 196–203. [Google Scholar] [CrossRef]
- Pecchia, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species Distribution Modelling to Support Forest Management. A Literature Review. Ecol. Model. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The First Species Distribution Modelling Package, Its Early Applications and Relevance to Most Current MAXENT Studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Guillaume, A.S.; Leempoel, K.; Rochat, E.; Rogivue, A.; Kasser, M.; Gugerli, F.; Parisod, C.; Joost, S. Multiscale Very High Resolution Topographic Models in Alpine Ecology: Pros and Cons of Airborne LiDAR and Drone-Based Stereo-Photogrammetry Technologies. Remote Sens. 2021, 13, 1588. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Hutchinson, M.F.; Jovanic, T. Niche Analysis and Tree Species Introduction. For. Ecol. Manag. 1988, 23, 47–59. [Google Scholar] [CrossRef]
- Booth, T.H. Assessing Species Climatic Requirements beyond the Realized Niche: Some Lessons Mainly from Tree Species Distribution Modelling. Clim. Chang. 2017, 145, 259–271. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Glob. Chang. Biol. 2017, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists: Statistical Explanation of MaxEnt. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Serra-Varela, M.J.; Grivet, D.; Vincenot, L.; Broennimann, O.; Gonzalo-Jiménez, J.; Zimmermann, N.E. Does Phylogeographical Structure Relate to Climatic Niche Divergence? A Test Using Maritime Pine (Pinus pinaster Ait.). Glob. Ecol. Biogeogr. 2015, 24, 1302–1313. [Google Scholar] [CrossRef]
- Guo, Q.; Li, H.; Zheng, W.; Pan, J.; Lu, J.; Li, J.; Zheng, Y. Analysis of Genetic Diversity and Prediction of Larix Species Distribution in the Qinghai–Tibet Plateau, China. J. For. Res. 2022; in press. [Google Scholar] [CrossRef]
- Soulé, M. The Epistasis Cycle: A Theory of Marginal Populations. Annu. Rev. Ecol. Syst. 1973, 4, 165–187. [Google Scholar] [CrossRef]
- Vakkari, P.; Rusanen, M.; Kärkkäinen, K. High Genetic Differentiation in Marginal Populations of European White Elm (Ulmus Laevis). Silva Fenn. 2009, 43, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Hampe, A.; Petit, R.J. Conserving Biodiversity under Climate Change: The Rear Edge Matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef]
- ONeill, G.A.; Hamann, A.; Wang, T. Accounting for Population Variation Improves Estimates of the Impact of Climate Change on Species Growth and Distribution. J. Appl. Ecol. 2008, 45, 1040–1049. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, Migration or Extirpation: Climate Change Outcomes for Tree Populations: Climate Change Outcomes for Tree Populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef]
- Wang, T.; O’Neill, G.A.; Aitken, S.N. Integrating Environmental and Genetic Effects to Predict Responses of Tree Populations to Climate. Ecol. Appl. 2010, 20, 153–163. [Google Scholar] [CrossRef]
- Benito Garzón, M.; Robson, T.M.; Hampe, A. ΔTrait SDMs: Species Distribution Models That Account for Local Adaptation and Phenotypic Plasticity. New Phytol. 2019, 222, 1757–1765. [Google Scholar] [CrossRef]
- Fréjaville, T.; Fady, B.; Kremer, A.; Ducousso, A.; Benito Garzón, M. Inferring Phenotypic Plasticity and Population Responses to Climate across Tree Species Ranges Using Forest Inventory Data. Glob. Ecol. Biogeogr. 2019, 28, 1259–1271. [Google Scholar] [CrossRef]
- Hallingbäck, H.R.; Burton, V.; Vizcaíno-Palomar, N.; Trotter, F.; Liziniewicz, M.; Marchi, M.; Berlin, M.; Ray, D.; Benito Garzón, M. Managing Uncertainty in Scots Pine Range-Wide Adaptation Under Climate Change. Front. Ecol. Evol. 2021, 9, 724051. [Google Scholar] [CrossRef]
- Pukkala, T. Transfer and Response Functions as a Means to Predict the Effect of Climate Change on Timber Supply. For. Int. J. For. Res. 2017, 90, 573–580. [Google Scholar] [CrossRef]
- Hayatgheibi, H.; Berlin, M.; Haapanen, M.; Kärkkäinen, K.; Persson, T. Application of Transfer Effect Models for Predicting Growth and Survival of Genetically Selected Scots Pine Seed Sources in Sweden. Forests 2020, 11, 1337. [Google Scholar] [CrossRef]
- Marchi, M.; Bergante, S.; Ray, D.; Barbetti, R.; Facciotto, G.; Chiarabaglio Pier, M.; Hynynen, J.; Nervo, G. Universal Reaction Norms for the Sustainable Cultivation of Hybrid Poplar Clones under Climate Change in Italy. iForest 2022, 15, 47–55. [Google Scholar] [CrossRef]
- Chakraborty, D.; Schueler, S.; Lexer, M.J.; Wang, T. Genetic Trials Improve the Transfer of Douglas-Fir Distribution Models across Continents. Ecography 2019, 42, 88–101. [Google Scholar] [CrossRef]
- Chakraborty, D.; Wang, T.; Andre, K.; Konnert, M.; Lexer, M.J.; Matulla, C.; Weißenbacher, L.; Schueler, S. Adapting Douglas-Fir Forestry in Central Europe: Evaluation, Application, and Uncertainty Analysis of a Genetically Based Model. Eur. J. Forest Res. 2016, 135, 919–936. [Google Scholar] [CrossRef]
- Chakraborty, D.; Wang, T.; Andre, K.; Konnert, M.; Lexer, M.J.; Matulla, C.; Schueler, S. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe. PLoS ONE 2015, 10, e0136357. [Google Scholar] [CrossRef] [PubMed]
- Benito Garzón, M. Phenotypic Integration Approaches Predict a Decrease of Reproduction Rates of Caribbean Pine Populations in Dry Tropical Areas. Ann. For. Sci. 2021, 78, 69. [Google Scholar] [CrossRef]
- Yu, Y.; Aitken, S.N.; Rieseberg, L.H.; Wang, T. Using Landscape Genomics to Delineate Seed and Breeding Zones for Lodgepole Pine. New Phytol. 2022, 235, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, O.; Lascoux, M.; Merilä, J. Ecological Genomics of Local Adaptation. Nat. Rev. Genet. 2013, 14, 807–820. [Google Scholar] [CrossRef]
- Savolainen, O.; Pyhäjärvi, T.; Knürr, T. Gene Flow and Local Adaptation in Trees. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 595–619. [Google Scholar] [CrossRef]
- Lefèvre, F.; Boivin, T.; Bontemps, A.; Courbet, F.; Davi, H.; Durand-Gillmann, M.; Fady, B.; Gauzere, J.; Gidoin, C.; Karam, M.-J.; et al. Considering Evolutionary Processes in Adaptive Forestry. Ann. For. Sci. 2014, 71, 723–739. [Google Scholar] [CrossRef] [Green Version]
- Harrisson, K.A.; Pavlova, A.; Telonis-Scott, M.; Sunnucks, P. Using Genomics to Characterize Evolutionary Potential for Conservation of Wild Populations. Evol. Appl. 2014, 7, 1008–1025. [Google Scholar] [CrossRef]
- Capblancq, T.; Fitzpatrick, M.C.; Bay, R.A.; Exposito-Alonso, M.; Keller, S.R. Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 245–269. [Google Scholar] [CrossRef]
- Rellstab, C. Genomics Helps to Predict Maladaptation to Climate Change. Nat. Clim. Chang. 2021, 11, 85–86. [Google Scholar] [CrossRef]
- Gougherty, A.V.; Keller, S.R.; Fitzpatrick, M.C. Maladaptation, Migration and Extirpation Fuel Climate Change Risk in a Forest Tree Species. Nat. Clim. Chang. 2021, 11, 166–171. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.; Fan, P.; Ericson, P.G.P.; Song, G.; Luo, X.; Lei, F.; Qu, Y. The Combination of Genomic Offset and Niche Modelling Provides Insights into Climate Change-Driven Vulnerability. Nat. Commun. 2022, 13, 4821. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Daniels, R.; Taylor, R.S.; González-Martínez, S.C.; Vendramin, G.G.; Fady, B.; Oddou-Muratorio, S.; Piotti, A.; Simioni, G.; Grivet, D.; Beaumont, M.A. Looking for Local Adaptation: Convergent Microevolution in Aleppo Pine (Pinus Halepensis). Genes 2019, 10, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brousseau, L.; Fine, P.V.A.; Dreyer, E.; Vendramin, G.G.; Scotti, I. Genomic and Phenotypic Divergence Unveil Microgeographic Adaptation in the Amazonian Hyperdominant Tree Eperua Falcata Aubl. (Fabaceae). Mol. Ecol. 2021, 30, 1136–1154. [Google Scholar] [CrossRef] [PubMed]
- von Takach, B.; Ahrens, C.W.; Lindenmayer, D.B.; Banks, S.C. Scale-dependent Signatures of Local Adaptation in a Foundation Tree Species. Mol. Ecol. 2021, 30, 2248–2261. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Hampe, A. Some Evolutionary Consequences of Being a Tree. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.T.; Ison, J.L.; Ashley, M.V.; Howe, H.F. The Paradox of Forest Fragmentation Genetics: Paradox of Fragmentation Genetics. Conserv. Biol. 2008, 22, 878–885. [Google Scholar] [CrossRef]
- Lowe, A.J.; Cavers, S.; Boshier, D.; Breed, M.F.; Hollingsworth, P.M. The Resilience of Forest Fragmentation Genetics—No Longer a Paradox—We Were Just Looking in the Wrong Place. Heredity 2015, 115, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Waldvogel, A.; Feldmeyer, B.; Rolshausen, G.; Exposito-Alonso, M.; Rellstab, C.; Kofler, R.; Mock, T.; Schmid, K.; Schmitt, I.; Bataillon, T.; et al. Evolutionary Genomics Can Improve Prediction of Species’ Responses to Climate Change. Evol. Lett. 2020, 4, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Schlötterer, C.; Tobler, R.; Kofler, R.; Nolte, V. Sequencing Pools of Individuals—Mining Genome-Wide Polymorphism Data without Big Funding. Nat. Rev. Genet. 2014, 15, 749–763. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Hohenlohe, P.A.; Luikart, G. Genomics and the Future of Conservation Genetics. Nat. Rev. Genet. 2010, 11, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Rellstab, C.; Zoller, S.; Walthert, L.; Lesur, I.; Pluess, A.R.; Graf, R.; Bodénès, C.; Sperisen, C.; Kremer, A.; Gugerli, F. Signatures of Local Adaptation in Candidate Genes of Oaks (Quercus Spp.) with Respect to Present and Future Climatic Conditions. Mol. Ecol. 2016, 25, 5907–5924. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, S.; Hodgins, K.A.; Lotterhos, K.E.; Suren, H.; Nadeau, S.; Degner, J.C.; Nurkowski, K.A.; Smets, P.; Wang, T.; Gray, L.K.; et al. Convergent Local Adaptation to Climate in Distantly Related Conifers. Science 2016, 353, 1431–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingvarsson, P.K.; Bernhardsson, C. Genome-wide Signatures of Environmental Adaptation in European Aspen (Populus Tremula) under Current and Future Climate Conditions. Evol. Appl. 2020, 13, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isabel, N.; Holliday, J.A.; Aitken, S.N. Forest Genomics: Advancing Climate Adaptation, Forest Health, Productivity, and Conservation. Evol. Appl. 2020, 13, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Rellstab, C.; Gugerli, F.; Eckert, A.J.; Hancock, A.M.; Holderegger, R. A Practical Guide to Environmental Association Analysis in Landscape Genomics. Mol. Ecol. 2015, 24, 4348–4370. [Google Scholar] [CrossRef] [Green Version]
- Postolache, D.; Oddou-Muratorio, S.; Vajana, E.; Bagnoli, F.; Guichoux, E.; Hampe, A.; Le Provost, G.; Lesur, I.; Popescu, F.; Scotti, I.; et al. Genetic Signatures of Divergent Selection in European Beech (Fagus Sylvatica L.) Are Associated with the Variation in Temperature and Precipitation across Its Distribution Range. Mol. Ecol. 2021, 30, 5029–5047. [Google Scholar] [CrossRef]
- Forester, B.R.; Lasky, J.R.; Wagner, H.H.; Urban, D.L. Comparing Methods for Detecting Multilocus Adaptation with Multivariate Genotype-Environment Associations. Mol. Ecol. 2018, 27, 2215–2233. [Google Scholar] [CrossRef]
- Caye, K.; Jumentier, B.; Lepeule, J.; François, O. LFMM 2: Fast and Accurate Inference of Gene-Environment Associations in Genome-Wide Studies. Mol. Biol. Evol. 2019, 36, 852–860. [Google Scholar] [CrossRef]
- Joost, S.; Bonin, A.; Bruford, M.W.; DespréS, L.; Conord, C.; Erhardt, G.; Taberlet, P. A Spatial Analysis Method (SAM) to Detect Candidate Loci for Selection: Towards a Landscape Genomics Approach to Adaptation. Mol. Ecol. 2007, 16, 3955–3969. [Google Scholar] [CrossRef]
- Stucki, S.; Orozco-terWengel, P.; Forester, B.R.; Duruz, S.; Colli, L.; Masembe, C.; Negrini, R.; Landguth, E.; Jones, M.R.; The NEXTGEN Consortium; et al. High Performance Computation of Landscape Genomic Models Including Local Indicators of Spatial Association. Mol. Ecol. Resour. 2017, 17, 1072–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A High-Performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant Analysis of Principal Components: A New Method for the Analysis of Genetically Structured Populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frichot, E.; Mathieu, F.; Trouillon, T.; Bouchard, G.; François, O. Fast and Efficient Estimation of Individual Ancestry Coefficients. Genetics 2014, 196, 973–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE Algorithm for Individual Ancestry Estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capblancq, T.; Forester, B.R. Redundancy Analysis: A Swiss Army Knife for Landscape Genomics. Methods Ecol. Evol. 2021, 12, 2298–2309. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2022. [Google Scholar]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial Modelling: A Comprehensive Framework for Principal Coordinate Analysis of Neighbour Matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Dray, S.; Bauman, D.; Blanchet, G.; Borcard, D.; Clappe, S.; Guenard, G.; Jombart, T.; Larocque, G.; Legendre, P.; Madi, N.; et al. Adespatial: Multivariate Multiscale Spatial Analysis. 2018. [Google Scholar]
- Joost, S.; Vuilleumier, S.; Jensen, J.D.; Schoville, S.; Leempoel, K.; Stucki, S.; Widmer, I.; Melodelima, C.; Rolland, J.; Manel, S. Uncovering the Genetic Basis of Adaptive Change: On the Intersection of Landscape Genomics and Theoretical Population Genetics. Mol. Ecol. 2013, 22, 3659–3665. [Google Scholar] [CrossRef]
- Frichot, E.; Schoville, S.D.; de Villemereuil, P.; Gaggiotti, O.E.; François, O. Detecting Adaptive Evolution Based on Association with Ecological Gradients: Orientation Matters! Heredity 2015, 115, 22–28. [Google Scholar] [CrossRef]
- Fariello, M.I.; Boitard, S.; Naya, H.; SanCristobal, M.; Servin, B. Detecting Signatures of Selection Through Haplotype Differentiation Among Hierarchically Structured Populations. Genetics 2013, 193, 929–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, K.; Bazin, E.; Blum, M.G.B. Pcadapt: An R Package to Perform Genome Scans for Selection Based on Principal Component Analysis. Mol. Ecol. Resour. 2017, 17, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Exposito-Alonso, M.; Booker, T.R.; Czech, L.; Gillespie, L.; Hateley, S.; Kyriazis, C.C.; Lang, P.L.M.; Leventhal, L.; Nogues-Bravo, D.; Pagowski, V.; et al. Genetic Diversity Loss in the Anthropocene. Science 2022, 377, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
Software | Target | Genetic Structure | Notes | |
---|---|---|---|---|
Univariate models | Latent factor mixed linear models (LFMMs) [64] | Major genes but also small-effect loci if allele frequencies are used [43] | A given number of latent factors is derived at the same time that the effect of environment is estimated | Can be used with genotypes or allele frequencies; linear relationship assumed by default |
Samβada [65,66] | Major genes | PCs 1 [67], discriminant functions [68], and global ancestry coefficients [69,70,71] can be included as covariates provided that some criterion is used to identify K 2 and the number of PCs to be considered | Can be used with genotypes; logistic (linear) relationship assumed by default | |
Multivariate models | Redundancy analysis (RDA) [72,73] | Both major genes and small effect loci | No correction allowed | Can be used with genotypes or allele frequencies; linear relationship assumed by default |
Partial redundancy analysis (pRDA) [72,73] | Same as RDA | Same as Samβada; can also correct for geographic structures [74,75] | Same as RDA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vajana, E.; Bozzano, M.; Marchi, M.; Piotti, A. On the Inclusion of Adaptive Potential in Species Distribution Models: Towards a Genomic-Informed Approach to Forest Management and Conservation. Environments 2023, 10, 3. https://doi.org/10.3390/environments10010003
Vajana E, Bozzano M, Marchi M, Piotti A. On the Inclusion of Adaptive Potential in Species Distribution Models: Towards a Genomic-Informed Approach to Forest Management and Conservation. Environments. 2023; 10(1):3. https://doi.org/10.3390/environments10010003
Chicago/Turabian StyleVajana, Elia, Michele Bozzano, Maurizio Marchi, and Andrea Piotti. 2023. "On the Inclusion of Adaptive Potential in Species Distribution Models: Towards a Genomic-Informed Approach to Forest Management and Conservation" Environments 10, no. 1: 3. https://doi.org/10.3390/environments10010003
APA StyleVajana, E., Bozzano, M., Marchi, M., & Piotti, A. (2023). On the Inclusion of Adaptive Potential in Species Distribution Models: Towards a Genomic-Informed Approach to Forest Management and Conservation. Environments, 10(1), 3. https://doi.org/10.3390/environments10010003