Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea
Abstract
:1. Introduction
2. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)
3. Air Quality Analysis
3.1. Emission Sources
3.2. Fenceline Monitoring
3.3. Ambient Monitoring
3.4. Pollution Mapping
3.5. Incident Response: Combining Mobile SIFT-MS Analysis with Drone Sampling
4. Water Analysis
4.1. Research Application
4.2. Industrial Application
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
BTEX | benzene, toluene, ethylbenzene, and xylenes |
DIMS | direct-injection mass spectrometry |
DMS | dimethyl sulfide |
FID | flame ionization detector |
GC | gas chromatography |
GC/MS | gas chromatography mass spectrometry |
GPS | global positioning system |
HAP | hazardous air pollutant |
KECO | Korea Environment Corporation |
KIOST | Korean Institute for Oceanic Science and Technology |
KORUS-AQ | Korea-United States Air Quality |
LC | liquid chromatography |
LOD | limit of detection |
LOQ | limit of quantitation |
MEK | methyl ethyl ketone |
NIER | National Institute of Environmental Research (Korea) |
OFP | ozone formation potential |
OPCI | ozone production per concentration index |
PAMS | photochemical assessment monitoring station(s) |
PEA | polyester aluminum (sample bag material) |
ppmV, ppbV, pptV | parts-per-million (billion; trillion) by volume |
PRTR | Pollution Release and Transfer Register (Korea) |
PTR-MS | proton transfer reaction mass spectrometry |
QMF | quadrupole mass filter |
RSD | relative standard deviation |
SEMS | stack emission management system |
SIFT-MS | selected ion flow tube mass spectrometry |
TD | thermal desorption |
TD-GC-FID | thermal desorption-gas chromatography-flame ionization detection |
TD-GC/MS | thermal desorption-GC/MS |
THC | total hydrocarbon |
TVOC | total volatile organic compound |
VFA | volatile fatty acid |
VOC | volatile organic compound |
Appendix A
Acetaldehyde | Acrylonitrile |
Aniline | Arsenic and compounds |
Asbestos | Benzene |
Benzidine | Beryllium and compounds |
1,3-Butadiene | Cadmium and compounds |
Carbon tetrachloride | Chlorine and hydrogen chloride |
Chloroform | Chromium and compounds |
1,2-Dichloroethane | Dichloromethane |
Dioxin | Ethylbenzene |
Ethylene Oxide | Fluoride |
Formaldehyde | Hydrazine |
Hydrogen cyanide | Lead and compounds |
Mercury and compounds | Methyl disulfide |
Nickel and compounds | Phenol and compounds |
Polychlorinated biphenyls | Polycyclic Aromatic Hydrocarbons (PAHs) |
Propylene oxide | Styrene |
Tetrachloroethylene | Trichloroethylene |
Vinyl chloride |
Acetaldehyde | Ammonia | Butyl acetate |
i-Butyl alcohol | Butyraldehyde | n-Butyric acid |
Dimethyl disulfide | Dimethyl sulfide (DMS) | Hydrogen sulfide |
Methyl ethyl ketone (MEK) | Methyl isobutyl ketone (MIBK) | Methyl mercaptan |
Propionaldehyde | Propionic acid | Styrene |
Toluene | Trimethylamine | i-Valeraldehyde |
n-Valeraldehyde | i-Valeric acid | n-Valeric acid |
Xylene |
Compounds | Standard |
---|---|
SO2 | Annual average: Below 0.02 ppm |
24-h average: Below 0.05 ppm | |
1-h average: Below 0.15 ppm | |
CO | 8-h average: Below 9 ppm |
1-h average: Below 25 ppm | |
NO2 | Annual average: Below 0.03 ppm |
24-h average: Below 0.06 ppm | |
1-h average: Below 0.10 ppm | |
PM10 | Annual average: Below 50 μg/m3 |
24-h average: Below 100 μg/m3 | |
PM2.5 | Annual average: Below 15 μg/m3 |
24-h average: Below 35 μg/m3 | |
O3 | 8-h average: Below 0.06 ppm |
1-h average: Below 0.1 ppm | |
Pb | Annual average: Below 0.5 μg/m3 |
Benzene | Annual average: Below 5 μg/m3 |
References
- Colombi, N.K.; Jacob, D.J.; Yang, L.H.; Zhai, S.; Shah, C.; Grange, G.K.; Yantosca, R.M.; Kim, S.; Liao, H. Why is ozone in South Korea and the Seoul metropolitan area so high and increasing? Atmos. Chem. Phys. 2023, 23, 4031–4044. [Google Scholar] [CrossRef]
- Zastrow, M. South Korea cracks down on dirty air. Nature News, 17 October 2017. [Google Scholar] [CrossRef]
- Kim, Y.P.; Lee, G. Trend of air quality in Seoul: Policy and science. Aerosol Air Qual. Res. 2018, 18, 2141–2156. [Google Scholar] [CrossRef]
- Crawford, J.; Kim, Y.; Fried, A.; Lefer, B.; Jordan, C.; Lee, G.; Simpson, I.; Al-Saadi, J.; Kim, J.; Woo, J.; et al. KORUS-AQ Final Science Synthesis Report. Available online: https://espo.nasa.gov/sites/default/files/documents/5858211.pdf (accessed on 1 November 2023).
- Crawford, J.H.; Ahn, J.-Y.; Al-Saadi, J.; Chang, L.; Emmons, L.K.; Kim, J.; Lee, G.; Park, J.-H.; Park, R.J.; Woo, J.H.; et al. The Korea–United States Air Quality (KORUS-AQ) field study. Elem. Sci. Anth. 2021, 9, 00163. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Hu, H.; Crippa, M.; Guizzardi, D.; Chatani, S.; Kurokawa, J.; Morikawa, T.; Yeo, S.; Jin, H.; et al. Long-term historical trends in air pollutant emissions in South Korea (2000–2018). Asian J. Atmos. Environ. 2023, 17, 12. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Photochemical Assessment Monitoring Stations (PAMS). Available online: https://www.epa.gov/amtic/photochemical-assessment-monitoring-stations-pams (accessed on 2 November 2023).
- Park, J.H.; Kang, S.; Song, I.-H.; Lee, D.-W.; Cho, S. Characteristics of long-term behavior of VOC species in Korea—PAMS data analysis. J. Korean Soc. Atmos. Environ. 2018, 34, 56–75. [Google Scholar] [CrossRef]
- Korea Ministry of Environment. Statistics White Paper. Available online: https://library.me.go.kr/#/search/org-statisti-cal/si?all=0&rq=PUBLISHER%3D(*%ED%99%98%EA%B2%BD%EB%B6%80*%20OR%20*%ED%99%98%EA%B2%BD%EC%B2%98*%20OR%20*%ED%99%98%EA%B2%BD%EC%B2%AD*)%7CPCRC_C%3DJ3 (accessed on 3 November 2023).
- Kang, S.; Kim, J.-A.; Lee, M.; Park, J.; Jeon, E.; Shim, M.; Shin, Y. An analysis of the temporal variability in volatile organic compounds (VOCs) within megacity Seoul and an identification of their sources. Atmos. Pollut. Res. 2022, 13, 101338. [Google Scholar] [CrossRef]
- Korea Ministry of Environment. Technologies for Responding to Atmospheric Environment Policies: Development of Monitoring Technologies for Priority Hazardous Air Pollutants in Urban Areas. December 2017. Available online: https://www.nl.go.kr/NL/contents/search.do?srchTarget=total&pageNum=1&pageSize=10&insiteschStr=&schQuery=&mainSrchField=1&kwd=%EB%8F%84%EC%8B%9C%EC%A7%80%EC%97%AD+%EC%9A%B0%EC%84%A0%EA%B4%80%EB%A6%AC+%EC%9C%A0%ED%95%B4%EB%8C%80%EA%B8%B0%EC%98%A4%EC%97%BC%EB%AC%BC%EC%A7%88+%EB%AA%A8%EB%8B%88%ED%84%B0%EB%A7%81+%EA%B8%B0%EC%88%A0+%EA%B0%9C%EB%B0%9C# (accessed on 27 July 2023).
- Korea Ministry of Environment. Fine Dust Management Comprehensive Plan 2020–2024, pp. 41–42. Available online: http://www.me.go.kr/home/file/readDownloadFile.do?fileId=182580&fileSeq=1 (accessed on 1 August 2023).
- Langford, V.S. SIFT-MS: Quantifying the volatiles you smell…and the toxics you don’t. Chemosensors 2023, 11, 111. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Demarais, N.; Langford, V.S.; McEwan, M.J. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). Mass Spectrom. Rev. 2023, e21835. [Google Scholar] [CrossRef]
- Dettmer-Wilde, K.; Engewald, W. Practical Gas Chromatography; Springer: Berlin/Heidelberg, Germany, 2014; 902p. [Google Scholar]
- United States Environmental Protection Agency. Technical Assistance Document for Sampling and Analysis of Ozone Precursors for the Photochemical Assessment Monitoring Stations Program—Revision 2—April 2019. Available online: https://www.epa.gov/sites/default/files/2019-11/documents/pams_technical_assistance_document_revision_2_april_2019.pdf (accessed on 3 November 2023).
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef]
- Hera, D.; Langford, V.S.; McEwan, M.J.; McKellar, T.I.; Milligan, D.B. Negative reagent ions for real time detection using SIFT-MS. Environments 2017, 4, 16. [Google Scholar] [CrossRef]
- Langford, V.S.; Billiau, C.; McEwan, M.J. Evaluation of the efficacy of SIFT-MS for speciation of wastewater treatment plant odors in parallel with human sensory analysis. Environments 2020, 7, 90. [Google Scholar] [CrossRef]
- Langford, V.S.; Du Bruyn, C.; Padayachee, D. An evaluation of selected ion flow tube mass spectrometry for rapid instrumental determination of paper type, origin and sensory attributes. Packag. Technol. Sci. 2021, 34, 245–260. [Google Scholar] [CrossRef]
- Prince, B.J.; Milligan, D.B.; McEwan, M.J. Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun. Mass Spectrom. 2010, 24, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.L.; Farren, N.J.; Davison, J.; Young, S.; Hopkins, J.R.; Lewis, A.C.; Carslaw, D.C.; Shaw, M.D. Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases. Atmos. Meas. Tech. 2021, 14, 6083–6100. [Google Scholar] [CrossRef]
- Langford, V.S.; Gray, J.D.C.; Maclagan, R.G.A.R.; Milligan, D.B.; McEwan, M.J. Real-time measurements of nitrosamines in air. Int. J. Mass Spectrom. 2015, 377, 490–495. [Google Scholar] [CrossRef]
- Smith, D.; McEwan, M.J.; Španěl, P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube-mass spectrometry analyses. Anal. Chem. 2020, 92, 12750–12762. [Google Scholar] [CrossRef]
- Shaw, M.; Acton, J.; Squires, F.; Carpenter, L.; Lewis, A.; Hopkins, J. Evaluation of Direct Mass spectrometry for VOC concentration and emission determination in Beijing. In Proceedings of the Atmospheric Science Conference (UK), York, UK, 3–4 July 2018. [Google Scholar]
- Hien, T.T.; Huy, D.H.; Dominutti, P.A.; Chi, N.D.T.; Hopkins, J.R.; Shaw, M.; Forster, G.; Mills, G.; Le, H.A.; Oram, D. Comprehensive volatile organic compound measurements and their implications for ground-level ozone formation in the two main urban areas of Vietnam. Atmos. Environ. 2022, 269, 118872. [Google Scholar] [CrossRef]
- Cliff, S.J.; Lewis, A.C.; Shaw, M.D.; Lee, J.D.; Flynn, M.; Andrews, S.J.; Hopkins, J.R.; Purvis, R.M.; Yeoman, A.M. Unreported VOC emissions from road transport including from electric vehicles. Environ. Sci. Technol. 2023, 57, 8026–8034. [Google Scholar] [CrossRef]
- Shin, H.J.; Seo, H.J.; Joo, K.H.; Park, S.J. A study on reliability improvement of management for air pollution emission sources using selected ion flow tube mass spectrometers. J. Korean Soc. Urban Environ. 2021, 21, 97–104. [Google Scholar] [CrossRef]
- Crilley, L.R.; Kramer, L.J.; Ouyang, B.; Duan, J.; Zhang, W.; Tong, S.; Ge, M.; Tang, K.; Qin, M.; Xie, P.; et al. Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). Atmos. Meas. Tech. 2019, 12, 6449–6463. [Google Scholar] [CrossRef]
- Dominutti, P.A.; Hopkins, J.R.; Shaw, M.; Mills, G.; Le, H.A.; Huy, D.H.; Forster, G.L.; Keita, S.; Hien, T.T.; Oram, D.E. Evaluating major anthropogenic VOC emission sources in densely populated Vietnamese cities. Environ. Pollut. 2023, 318, 120927. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Analysis of Fine Dust Using Drone in Hwabuk Industrial Complex. Available online: https://www.youtube.com/watch?v=718NDVldbT4 (accessed on 1 August 2023).
- Anonymous. Production of Pollution Map by Conducting Non-Face-to-Face Forecasting Activities Using a SIFT-MS Instrument Mounted in a Moving Laboratory and Drones. Available online: https://www.youtube.com/watch?v=Qcvv68C5k08 (accessed on 1 August 2023).
- Park, J.-E. Analysis of Volatile Organosulfur Compounds of Marine Origin Using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). M.Sc. Dissertation, Korea University, Seoul, Korea, August 2021. Available online: https://dcollection.korea.ac.kr/srch/srchDetail/000000252171 (accessed on 27 July 2023).
- Kim, K.-B.; Kim, M.-H.; Chung, S.-Y.; Shin, E.-J.; Lee, S.-H.; Choi, J.-W.; Kang, Y.-S. Compatibility evaluation of online headspace with direct mass spectrometry for real-time water quality monitoring in chemical accidents. J. Environ. Anal. Health Toxicol. 2020, 23, 27–36. [Google Scholar] [CrossRef]
- Lee, S.-H.; Shin, E.-J.; Zoh, K.-D.; Kang, Y.-S.; Choi, J.-W. Direct mass spectrometry with online headspace sample pretreatment for continuous water quality monitoring. Water 2020, 12, 1843. [Google Scholar] [CrossRef]
- Son, H.-D.; An, J.G.; Ha, S.Y.; Kim, G.B.; Yim, U.H. Development of real-time and simultaneous quantification of volatile organic compounds in ambient with SIFT-MS (selected ion flow tube-mass spectrometry). J. Korean Soc. Atmos. Environ. 2018, 34, 393–405. [Google Scholar] [CrossRef]
- Yu, J.; Ryu, S.; Kim, J.; Kim, J.; Park, J.; Gong, B. Characteristics of emissions for air pollutants and odorous substances in a domestic dying industrial complex by using a real-time mobile monitoring system. J. Odor Indoor Environ. 2019, 18, 362–370. [Google Scholar] [CrossRef]
- Yu, J.; Song, H.; Nam, S.; Yu, U.; Shin, I. A[n] investigation of air quality characteristics around northwest petrochemical industrial complex. Rep. Chungnam Prov. Inst. Health Environ. 2022, 32, 107–124. Available online: http://www.chungnam.go.kr/orga/board.do?mnu_url=/mult/view.do&mult_seq=28375&searchCnd=0&mnu_cd=HERMENU00229&pageNo=1&pageGNo=0&showSplitNo=10 (accessed on 27 July 2023).
- Lee, M.-S.; Jung, J.-Y.; Kim, H.-S.; Youn, S.-J.; Jin, B.-B. Air Monitoring of Hazardous Air Pollutants in Industrial Complex Using SIFT-MS. Available online: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07552290 (accessed on 27 July 2023).
- Shin, H.-J.; Kim, J.-S.; Kong, H.-C. Measurement of VOCs in industrial complex using real-time air quality measurement equipment. J. Korean Soc. Urban Environ. 2020, 20, 35–42. [Google Scholar] [CrossRef]
- Youn, S.-J.; Jo, K.-H.; Kim, H.-S.; Song, G.-B.; Lee, S.-B.; Jeong, J.-Y. Measurement of hazardous air pollutants in industrial complex using mobile measurement system with SIFT-MS. J. Korean Soc. Atmos. Environ. 2020, 36, 507–521. [Google Scholar] [CrossRef]
- McEwan, M.J. Direct analysis mass spectrometry. In Ion Molecule Attachment Reactions: Mass Spectrometry; Fujii, T., Ed.; Springer: New York, NY, USA, 2015; pp. 263–317. [Google Scholar]
- Taylor, A.J.; Beauchamp, J.D.; Langford, V.S. Non-destructive and high-throughput–APCI-MS, PTR-MS and SIFT-MS as methods of choice for exploring flavor release. In Dynamic Flavor: Capturing Aroma Release Using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; pp. 1–16. [Google Scholar] [CrossRef]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef]
- Yuan, B.; Koss, A.R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J.A. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chem. Rev. 2017, 117, 13187–13229. [Google Scholar] [CrossRef]
- Forbes, P. Atmospheric chemistry analysis: A review. Anal. Chem. 2020, 92, 455–472. [Google Scholar] [CrossRef] [PubMed]
- South Korea: Regional Gross Domestic Product. Available online: http://nationalatlas.ngii.go.kr/pages/page_1282.php (accessed on 8 June 2023).
- Miyazaki, K.; Sekiya, T.; Fu, D.; Bowman, K.W.; Kulawik, S.; Sudo, K.; Walker, T.; Kanaya, Y.; Takigawa, M.; Ogochi, K.; et al. Balance of emission and dynamical controls on ozone during the Korea-United States air quality campaign from multiconstituent satellite data assimilation. J. Geophys. Res.-Atmos. 2019, 124, 387–413. [Google Scholar] [CrossRef]
- Macrotrends: South Korea Population Density 1950–2023. Available online: https://www.macrotrends.net/countries/KOR/south-korea/population-density (accessed on 8 June 2023).
- Enforcement Rules of the Clean Air Conservation Act. Available online: https://www.law.go.kr/LSW/lsSc.do?section=&menuId=1&subMenuId=15&tabMenuId=81&eventGubun=060101&query=%EB%8C%80%EA%B8%B0%ED%99%98%EA%B2%BD%EB%B3%B4%EC%A0%84%EB%B2%95#AJAX (accessed on 27 July 2023).
- Enforcement Regulations of the Malodor Prevention Act. Available online: https://www.law.go.kr/LSW/lsSc.do?section=&menuId=1&subMenuId=15&tabMenuId=81&eventGubun=060101&query=%EC%95%85%EC%B7%A8%EB%B0%A9%EC%A7%80%EB%B2%95#AJAX (accessed on 27 July 2023).
- Langford, V.S.; Perkins, M.J. Demystifying sample preparation for headspace analysis using direct injection mass spectrometry. Column 2022, 18, 24–28. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C.; Lim, H.; Lee, S.; Lee, S.; Kim, S.; Choi, S.; Cha, M.; Kim, H.; Kim, R.; et al. Diurnal Variation of Hazardous Air Pollutants Concentrations in Seoul by Real-Time Monitoring. Available online: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07267148 (accessed on 27 July 2023).
- Ryu, S.-M.; Kim, J.-H.; Kim, J.-H.; Yoo, J.-W.; Gong, B.-J.; Park, J.-M. A study on air pollution point source tracking method in the industrial complex area using drone and real-time analyzer. J. Korean Soc. Urban Environ. 2019, 19, 259–266. [Google Scholar] [CrossRef]
- Hwang, K.; An, J.G.; Lee, S.; Choi, W.; Yim, U.H. A study on the ozone formation potential of volatile organic compounds in Busan using SIFT-MS. J. Korean Soc. Atmos. Environ. 2020, 36, 645–668. [Google Scholar] [CrossRef]
- Kil, H.-J.; Lim, J.-S.; Lee, H.-J.; Park, S.-Y.; Cho, Y.-M.; Jung, J.-H.; Jin, Y.-G.; Lee, B.-Y.; Chu, W.-J.; Bang, K.-I.; et al. Evaluation of odor diagnosis in civil complaint occurrence area. Rep. Incheon Metrop. City Inst. Public Health Environ. 2020, 17, 280–301. Available online: https://www.incheon.go.kr/ecopia/EC040101/2068291 (accessed on 27 July 2023).
- Shin, H.J.; Kong, H.C.; Kim, J.S.; Kim, D.-H.; Park, S.J. Study on the efficient investigation method for sources of odor-inducing substances and volatile organic compounds using drones and real-time air quality monitoring equipment. J. Odor Indoor Environ. 2020, 19, 20–28. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, J.S.; Kong, H.C. A study on the odor and volatile organic compound characteristics of chemical blocks in Sihwa industrial complex using a selected ion flow tube mass spectrometer. J. Odor Indoor Environ. 2020, 19, 177–185. [Google Scholar] [CrossRef]
- Kim, S.-K. A study on BTEX Distribution Characteristics in Industrial Complexes and Residential Areas in Daegu City Using SIFT-MS. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10665395 (accessed on 27 July 2023).
- Lee, S.-R.; Yoon, H.; Gong, N.-S. Measurement of HAPs in the Residential Areas near Small-Scale Repair Shipyard Using SIFT-MS. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11055596 (accessed on 27 July 2023).
- Kim, J.H.; Song, J.H.; Park, M.S.; Lee, B.G.; Hong, G.J.; Yun, C.S.; Woo, H.J.; Lee, E.J. Air Quality Conservation Division. A Study on the Characteristics of VOCs Concentration and Contribution of Ozone Appearance in Gyeongbuk Area. Annu. Rep. Gyeongsangbuk-Do Inst. Health Environ. 2021, 34, 93–102. Available online: https://www.gb.go.kr/Sub/open_contents/ko/inc/download.jsp?FILE=research_34.pdf (accessed on 27 July 2023).
- Yu, B.G.; Tak, G.H.; Lee, D.U.; Lim, J.S.; Lee, S.H.; Lee, J.N.; Yoon, Y.J.; Kim, C.H.; Kim, D.Y.; Yoon, H.J.; et al. A study on the distribution characteristics of HAPs concentrations in Ulsan ambient. Rep. Ulsan Inst. Health Environ. 2021, 11, 215–243. Available online: https://www.ulsan.go.kr/s/uihe/bbs/view.do?bbsId=BBS_0000000000000277&mId=001004004000000000&dataId=34821#fileDownload (accessed on 27 July 2023).
- Woo, S.; Seo, S.; Jung, M.; Park, J.-Y.; Jang, Y.-N. A study on estimation of recovery rate of volatile fatty acids in livestock odor for storage time from PEA sampling bags. J. Odor Indoor Environ. 2021, 20, 130–138. [Google Scholar] [CrossRef]
- Song, H.-G.; Hwang, K.-C.; Lim, W.-H.; Choi, W. Estimating Vehicular Emissions of Air Pollutants with an Air Quality Sensor Array: Monitoring at Multiple Points in the Tunnel. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10665262 (accessed on 27 July 2023).
- Hwang, G.; Ahn, J.-G.; Loh, A.; Kim, D.-H.; Choi, N.; Lim, W.-H. Data Recycling of R/V-Based Ocean-Atmospheric Research—Focused on Ship Emission Factors. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10665049 (accessed on 27 July 2023).
- Park, J.-M.; Bae, Y.-S.; Kim, J.-B.; Song, J.-H.; Lee, H.-K.; Shim, S.-J.; Park, J.-E.; Kim, Y.-Y. Characteristics of emissions for odorous in waste treatment facilities by using SIFT-MS. Rep. Gyeonggi Prov. Inst. Health Environ. 2021, 34, 191–202. Available online: https://www.gg.go.kr/gg_health/bbs/boardView.do?bsIdx=727&bIdx=72089&page=1&menuId=3195&bcIdx=0&searchCondition=SUBJECT&searchKeyword= (accessed on 1 August 2023).
- Jang, E.-H.; Song, D.-K.; Kang, N.-H. Impact on ambient PM2.5 in Busan from shipping emissions and sulphur abatement strategy in shipping fuel oils. Annu. Rep. Busan Metrop. City Inst. Health Environ. 2022, 31, 363–386. Available online: https://www.busan.go.kr/PageDownload.do?savename=20220628environment_02.pdf (accessed on 27 July 2023).
- Choi, S.; Park, S.; Cha, Y.; Lee, S.; Yoo, E. The characteristics of air pollutants distribution around industrial complexes using real-time mobile atmospheric measurement system. J. Korean Soc. Environ. Eng. 2021, 43, 476–489. [Google Scholar] [CrossRef]
- Youn, S.-J. Monitoring of Hazardous Air Pollutants and Emission Sources Tracking with Real Time Mass Spectrometer (SIFT-MS). Ph.D. Dissertation, Pukyong National University, Busan, Republic of Korea, August 2021. Available online: http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=200000507385 (accessed on 27 July 2023).
- Yu, B.-G.; Tak, K.-H.; Lee, D.-W. Characteristics of concentration distribution of volatile organic compounds in Ulsan using SIFT-MS. J. Korean Soc. Environ. Eng. 2022, 44, 406–417. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Jeong, K.-W.; Kim, K.-H.; Cho, W.-C.; Jung, H.-C. A study on the correlation between THC and VOCs in paint facility emissions. Annu. Rep. Busan Metrop. City Inst. Health Environ. 2022, 31, 424–435. Available online: https://www.busan.go.kr/PageDownload.do?savename=20220628environment_06.pdf (accessed on 27 July 2023).
- Choi, S.-W.; Lee, S.-H.; Park, J.-M.; Choi, S.-H.; Cha, Y.-W.; Lee, S.-Y. A study on the distribution characteristics of air pollutants around industrial complexes using drones. Annu. Rep. Busan Metrop. City Inst. Health Environ. 2022, 31, 387–401. Available online: https://www.busan.go.kr/PageDownload.do?savename=20220628environment_03.pdf (accessed on 27 July 2023).
- Shin, H.-J. A Study on the Management of Air Pollution Emissions Using Mobile Real-Time Measuring Equipment. Ph.D. Dissertation, Korea Polytechnic University, Siheung-si, Republic of Korea, December 2021. Available online: http://www.riss.kr/link?id=T16237557 (accessed on 27 July 2023).
- Choi, I.; Lee, D.; Tak, K.; Jo, J. A study on the characteristics of HAPs in residential areas affected by industrial complex using SIFT-MS. J. Korean Soc. Environ. Eng. 2023, 45, 21–33. [Google Scholar] [CrossRef]
- Kim, S.-K. Daegu Industrial Complex VOCs Distribution Characteristics Investigation and Emission Source Tracking Study Using SIFT-MS. Ph.D. Dissertation, Kyungnam University, Changwon-si, Republic of Korea, December 2022. Available online: https://library.kyungnam.ac.kr/search/detail/CATTOT000001152025 (accessed on 27 July 2023).
- Langford, V.S.; McEwan, M.J.; Askey, M.; Barnes, H.A.; Olerenshaw, J.G. Comprehensive instrumental odor analysis using SIFT-MS: A case study. Environments 2018, 5, 43. [Google Scholar] [CrossRef]
- Article 42 of the Enforcement Decree of the Marine Environment Management Act. Available online: https://bit.ly/47GQjwG (accessed on 27 July 2023).
- Pollutant Release and Transfer Registers Information System. Available online: https://icis.me.go.kr/prtr/english.do (accessed on 2 August 2023).
- Article 11 of the Chemical Substances Control Act. Available online: https://bit.ly/46lo99u (accessed on 2 August 2023).
- Langford, V.S. Real-time monitoring of volatile organic compounds in ambient air using direct injection mass spectrometry. LCGC N. Am. 2022, 40, 174–179. [Google Scholar] [CrossRef]
- Environmental Standard (Enforcement Decree of the Framework Act on Environmental Policy). Available online: https://www.law.go.kr/LSW/lsSc.do?section=&menuId=1&subMenuId=15&tabMenuId=81&eventGubun=060101&query=%ED%99%98%EA%B2%BD%EC%A0%95%EC%B1%85%EA%B8%B0%EB%B3%B8%EB%B2%95#J15541295 (accessed on 27 July 2023).
- Perkins, M.J.; Langford, V.S. Application of headspace-SIFT-MS to direct analysis of hazardous volatiles in drinking water. Environments 2022, 9, 124. [Google Scholar] [CrossRef]
- Perkins, M.J.; Langford, V.S.; McEwan, M.J. High-throughput analysis of volatile compounds in air, water and soil using SIFT-MS. Curr. Trends Mass Spectrom. 2018, 37, 24–29. Available online: https://www.chromatographyonline.com/view/high-throughput-analysis-volatile-compounds-air-water-and-soil-using-sift-ms (accessed on 25 July 2023).
- Perkins, M.J.; Langford, V.S. Standard validation protocol for [SIFT-MS] methods applied to direct headspace analysis of aqueous volatile organic compounds. Anal. Chem. 2021, 93, 8386–8392. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.J.; Silva, L.P.; Langford, V.S. Evaluation of solvent compatibilities for headspace-SIFT-MS analysis of pharmaceutical products. Analytica 2023, 4, 313–335. [Google Scholar] [CrossRef]
- Beale, R.; Liss, P.S.; Dixon, J.L.; Nightingale, P.D. Quantification of oxygenated volatile organic compounds in seawater by membrane inlet proton transfer reaction/mass spectrometry. Anal. Chim. Acta 2011, 706, 128–134. [Google Scholar] [CrossRef]
- Vogt, M.; Liss, P.S. Dimethyl sulfide and climate. In Surface Ocean-Lower Atmosphere Processes; Le Quéré, C., Saltzman, E.S., Eds.; American Geophysical Union: Washington, DC, USA, 2009; pp. 197–232. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, W.; Yan, J.; Wu, Y.; Marandino, C.A.; Park, K.; Chen, L.; Lin, Q.; Tan, G.; Pan, M. An integrated sampler for shipboard underway measurement of dimethyl sulfide in surface seawater and air. Atmos. Environ. 2019, 209, 86–91. [Google Scholar] [CrossRef]
- Choi, N.; Ahn, J.-G.; Hwang, G.-C.; Loh, A.; Kim, D.; Lim, W.-H. Development of Analytical Method for Reduced Sulfur Compounds in the Marine Atmosphere Using SIFT-MS. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10665313 (accessed on 27 July 2023).
- Korea Ministry of Environment. Water Environment Conservation Law Enforcement Regulations Article 3 & 4; Korea Ministry of Environment: Sejong, Republic of Korea, 2017. [Google Scholar]
- Korea Ministry of Environment. Environmental Testing and Inspection Act; Korea Ministry of Environment: Sejong, Republic of Korea, 2017. [Google Scholar]
- Yoon, G.S.; Lee, S.H.; Choi, J.W. Development of online headspace with direct mass spectrometry for online monitoring of chemicals in water. J. Korean Soc. Environ. Anal. 2018, 21, 181–190. Available online: https://www.jeaht.org/journal/view.php?number=480 (accessed on 25 July 2023).
Configuration | Installation Type | Typical Application(s) | Selected References 1 |
---|---|---|---|
Direct analysis with manual sample introduction | Research laboratory | Emission source analysis; custom sampling configurations; general application scoping/evaluation | [11,33] |
Autosampler (usually syringe injection) | Research and routine laboratory | High-throughput sample analysis (e.g., aqueous headspace, sample bags 2, thermal desorption tubes) | [11,34,35] |
Automated multiport sampling (sample, blank, and calibration lines) | Air monitoring shed | Emission source analysis; fenceline monitoring; ambient monitoring | [11,26,36] |
Mobile laboratory (fixed location operation only) | Emission source analysis; emissions inventory data acquisition; fenceline monitoring; ambient monitoring; pollution mapping | [27,37,38] | |
Moving laboratory (fixed location operation also) | Pollution mapping; full incident response (with drone sampling to identify pollution source) | [22,39,40,41] |
Year | Primary Application(s) 1 | Analyte Class(es) 2 {Number of Analytes} | Location(s) | Reference |
---|---|---|---|---|
2017 | Ambient | HAPs {44} | Seoul | Korea Min. Env. [11] |
2017 | Ambient | HAPs {36} | Seoul, Shiwa, Daesan | Lee et al. [53] |
2018 | Ambient | HAPs + SOAs {60} | Geoje | Son et al. [36] |
2018 | Pollution mapping | HAPs {29} | (Multiple; not stated) | Lee et al. [39] |
2019 | Fenceline | HAPs + Odor {17} | Daegu | Yu et al. [37] |
2019 | Incident response | OFPs + SOAs {14} | Gyeonggi | Ryu et al. [54] |
2020 | Ambient | OFPs {53} | Busan | Hwang et al. [55] |
2020 | Emission source | Odor {43} | Incheon | Kil et al. [56] |
2020 | Incident response | HAPs + Odor {11} | Ansan | Shin et al. [57] |
2020 | Pollution mapping | HAPs + Odor {9} | Sihwa | Shin et al. [40] |
2020 | Pollution mapping | HAPs + Odor {10} | Sihwa | Shin et al. [58] |
2020 | Pollution mapping | HAPs {25} | Ulsan | Youn et al. [41] |
2021 | Ambient | HAPs {3} | Daegu | Kim [59] |
2021 | Ambient | HAPs (84) | Hyeon | Lee et al. [60] |
2021 | Ambient | OFPs {31} | Pohang, Sangju | Kim et al. [61] |
2021 | Ambient | HAPs {105} | Ulsan | Yu et al. [62] |
2021 | Emission source | Odor {4} | (Laboratory) | Woo et al. [63] |
2021 | Emission source | Not stated | (Land transport tunnel) | Song et al. [64] |
2021 | Emission source | SOAs {not stated} | (Ship based) | Hwang et al. [65] |
2021 | Emission source | Odor {44} | Gyeonggi | Park et al. [66] |
2021 | Emission source; Ambient | SOAs {70} | Busan | Jang et al. [67] |
2021 | Incident response | HAPs {8} | Sihwa | Shin et al. [28] |
2021 | Pollution mapping | HAPs {64} + Odor {20} | Busan | Choi et al. [68] |
2021 | Pollution mapping | HAPs {18} | Daegu | Youn [69] |
2022 | Ambient | HAPs {16} | Ulsan | Yu et al. [70] |
2022 | Emission source | HAPs + Odor {8} | Busan | Kim et al. [71] |
2022 | Fenceline | HAPs {53} | Daesan | Yu et al. [38] |
2022 | Incident response | HAPs {64} + Odor {20} | Busan | Choi et al. [72] |
2022 | Incident response | HAPs {9,12,12} | Sihwa, Ansan, Hwaseong | Shin [73] |
2023 | Ambient | HAPs {105} | Ulsan | Choi et al. [74] |
2023 | Fenceline | HAPs + Odor {18} | Daegu | Kim [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langford, V.S.; Cha, M.; Milligan, D.B.; Lee, J. Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea. Environments 2023, 10, 201. https://doi.org/10.3390/environments10120201
Langford VS, Cha M, Milligan DB, Lee J. Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea. Environments. 2023; 10(12):201. https://doi.org/10.3390/environments10120201
Chicago/Turabian StyleLangford, Vaughan S., Minyoung Cha, Daniel B. Milligan, and Jihoon Lee. 2023. "Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea" Environments 10, no. 12: 201. https://doi.org/10.3390/environments10120201
APA StyleLangford, V. S., Cha, M., Milligan, D. B., & Lee, J. (2023). Adoption of SIFT-MS for VOC Pollution Monitoring in South Korea. Environments, 10(12), 201. https://doi.org/10.3390/environments10120201