Building-Scale Wastewater-Based Epidemiology for SARS-CoV-2 Surveillance at Nursing Homes in A Coruña, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Processing
2.3. RNA Extraction and RT-qPCR Analyses
2.4. Viral Load Determination
2.5. COVID-19 Clinical Cases at Nursing Homes
2.6. Statistical Analysis
3. Results and Discussion
3.1. Standard Curve Parameters
3.2. Statistical Analysis
3.3. SARS-CoV-2 Infections at Nursing Homes in A Coruña
3.4. SARS-CoV-2 in Wastewater Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—23 October 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---23-october-2020 (accessed on 23 October 2020).
- Long, B.; Carius, B.M.; Chavez, S.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Clinical Update on COVID-19 for the Emergency Clinician: Presentation and Evaluation. Am. J. Emerg. Med. 2022, 54, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Al-Ahmed, S.H.; Al-Malkey, M.; Alsubki, R.; Ezzikouri, S.; Al-Hababi, F.H.; Sah, R.; Al Mutair, A.; Alhumaid, S.; Al-Tawfiq, J.A.; et al. Airborne Transmission of SARS-CoV-2 Is the Dominant Route of Transmission: Droplets and Aerosols. Infez. Med. 2021, 29, 10–19. [Google Scholar] [PubMed]
- Linde, K.J.; Wouters, I.M.; Kluytmans, J.A.J.W.; Kluytmans-van den Bergh, M.F.Q.; Pas, S.D.; GeurtsvanKessel, C.H.; Koopmans, M.P.G.; Meier, M.; Meijer, P.; Raben, C.R.; et al. Detection of SARS-CoV-2 in Air and on Surfaces in Rooms of Infected Nursing Home Residents. Ann. Work. Expo. Health 2023, 67, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Beck-Friis, T.; Kärmander, A.; Nyström, K.; Wang, H.; Gisslén, M.; Andersson, L.-M.; Norder, H. Comparison of SARS-CoV-2 Spike RNA Sequences in Feces and Nasopharynx Indicates Intestinal Replication. Gut Pathog. 2022, 14, 35. [Google Scholar] [CrossRef]
- Coryell, M.P.; Iakiviak, M.; Pereira, N.; Murugkar, P.P.; Rippe, J.; Williams, D.B.; Heald-Sargent, T.; Sanchez-Pinto, L.N.; Chavez, J.; Hastie, J.L.; et al. A Method for Detection of SARS-CoV-2 RNA in Healthy Human Stool: A Validation Study. Lancet Microbe 2021, 2, e259–e266. [Google Scholar] [CrossRef]
- Khreefa, Z.; Barbier, M.T.; Koksal, A.R.; Love, G.; Del Valle, L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023, 12, 262. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, L.; Zheng, Y.; An, J.; Wen, G.; Jin, H.; Tuo, B. Digestive System Infection by SARS-CoV-2: Entry Mechanism, Clinical Symptoms and Expression of Major Receptors (Review). Int. J. Mol. Med. 2023, 51, 19. [Google Scholar] [CrossRef]
- Guo, M.; Tao, W.; Flavell, R.A.; Zhu, S. Potential Intestinal Infection and Faecal-Oral Transmission of SARS-CoV-2. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 269–283. [Google Scholar] [CrossRef]
- Cerrada-Romero, C.; Berastegui-Cabrera, J.; Camacho-Martínez, P.; Goikoetxea-Aguirre, J.; Pérez-Palacios, P.; Santibáñez, S.; José Blanco-Vidal, M.; Valiente, A.; Alba, J.; Rodríguez-Álvarez, R.; et al. Excretion and Viability of SARS-CoV-2 in Feces and Its Association with the Clinical Outcome of COVID-19. Sci. Rep. 2022, 12, 7397. [Google Scholar] [CrossRef]
- Natarajan, A.; Zlitni, S.; Brooks, E.F.; Vance, S.E.; Dahlen, A.; Hedlin, H.; Park, R.M.; Han, A.; Schmidtke, D.T.; Verma, R.; et al. Gastrointestinal Symptoms and Fecal Shedding of SARS-CoV-2 RNA Suggest Prolonged Gastrointestinal Infection. Med 2022, 3, 371–387.e9. [Google Scholar] [CrossRef]
- Kipkorir, V.; Cheruiyot, I.; Ngure, B.; Misiani, M.; Munguti, J. Prolonged SARS-CoV-2 RNA Detection in Anal/Rectal Swabs and Stool Specimens in COVID-19 Patients after Negative Conversion in Nasopharyngeal RT-PCR Test. J. Med. Virol. 2020, 92, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- Oran, D.P.; Topol, E.J. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic. Ann. Intern. Med. 2021, 174, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.F.; Eisenberg, J.N.S.; Pomeroy, C.D.; Shulman, L.M.; Hindiyeh, M.; Manor, Y.; Grotto, I.; Koopman, J.S.; Eisenberg, M.C. Epidemiology of the Silent Polio Outbreak in Rahat, Israel, Based on Modeling of Environmental Surveillance Data. Proc. Natl. Acad. Sci. USA 2018, 115, E10625–E10633. [Google Scholar] [CrossRef] [PubMed]
- Hellmer, M.; Paxeus, N.; Magnius, L.; Enache, L.; Arnholm, B.; Johansson, A.; Bergstrom, T.; Norder, H. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks. Appl. Environ. Microbiol. 2014, 80, 6771–6781. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Murakami, M.; Ahmed, W.; Iwamoto, R.; Okabe, S.; Kitajima, M. Wastewater-Based Prediction of COVID-19 Cases Using a Highly Sensitive SARS-CoV-2 RNA Detection Method Combined with Mathematical Modeling. Environ. Int. 2023, 173, 107743. [Google Scholar] [CrossRef]
- Cruz, M.C.; Sanguino-Jorquera, D.; Aparicio González, M.; Irazusta, V.P.; Poma, H.R.; Cristóbal, H.A.; Rajal, V.B. Sewershed Surveillance as a Tool for Smart Management of a Pandemic in Threshold Countries. Case Study: Tracking SARS-CoV-2 during COVID-19 Pandemic in a Major Urban Metropolis in Northwestern Argentina. Sci. Total Environ. 2023, 862, 160573. [Google Scholar] [CrossRef]
- Vallejo, J.A.; Trigo-Tasende, N.; Rumbo-Feal, S.; Conde-Pérez, K.; López-Oriona, Á.; Barbeito, I.; Vaamonde, M.; Tarrío-Saavedra, J.; Reif, R.; Ladra, S.; et al. Modeling the Number of People Infected with SARS-COV-2 from Wastewater Viral Load in Northwest Spain. Sci. Total Environ. 2022, 811, 152334. [Google Scholar] [CrossRef]
- Trigo-Tasende, N.; Vallejo, J.A.; Rumbo-Feal, S.; Conde-Pérez, K.; Vaamonde, M.; López-Oriona, Á.; Barbeito, I.; Nasser-Ali, M.; Reif, R.; Rodiño-Janeiro, B.K.; et al. Wastewater Early Warning System for SARS-CoV-2 Outbreaks and Variants in a Coruña, Spain. Environ. Sci. Pollut. Res. 2023, 30, 79315–79334. [Google Scholar] [CrossRef]
- Kisand, V.; Laas, P.; Palmik-Das, K.; Panksep, K.; Tammert, H.; Albreht, L.; Allemann, H.; Liepkalns, L.; Vooro, K.; Ritz, C.; et al. Prediction of COVID-19 Positive Cases, a Nation-Wide SARS-CoV-2 Wastewater-Based Epidemiology Study. Water Res. 2023, 231, 119617. [Google Scholar] [CrossRef]
- Akingbola, S.; Fernandes, R.; Borden, S.; Gilbride, K.; Oswald, C.; Straus, S.; Tehrani, A.; Thomas, J.; Stuart, R. Early Identification of a COVID-19 Outbreak Detected by Wastewater Surveillance at a Large Homeless Shelter in Toronto, Ontario. Can. J. Public Health 2023, 114, 72–79. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, Y.; David, R.E.; Withington, S.; McFarlane, S.; Faust, R.A.; Norton, J.; Xagoraraki, I. Simple Methods for Early Warnings of COVID-19 Surges: Lessons Learned from 21 Months of Wastewater and Clinical Data Collection in Detroit, Michigan, United States. Sci. Total Environ. 2023, 864, 161152. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-W.; Chen, T.-Y.; Wang, S.-T.; Hou, T.-Y.; Wang, S.-W.; Young, K.-C. Establishment of Quantitative and Recovery Method for Detection of Dengue Virus in Wastewater with Noncognate Spike Control. J. Virol. Methods 2023, 314, 114687. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bivins, A.; Stephens, M.; Metcalfe, S.; Smith, W.J.M.; Sirikanchana, K.; Kitajima, M.; Simpson, S.L. Occurrence of Multiple Respiratory Viruses in Wastewater in Queensland, Australia: Potential for Community Disease Surveillance. Sci. Total Environ. 2023, 864, 161023. [Google Scholar] [CrossRef] [PubMed]
- Rosa, G.L.; Mancini, P.; Veneri, C.; Ferraro, G.B.; Lucentini, L.; Iaconelli, M.; Suffredini, E. Detection of Monkeypox Virus DNA in Airport Wastewater, Rome, Italy. Emerg. Infect. Dis. 2023, 29, 193. [Google Scholar] [CrossRef] [PubMed]
- Pico-Tomàs, A.; Mejías-Molina, C.; Zammit, I.; Rusiñol, M.; Bofill-Mas, S.; Borrego, C.M.; Corominas, L. Surveillance of SARS-CoV-2 in Sewage from Buildings Housing Residents with Different Vulnerability Levels. Sci. Total Environ. 2023, 872, 162116. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Zhang, H.; Ibaraki, M.; VanTassell, J.; Geith, K.; Cavallo, M.; Kann, R.; Saber, L.; Kraft, C.S.; et al. Early Warning of a COVID-19 Surge on a University Campus Based on Wastewater Surveillance for SARS-CoV-2 at Residence Halls. Sci. Total Environ. 2022, 821, 153291. [Google Scholar] [CrossRef]
- Kotay, S.M.; Tanabe, K.O.; Colosi, L.M.; Poulter, M.D.; Barry, K.E.; Holstege, C.P.; Mathers, A.J.; Porter, M.D. Building-Level Wastewater Surveillance for SARS-CoV-2 in Occupied University Dormitories as an Outbreak Forecasting Tool: One Year Case Study. ACS EST Water 2022, 2, 2094–2104. [Google Scholar] [CrossRef]
- de Llanos, R.; Cejudo-Marín, R.; Barneo, M.; Pérez-Cataluña, A.; Barberá-Riera, M.; Rebagliato, M.; Bellido-Blasco, J.; Sánchez, G.; Hernández, F.; Bijlsma, L. Monitoring the Evolution of SARS-CoV-2 on a Spanish University Campus through Wastewater Analysis: A Pilot Project for the Reopening Strategy. Sci. Total Environ. 2022, 845, 157370. [Google Scholar] [CrossRef]
- Davó, L.; Seguí, R.; Botija, P.; Beltrán, M.J.; Albert, E.; Torres, I.; López-Fernández, P.Á.; Ortí, R.; Maestre, J.F.; Sánchez, G.; et al. Early Detection of SARS-CoV-2 Infection Cases or Outbreaks at Nursing Homes by Targeted Wastewater Tracking. Clin. Microbiol. Infect. 2021, 27, 1061–1063. [Google Scholar] [CrossRef]
- Spurbeck, R.R.; Minard-Smith, A.; Catlin, L. Feasibility of Neighborhood and Building Scale Wastewater-Based Genomic Epidemiology for Pathogen Surveillance. Sci. Total Environ. 2021, 789, 147829. [Google Scholar] [CrossRef]
- ECDC. SARS-CoV-2 Variants of Concern as of 15 January 2021. Available online: https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 15 January 2021).
- Peterson, S.W.; Lidder, R.; Daigle, J.; Wonitowy, Q.; Dueck, C.; Nagasawa, A.; Mulvey, M.R.; Mangat, C.S. RT-QPCR Detection of SARS-CoV-2 Mutations S 69–70 Del, S N501Y and N D3L Associated with Variants of Concern in Canadian Wastewater Samples. Sci. Total Environ. 2022, 810, 151283. [Google Scholar] [CrossRef] [PubMed]
- Pechlivanis, N.; Tsagiopoulou, M.; Maniou, M.C.; Togkousidis, A.; Mouchtaropoulou, E.; Chassalevris, T.; Chaintoutis, S.C.; Petala, M.; Kostoglou, M.; Karapantsios, T.; et al. Detecting SARS-CoV-2 Lineages and Mutational Load in Municipal Wastewater and a Use-Case in the Metropolitan Area of Thessaloniki, Greece. Sci. Rep. 2022, 12, 2659. [Google Scholar] [CrossRef] [PubMed]
- López-de-Ullibarri, I.; Tomás, L.; Trigo-Tasende, N.; Freire, B.; Vaamonde, M.; Gallego-García, P.; Barbeito, I.; Vallejo, J.A.; Tarrío-Saavedra, J.; Alvariño, P.; et al. SARS-CoV-2 Variant Prevalence Estimation Using Wastewater Samples. medRxiv 2023. [Google Scholar] [CrossRef]
- Rector, A.; Bloemen, M.; Thijssen, M.; Delang, L.; Raymenants, J.; Thibaut, J.; Pussig, B.; Fondu, L.; Aertgeerts, B.; Van Ranst, M.; et al. Monitoring of SARS-CoV-2 Concentration and Circulation of Variants of Concern in Wastewater of Leuven, Belgium. J. Med. Virol. 2023, 95, e28587. [Google Scholar] [CrossRef] [PubMed]
- Sangsanont, J.; Rattanakul, S.; Makkaew, P.; Precha, N.; Rukthanapitak, P.; Sresung, M.; Siri, Y.; Kitajima, M.; Takeda, T.; Haramoto, E.; et al. Wastewater Monitoring in Tourist Cities as Potential Sentinel Sites for near Real-Time Dynamics of Imported SARS-CoV-2 Variants. Sci. Total Environ. 2023, 860, 160317. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Pijls, B.G.; Jolani, S.; Atherley, A.; Derckx, R.T.; Dijkstra, J.I.R.; Franssen, G.H.L.; Hendriks, S.; Richters, A.; Venemans-Jellema, A.; Zalpuri, S.; et al. Demographic Risk Factors for COVID-19 Infection, Severity, ICU Admission and Death: A Meta-Analysis of 59 Studies. BMJ Open 2021, 11, e044640. [Google Scholar] [CrossRef]
- Brihn, A. Diagnostic Performance of an Antigen Test with RT-PCR for the Detection of SARS-CoV-2 in a Hospital Setting—Los Angeles County, California, June–August 2020. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 702–706. [Google Scholar] [CrossRef]
- McQuade, E.T.R.; Blake, I.M.; Brennhofer, S.A.; Islam, M.O.; Sony, S.S.S.; Rahman, T.; Bhuiyan, M.H.; Resha, S.K.; Wettstone, E.G.; Hughlett, L.; et al. Real-Time Sewage Surveillance for SARS-CoV-2 in Dhaka, Bangladesh versus Clinical COVID-19 Surveillance: A Longitudinal Environmental Surveillance Study (December, 2019–December, 2021). Lancet Microbe 2023, 4, e442–e451. [Google Scholar] [CrossRef]
- Islam, M.A.; Rahman, M.A.; Jakariya, M.; Bahadur, N.M.; Hossen, F.; Mukharjee, S.K.; Hossain, M.S.; Tasneem, A.; Haque, M.A.; Sera, F.; et al. A 30-Day Follow-up Study on the Prevalence of SARS-COV-2 Genetic Markers in Wastewater from the Residence of COVID-19 Patient and Comparison with Clinical Positivity. Sci. Total Environ. 2023, 858, 159350. [Google Scholar] [CrossRef]
- Julin, C.H.; Robertson, A.H.; Hungnes, O.; Tunheim, G.; Bekkevold, T.; Laake, I.; Aune, I.F.; Killengreen, M.F.; Strand, T.R.; Rykkvin, R.; et al. Household Transmission of SARS-CoV-2: A Prospective Longitudinal Study Showing Higher Viral Load and Increased Transmissibility of the Alpha Variant Compared to Previous Strains. Microorganisms 2021, 9, 2371. [Google Scholar] [CrossRef]
- Lyngse, F.P.; Mølbak, K.; Skov, R.L.; Christiansen, L.E.; Mortensen, L.H.; Albertsen, M.; Møller, C.H.; Krause, T.G.; Rasmussen, M.; Michaelsen, T.Y.; et al. Increased Transmissibility of SARS-CoV-2 Lineage B.1.1.7 by Age and Viral Load. Nat. Commun. 2021, 12, 7251. [Google Scholar] [CrossRef]
- Acer, Ö.; Genç Bahçe, Y.; Özüdoğru, O. Association of Viral Load with Age, Gender, Disease Severity, and Death in Severe Acute Respiratory Syndrome Coronavirus 2 Variants. J. Med. Virol. 2022, 94, 3063–3069. [Google Scholar] [CrossRef]
- Calistri, P.; Amato, L.; Puglia, I.; Cito, F.; Di Giuseppe, A.; Danzetta, M.L.; Morelli, D.; Di Domenico, M.; Caporale, M.; Scialabba, S.; et al. Infection Sustained by Lineage B.1.1.7 of SARS-CoV-2 Is Characterised by Longer Persistence and Higher Viral RNA Loads in Nasopharyngeal Swabs. Int. J. Infect. Dis. 2021, 105, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Euser, S.; Aronson, S.; Manders, I.; van Lelyveld, S.; Herpers, B.; Sinnige, J.; Kalpoe, J.; van Gemeren, C.; Snijders, D.; Jansen, R.; et al. SARS-CoV-2 Viral-Load Distribution Reveals That Viral Loads Increase with Age: A Retrospective Cross-Sectional Cohort Study. Int. J. Epidemiol. 2021, 50, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- John, B.V.; Deng, Y.; Khakoo, N.S.; Taddei, T.H.; Kaplan, D.E.; Dahman, B. Coronavirus Disease 2019 Vaccination Is Associated With Reduced Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Death in Liver Transplant Recipients. Gastroenterology 2022, 162, 645–647.e2. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.D.; Sandfort, M.; Bender, J.; Matysiak-Klose, D.; Dörre, A.; Bojara, G.; Beyrer, K.; Hellenbrand, W. Two Doses of the MRNA BNT162b2 Vaccine Reduce Severe Outcomes, Viral Load and Secondary Attack Rate: Evidence from a SARS-CoV-2 Alpha Outbreak in a Nursing Home in Germany, January–March 2021. medRxiv 2021. [Google Scholar] [CrossRef]
- Andrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Thelwall, S.; Groves, N.; Dabrera, G.; et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N. Engl. J. Med. 2022, 386, 340–350. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Lippi, G. Efficacy of COVID-19 Vaccine Booster Doses in Older People. Eur. Geriatr. Med. 2022, 13, 275–278. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.Y.; Park, H.; Park, S.; Lim, J.S.; Lim, S.Y.; Bae, S.; Lim, Y.-J.; Kim, E.O.; Kim, J.; et al. Transmission and Infectious SARS-CoV-2 Shedding Kinetics in Vaccinated and Unvaccinated Individuals. JAMA Netw. Open 2022, 5, e2213606. [Google Scholar] [CrossRef]
- Petter, E.; Mor, O.; Zuckerman, N.; Oz-Levi, D.; Younger, A.; Aran, D.; Erlich, Y. Initial Real World Evidence for Lower Viral Load of Individuals Who Have Been Vaccinated by BNT162b2. medRxiv 2021. [Google Scholar] [CrossRef]
- Burugorri-Pierre, C.; Lafuente-Lafuente, C.; Oasi, C.; Lecorche, E.; Pariel, S.; Donadio, C.; Belmin, J. Investigation of an Outbreak of COVID-19 in a French Nursing Home With Most Residents Vaccinated. JAMA Netw. Open 2021, 4, e2125294. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, A.M.; Fortier, S.; Lewis, P.; Arora, V.; Johnson, M.; George, K.; Tobias, J.; Lunn, S.; Miller, T.; Thoroughman, D.; et al. COVID-19 Outbreak Associated with a SARS-CoV-2 R.1 Lineage Variant in a Skilled Nursing Facility After Vaccination Program—Kentucky, March 2021. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, K.; Abela, I.A.; Stange, M.; Dupont, C.; Mugglin, C.; Egli, A.; Trkola, A.; Egger, M.; Fenner, L. Alpha Variant Coronavirus Outbreak in a Nursing Home despite High Vaccination Coverage: Molecular, Epidemiological and Immunological Studies. Clin. Infect. Dis. 2023, 77, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Pandemic Prevention: Lessons from COVID-19. Encyclopedia 2021, 1, 433–444. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Preparing for COVID-2x: Urban Planning Needs to Regard Urological Wastewater as an Invaluable Communal Public Health Asset and Not as a Burden. Urban Sci. 2021, 5, 75. [Google Scholar] [CrossRef]
Name of the Nursing Home | No. of Residents | No. of Staff | Municipality | Surveillance Period |
---|---|---|---|---|
Santa Teresa de Jornet | 157 | 112 | A Coruña | 22 December 2020–26 March 2021 |
Orpea | 114 | 99 | Culleredo | 22 December 2020–26 March 2021 |
Oleiros | 246 | 346 | Oleiros | 22 December 2020–26 March 2021 |
Arteixo | 63 | 40 | Arteixo | 22 December 2020–26 March 2021 1 |
Bribes | 39 | 27 | Cambre | 22 December 2020–26 March 2021 1 |
Ballesol | 96 | 71 | Oleiros | 22 December 2020–26 March 2021 |
Nursing Home Name | COVID-19 Cases (Reported by the Health System) | Number of Hospitalized Patients | Infection Rate (%) 1 | Vaccination First Dose | Vaccination Second Dose |
---|---|---|---|---|---|
Santa Teresa de Jornet | 39 | 2 | 25 | 14 January 2021 | 4 December 2021 |
Orpea | 1 | 0 | 1 | 7 January 2021 | 28 January 2021 |
Oleiros | 0 | 0 | 0 | 30 December 2020 | 20 January 2021 |
Arteixo | 0 | 0 | 0 | 8 January 2021 | 29 January 2021 |
Bribes | 0 | 0 | 0 | 9 January 2021 | 30 January 2021 |
Ballesol | 3 | 0 | 3 | 7 January 2021 | 28 January 2021 |
d 1 | k0 2 | Maximum Correlation before Vaccination | Maximum Correlation after Vaccination | DCC (d) 3 |
---|---|---|---|---|
14 January 2021 | 6 | 0.7399414 | −0.1424553 | 0.8823967 |
15 January 2021 | 7 | 0.7399414 | −0.1641223 | 0.9040637 |
16 January 2021 | 8 | 0.7399414 | −0.3012689 | 1.04121 |
17 January 2021 | 8 | 0.7399414 | −0.3012689 | 1.04121 |
18 January 2021 | 8 | 0.7399414 | −0.1641223 | 0.9040637 |
19 January 2021 | 10 | 0.7399414 | −0.3098003 | 1.04121 |
20 January 2021 | 9 | 0.7399414 | −0.2092073 | 0.9491487 |
21 January 2021 | 8 | 0.7399414 | −0.2277364 | 0.9676778 |
22 January 2021 | 9 | 0.7399414 | −0.2690311 | 1.008972 |
23 January 2021 | 6 | 0.7399414 | −0.3103899 | 1.050331 |
24 January 2021 | 6 | 0.7399414 | −0.3103899 | 1.050331 |
25 January 2021 | 7 | 0.7399414 | −0.3103899 | 1.050331 |
26 January 2021 | 7 | 0.7399414 | −0.3103899 | 1.050331 |
27 January 2021 | 6 | 0.7399414 | −0.3103899 | 1.050331 |
28 January 2021 | 6 | 0.7399414 | −0.3103899 | 1.050331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigo-Tasende, N.; Vallejo, J.A.; Rumbo-Feal, S.; Conde-Pérez, K.; Nasser-Ali, M.; Tarrío-Saavedra, J.; Barbeito, I.; Lamelo, F.; Cao, R.; Ladra, S.; et al. Building-Scale Wastewater-Based Epidemiology for SARS-CoV-2 Surveillance at Nursing Homes in A Coruña, Spain. Environments 2023, 10, 189. https://doi.org/10.3390/environments10110189
Trigo-Tasende N, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Nasser-Ali M, Tarrío-Saavedra J, Barbeito I, Lamelo F, Cao R, Ladra S, et al. Building-Scale Wastewater-Based Epidemiology for SARS-CoV-2 Surveillance at Nursing Homes in A Coruña, Spain. Environments. 2023; 10(11):189. https://doi.org/10.3390/environments10110189
Chicago/Turabian StyleTrigo-Tasende, Noelia, Juan A. Vallejo, Soraya Rumbo-Feal, Kelly Conde-Pérez, Mohammed Nasser-Ali, Javier Tarrío-Saavedra, Inés Barbeito, Fernando Lamelo, Ricardo Cao, Susana Ladra, and et al. 2023. "Building-Scale Wastewater-Based Epidemiology for SARS-CoV-2 Surveillance at Nursing Homes in A Coruña, Spain" Environments 10, no. 11: 189. https://doi.org/10.3390/environments10110189
APA StyleTrigo-Tasende, N., Vallejo, J. A., Rumbo-Feal, S., Conde-Pérez, K., Nasser-Ali, M., Tarrío-Saavedra, J., Barbeito, I., Lamelo, F., Cao, R., Ladra, S., Bou, G., & Poza, M. (2023). Building-Scale Wastewater-Based Epidemiology for SARS-CoV-2 Surveillance at Nursing Homes in A Coruña, Spain. Environments, 10(11), 189. https://doi.org/10.3390/environments10110189