Occurrence and Distribution of Neonicotinoid Pesticides in Chinese Waterways: A Review
Abstract
:1. Introduction
Neonicotinoids | Chemical Structure | CAS No. | Molecular Mass (g moL−1) | PKa | LogKows | Water Solubility (mg L−1) | Water-Sediment Photolysis (DT50 in days) | Water Photolysis (DT50 in days) | Water Hydrolysis (DT50 in days) | References |
---|---|---|---|---|---|---|---|---|---|---|
| 135410-20-7 | 222.678 | 0.7 | 0.8 | 2950 | 4.7 (moderatly fast) | 34 (stable) | 420 (stable) | [13,14] | |
| 210880-82-5 | 249.67 | 11.1 | 0.905 | 327 | 41–56 (stable) | <1; 0.1 (fast) | 14.4 (moderately fast) | [13,14] | |
| 165252-70-0 | 202.214 | 12.6 | −0.549 | 39,830 | n.a. | 0.2 (fast) | n.a. (stable) | [13,14] | |
| 80-09-1 | 255.661 | 8.00 | 0.57 | 0.58–0.61 | 30–129 (slow to stable) | <1, 0.2 (fast) | >365 (stable) | [13,14] | |
| 150824-47-8 | 270.72 | 3.1 | −0.66 | 570,000 | n.a. | n.a. | Stable at pH3–7 Fast at pH9 | [13,14] | |
| 111988-49-9 | 252.72 | n.a. | 1.26 | 184 | 8–28 (stable) | 10–63 (stable) | n.a. (stable) | [13,14] | |
| 153719-23-4 | 291.71 | n.a. | −0.13 | 4.1 | 31–40 (stable) | 2.7–39.5 (moderately fast) | 11.5 (stable) | [13,14] | |
| 1203791-41-6 | 322.75 | 3.42 | n.a. | 1616.19 | n.a. | n.a. | n.a. | [15] |
2. Analytical Methods and Regulations for Neonicotinoid Pesticides
2.1. Multiple National Regulations
Countries | RTL (μg L−1) | Acetamiprid | Clothianidin | Dinotefuran | Imidacloprid | Thiacloprid | Thiamethoxam | References |
---|---|---|---|---|---|---|---|---|
EU | Short-term | 0.3667 | 3.1 | n.a. 1 | 0.098 | 0.0912 | 0.14 | [39] |
Long-term | 0.3667 | 3.1 | n.a. | 0.009 | 0.45 | 1 | ||
USA | Short-term | 1.6555 | 1.77 | 4.915 | 0.0385 | 18.9 | 3.535 | [39] |
Long-term | 0.36 | 0.05 | 3.1 | 0.01 | 0.97 | 0.74 | ||
Canada | Short-term | 12 | 1.3 | n.a. | 0.54 | 20.35 | 9 | [39] |
Long-term | 5000 | 0.12 | n.a. | 0.16 | 0.68 | 3 | ||
Netherland | Short-term | n.a. | n.a. | n.a. | 0.067 | n.a. | n.a. | [31] |
Long-term | n.a. | n.a. | n.a. | 0.2 | n.a. | n.a. | ||
Germany | Short-term | n.a. | n.a. | n.a. | 0.0024 | n.a. | n.a. | [56] |
Long-term | n.a. | n.a. | n.a. | 0.1 | n.a. | n.a. |
2.2. Analytical Methods of NEOs in Surface Water and Drinking Water
3. Occurrence and Distribution of Neonicotinoid Pesticides in Water
3.1. Surface Water of Taihu Lake
3.2. Surface Water of the Pearl River
3.3. Surface Water of the Yangtze River
3.4. Surface Water of the Bohai Sea
3.5. Surface Water of the Songhua River
3.6. Drinking Water of the Cities of Wuhan and Hangzhou
3.7. Drinking Water of China Nationwide
4. Conclusions and Further Works
- (1)
- Neonicotinoids (NEOs) have been extensively used in agriculture, horticulture, and household applications. However, neonicotinoids pose threats to human health and ecological security, leading to substantial health and environmental concerns associated with these substances.
- (2)
- China currently lacks water quality criteria for NEOs, though some developed countries like the Netherlands, Germany, the USA, and Canada have established water quality guidelines or water quality criteria for NEOs.
- (3)
- It is crucial to establish analytical methodologies for NEOs with both the parent compounds and derivative metabolites/by-products. The solid-phase extraction method is commonly used for sample pretreatment, and high-performance liquid chromatography coupled with mass spectrometry is the prevalent technique to simultaneously detect multiple neonicotinoids and their metabolites.
- (4)
- NEOs have been detected in rivers, lakes, seas, and treated drinking water sources across China. Their ubiquitous presence over the past decades can be attributed to their widespread use in agriculture and horticulture, resulting in detected levels ranging from 1 to 100 ng L−1. Acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam were the most frequently detected NEOs. Contamination primarily originated from surface water runoff near agricultural areas, sewage, and wastewater effluent.
- (5)
- Most monitoring studies have concentrated on the southern and southeast regions of China, particularly the Taihu Lake District, Yangtze River Delta, and Pearl River Delta, while information from Northern China remains relatively limited. This review stresses the need for more comprehensive investigations to bridge the knowledge gap, especially in remote and developing regions. Additionally, given the high levels of residual NEOs in Southern China, future research should expand to specific sites surrounding problematic areas in the region.
- (6)
- Overall, a moderate to high long-term ecological risk was associated with NEOs in most of the reported studies, with acute ecological risks seldom reported. Although many of the studies indicated low to moderate NEOs occurrence, there has been an increasing trend in human health risks in recent years.
- (7)
- As the production and consumption of NEOs continue to rise in China, there is an urgent need for the monitoring and management of NEOs and their metabolites in water and other environmental media to mitigate the potential health risks.
- (8)
- Given the limited number of studies on NEOs characteristics and contamination across China, this study underscores the urgent necessity for nationwide research on this subject.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Ensley, S.M. Neonicotinoids. In Veterinary Toxicology, 3rd ed.; Gupta, R.C., Ed.; Academic Press Elsevier: London, UK, 2018; pp. 521–524. [Google Scholar]
- Thompson, D.A.; Lehmler, H.-J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; LeFevre, G.H.; Peeples, T.L.; Poch, M.C.; LaDuca, L.E. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environ. Sci. Process. Impacts 2020, 22, 1315–1346. [Google Scholar] [CrossRef] [PubMed]
- Thunnissen, N.; Geurts, K.; Hoeks, S.; Hendriks, A. The impact of imidacloprid and thiacloprid on the mean species abundance in aquatic ecosystems. Sci. Total Environ. 2022, 822, 153626. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Chen, C.; Bu, C.; Zhang, W.; Chen, G.; Ma, L. Neonicotinoids in Qilu Lake Basin of China: Spatiotemporal distribution and ecological risk assessment. Environ. Eng. Sci. 2023, 40, 61–70. [Google Scholar] [CrossRef]
- Wang, T.; Zhong, M.; Lu, M.; Xu, D.; Xue, Y.; Huang, J.; Blaney, L.; Yu, G. Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: A case study near Taihu Lake, China. Sci. Total Environ. 2021, 782, 146826. [Google Scholar] [CrossRef]
- Thany, S.H. Neonicotinoid insecticides: Historical evolution and resistance mechanisms. In Insect Nicotinic Acetylcholine Receptors; Ch 7; Thany, S.H., Ed.; Springer: New York, NY, USA, 2010; Volume 683, pp. 75–83. [Google Scholar]
- Sadaria, A.M. Fate of Six Neonicotinoids during Full-Scale Wastewater Treatment and Passage through an Engineered Wetland. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2015. [Google Scholar]
- Shahid, M.K.; Kashif, A.; Fuwad, A.; Choi, Y. Current advances in treatment technologies for removal of emerging contaminants from water–A critical review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Cai, Z.; Ma, J.; Wang, J.; Cai, J.; Yang, G.; Zhao, X. Impact of the novel neonicotinoid insecticide Paichongding on bacterial communities in yellow loam and Huangshi soils. Environ. Sci. Pollut. Res. 2016, 23, 5134–5142. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, Y.; Huang, L.; Xu, P.; Zhang, S.; Ye, Q. Behavior and fate of a novel neonicotinoid cycloxaprid in water–sediment systems through position-specific C-14 labeling. Chem. Eng. J. 2022, 435, 134962. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zhang, C.; Liu, H.; Wu, R.; Tian, D.; Ruan, J.; Zhang, T.; Huang, M.; Ying, G. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China. Environ. Pollut. 2019, 251, 892–900. [Google Scholar] [CrossRef] [PubMed]
- University of Hertfordshire, PPDB: Pesticide Properties DataBase. 2023. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm (accessed on 14 November 2023).
- Deng, Y.; Zhuang, Y.; Feng, Y.; Lu, S.; Cheng, J.; Xu, X. Photodegradation of cis-configuration neonicotinoid cycloxaprid in water. China Environ. Sci. 2016, 36, 1112–1118. [Google Scholar]
- Iturburu, F.G.; Simoniello, M.F.; Medici, S.; Panzeri, A.M.; Menone, M.L. Imidacloprid causes DNA damage in fish: Clastogenesis as a mechanism of genotoxicity. Bull. Environ. Contam. Toxicol. 2018, 100, 760–764. [Google Scholar] [CrossRef]
- Pisa, L.; Goulson, D.; Yang, E.-C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.; Giorio, C. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. 2021, 28, 11749–11797. [Google Scholar] [CrossRef]
- Sappington, J.D. Imidacloprid alters ant sociobehavioral traits at environmentally relevant concentrations. Ecotoxicology 2018, 27, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Kimura-Kuroda, J.; Komuta, Y.; Kuroda, Y.; Hayashi, M.; Kawano, H. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS ONE 2012, 7, e32432. [Google Scholar] [CrossRef] [PubMed]
- Babeľová, J.; Šefčíková, Z.; Čikoš, Š.; Špirková, A.; Kovaříková, V.; Koppel, J.; Makarevich, A.V.; Chrenek, P.; Fabian, D. Exposure to neonicotinoid insecticides induces embryotoxicity in mice and rabbits. Toxicology 2017, 392, 71–80. [Google Scholar] [CrossRef]
- Ueyama, J.; Harada, K.H.; Koizumi, A.; Sugiura, Y.; Kondo, T.; Saito, I.; Kamijima, M. Temporal levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between 1994 and 2011. Environ. Sci. Technol. 2015, 49, 14522–14528. [Google Scholar] [CrossRef]
- Keil, A.P.; Daniels, J.L.; Hertz-Picciotto, I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: The CHARGE (CHildhood Autism Risks from Genetics and Environment) case–control study. Environ. Health 2014, 13, 3. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Li, J.; Su, G.; Chen, Q.; Ding, Z.; Sun, H. Serum concentrations of neonicotinoids, and their associations with lipid molecules of the general residents in Wuxi City, Eastern China. J. Hazard. Mater. 2021, 413, 125235. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Chang, C.; Lou, J.; Zhao, M.; Lu, C. Potential human exposures to neonicotinoid insecticides: A review. Environ. Pollut. 2018, 236, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, Z.; Ma, X.; Li, H.; You, J. Occurrence and risk of neonicotinoid insecticides in surface water in a rapidly developing region: Application of polar organic chemical integrative samplers. Sci. Total Environ. 2019, 648, 1305–1312. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Zhang, Z.; An, L.; Hough, R.; Hu, P.; Li, Y.-F.; Zhang, F.; Wang, S.; Zhao, Y. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China. Environ. Sci. Pollut. Res. 2022, 29, 55336–55347. [Google Scholar] [CrossRef] [PubMed]
- Borsuah, J.F.; Messer, T.L.; Snow, D.D.; Comfort, S.D.; Mittelstet, A.R. Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water 2020, 12, 3388. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Kmiecik, E.; Malina, G.; Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef]
- Richman, S.K.; Maalouf, I.M.; Smilanich, A.M.; Marquez Sanchez, D.; Miller, S.Z.; Leonard, A.S. A neonicotinoid pesticide alters how nectar chemistry affects bees. Funct. Ecol. 2022, 36, 1063–1073. [Google Scholar] [CrossRef]
- Thunnissen, N.; Lautz, L.; Van Schaik, T.; Hendriks, A. Ecological risks of imidacloprid to aquatic species in the Netherlands: Measured and estimated concentrations compared to species sensitivity distributions. Chemosphere 2020, 254, 126604. [Google Scholar] [CrossRef] [PubMed]
- Smit, C. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive. 2014. Available online: https://rivm.openrepository.com/handle/10029/316124 (accessed on 6 November 2023).
- Van Dijk, T.C.; Van Staalduinen, M.A.; Van der Sluijs, J.P. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 2013, 8, e62374. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Klarich, K.L.; Pflug, N.C.; DeWald, E.M.; Hladik, M.L.; Kolpin, D.W.; Cwiertny, D.M.; LeFevre, G.H. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ. Sci. Technol. Lett. 2017, 4, 168–173. [Google Scholar] [CrossRef]
- Napierska, D.; Sanseverino, I.; Loos, R.; Gómez Cortés, L.; Niegowska, M.; Lettieri, T. Modes of Action of the Current Priority Substances List under the Water Framework Directive and Other Substances of Interest; EUR 29008 EN, JRC110117; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- European Commission Offical Journal of the European Union L132; Publication Office of the European Union: Luxembourg, May 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2018:132:FULL&from=DA (accessed on 6 November 2023).
- Marine, N. Canadian Water Quality Guidelines for the Protection of Aquatic Life; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999; pp. 1–5. [Google Scholar]
- Global Agricultural Information Report (GAIP), FR1612. Neonicotinoid Insecticides to be Banned in France from 2018. Paris. 2016. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Neonicotinoid%20Insecticides%20to%20Be%20Banned%20in%20France%20from%202018_Paris_France_8-31-2016.pdf (accessed on 6 November 2023).
- Stehle, S.; Ovcharova, V.; Wolfram, J.; Bub, S.; Herrmann, L.Z.; Petschick, L.L.; Schulz, R. Neonicotinoid insecticides in global agricultural surface waters–Exposure, risks and regulatory challenges. Sci. Total Environ. 2023, 867, 161383. [Google Scholar] [CrossRef]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 2019, 18, 1–16. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Helm, P.; Paterson, G.; Kaltenecker, G.; Murray, C.; Nowierski, M.; Sultana, T. Pesticides related to land use in watersheds of the Great Lakes basin. Sci. Total Environ. 2019, 648, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Putri, Z.S.; Yusmur, A.; Yamamuro, M. Neonicotinoid contamination in tropical estuarine waters of Indonesia. Heliyon 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Terao, T.; Hisatomi, H.; Kawasaki, H.; Arakawa, R. Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation. J. Environ. Monit. 2012, 14, 2189–2194. [Google Scholar] [CrossRef]
- Kruć-Fijałkowska, R.; Dragon, K.; Drożdżyński, D.; Górski, J. Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. Sci. Rep. 2022, 12, 3317. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef]
- Mahai, G.; Wan, Y.; Xia, W.; Yang, S.; He, Z.; Xu, S. Neonicotinoid insecticides in surface water from the central Yangtze River, China. Chemosphere 2019, 229, 452–460. [Google Scholar] [CrossRef]
- USEPA. EPA Actions to Protect Pollinators-Proposed Interim Decision on Neonicotinoids. Available online: https://www.epa.gov/pollinator-protection/epa-actions-protect-pollinators (accessed on 1 September 2023).
- Drivdal, L.; van der Sluijs, J.P.; Kozarev, V.; Damianova, Z.; de Smedt, K.; Rozendal, S.; Habets, M.; Rose, G.; Greßler, S.; Fries, R. The RECIPES Project Report, D2.4.1 Intra Case Study Analysis, Neonicotinoid Insecticides. 2020, pp. 120–167. Available online: https://recipes-project.eu/sites/default/files/2021-03/RECIPES%20D2.4.1%20Intra%20case%20study%20analysis_final.pdf (accessed on 6 November 2023).
- Epstein, Y.; Chapron, G.; Verheggen, F. What is an emergency? Neonicotinoids and emergency situations in plant protection in the EU. Ambio 2022, 51, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Bellis, A.S.; Suchenia, A. UK Government Approval for Use of NEOs and the Impact on Bees.pdf. 2022. Available online: https://commonslibrary.parliament.uk/ (accessed on 6 November 2023).
- Australian Pesticides and Veterinary Medicines Authority (APVMA). Neonicotinoids and the Health of Honey Bee in Australia. 2014. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fapvma.gov.au%2Fsites%2Fdefault%2Ffiles%2Fpublication%2F18541-neonicotinoids_overview_report_february_2014.doc&wdOrigin=BROWSELINK (accessed on 6 November 2023).
- Australian Pesticides and Veterinary Medicines Authority (APVMA). Neonicotinoids. 19 May 2023. Available online: https://apvma.gov.au/node/28786 (accessed on 6 November 2023).
- Fan, D.-D.; Liu, H.-L.; Yang, L.-Y. Neonicotinoid Insecticides Threaten Surface Waters at the National Scale in China. Huan Jing ke Xue= Huanjing Kexue 2022, 43, 2987–2995. [Google Scholar]
- Chen, Y.; Zang, L.; Liu, M.; Zhang, C.; Shen, G.; Du, W.; Sun, Z.; Fei, J.; Yang, L.; Wang, Y. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. Environ. Int. 2019, 127, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, T.; Lu, J.; Li, Z. Seawater quality criteria derivation and ecological risk assessment for the neonicotinoid insecticide imidacloprid in China. Mar. Pollut. Bull. 2023, 190, 114871. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, A.; Shemotyuk, L. EQS Datasheet Environmental Quality Standard Imidacloprid. On behalf of the Federal Environment Agency (Umweltbundesamt, UBA) Wörlitzer Platz 1 06844 Dessau-Roßlau Germany. 2014. Available online: https://webetox.uba.de/webETOX/public/basics/literatur/download.do?id=26 (accessed on 6 November 2023).
- Ferrari, L.; Speltini, A. Neonicotinoids: An overview of the newest sample preparation procedures of environmental, biological and food matrices. Adv. Sample Prep. 2023, 8, 100094. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Y.; Wang, Y.; Lu, Q.; Ruan, H.; Luo, J.; Yang, M. A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples. Food Chem. X 2022, 15, 100375. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Lu, Z.; Lin, S.; Dai, W.; Zhang, Q. Neonicotinoid insecticides in the drinking water system–Fate, transportation, and their contributions to the overall dietary risks. Environmen. Pollut. 2020, 258, 113722. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, D.; Yi, X.; Zhang, T.; Ruan, J.; Wu, R.; Chen, C.; Huang, M.; Ying, G. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China. Chemosphere 2019, 217, 437–446. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Y.; Xia, W.; He, Z.; Xu, S. Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential. Sci. Total Environ. 2019, 675, 513–519. [Google Scholar] [CrossRef]
- Naumann, T.; Bento, C.P.; Wittmann, A.; Gandrass, J.; Tang, J.; Zhen, X.; Liu, L.; Ebinghaus, R. Occurrence and ecological risk assessment of neonicotinoids and related insecticides in the Bohai Sea and its surrounding rivers, China. Water Res. 2022, 209, 117912. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, S.; Zhang, L.; Zhang, Z.; Hough, R.; Fu, Q.; Li, Y.-F.; An, L.; Huang, M.; Li, K. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China. Environ. Sci. Ecotechnol. 2021, 8, 100128. [Google Scholar] [CrossRef]
- He, Y.; Zhang, B.; Wu, Y.; Ouyang, J.; Huang, M.; Lu, S.; Sun, H.; Zhang, T. A pilot nationwide baseline survey on the concentrations of Neonicotinoid insecticides in tap water from China: Implication for human exposure. Environmen. Pollut. 2021, 291, 118117. [Google Scholar] [CrossRef]
- Mahai, G.; Wan, Y.; Xia, W.; Wang, A.; Shi, L.; Qian, X.; He, Z.; Xu, S. A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China. Water Res. 2021, 189, 116630. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, X.; Xie, L.; Liu, H.; Tian, D.; Yan, B.; Li, D.; Li, H.; Huang, M.; Ying, G.-G. Contamination of drinking water by neonicotinoid insecticides in China: Human exposure potential through drinking water consumption and percutaneous penetration. Environ. Int. 2021, 156, 106650. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Cheng, X.; Wu, Q.; Mu, R.; Ma, Y. Assessment and removal of emerging water contaminants. J. Environ. Anal. Toxicol. 2012, 2, S2:003. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin. EFSA J. 2013, 11, 3066. [Google Scholar] [CrossRef]
Site/Location (China) | NEOs | Extraction | Analytical Device | References |
---|---|---|---|---|
Taihu Lake, Wujin, Jiangsu (n = 316) | Acetamiprid Imidacloprid | Filtration through fibreglass filter and pH adjusted to 3 SPE Extraction:
| HPLC-ESI-MS/MS:
| [45] |
Taihu Lake, Jiangsu (n = 208) | Acetamiprid Clothianidin Imidacloprid Thiamethoxam | Filtration by 0.45 μm fibreglass filter pH adjusted to 3 Isotopically labelled internal standards (ILIS) added in water samples (final ILIS conc.: 50 ng L−1) Online SPE coupled with LC-ESI-MS/MS
| HPLC-ESI-MS/MS
| [39] |
Pearl River Guangdong (n = 66) | 14-day on-site capture and extraction of NEOs by the POCIS devices.
| HPLC-MS/MS
| [25] | |
Pearl River Guangdong (n = 85) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | Filtration of water sample through 0.45 μm filter Spiking of internal standards mixture (10 ng/500 mL) in filtered samples. SPE extraction:
| Triple quadruple LC_MS/MS (TSQ quantum ultra, Thermo Scientific, USA)
| [60] |
Pearl River, Guangzhou (n = 14) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | Filtration of water sample through 0.45μm filter and spiked with internal standards mixture. SPE extraction:
| Triple quadruple LC_MS/MS (TSQ quantum ultra, Thermo Scientific, USA)
| [13] |
Central Yangtze River from Zhijiang to Wuhan (n = 120) | Acetamiprid Clothianidin Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | Spiking of 20 ng of the imidacloprid-d4 into each water sample and filtered through a glass fibre filter. SPE extraction:
| UPLC-MS/MS
| [46] |
Yangtze River Wuhan (n = 14) | Acetamiprid Clothianidin Dinotefuran Desmethyl-acet-amiprid Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | Filtration of water sample and spiked isotope-labelled mixed internal standards (100 μL of 100 ng mL−1) in 1 L water sample SPE extraction: Oasis HLB column (6 cc/500 mg, 60 μm, Waters Corporation, Milford, MA, USA)
| UPLC-MS/MS
| [61] |
Han River Wuhan (n = 6) | Acetamiprid Clothianidin Dinotefuran Desmethyl-acet-amiprid Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | |||
Rivers surrounding Bohai Sea (summer) (n = 72) | Acetamiprid Clothianidin Desnitro-im-imdacloprid Dinotefuran Fipronil Fipronil-desulfi-nyl Fipronil-sulphide Fipronil-sulfone Imidacloprid Thiacloprid Thiamethoxam | Water sample filtered and spiked with 20μL IS-mix (0.4 ng L−1) Automated SPE extraction
| HPLC-MS/MS
| [62] |
Bohai Sea water (summer) (n = 81) | Acetamiprid Desnitro-im-imdacloprid Fipronil Fipronil-desulfi-nyl Thiacloprid | |||
Songhua River, Harbin (n = 13) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Thiacloprid Thiamethoxam | Water samples were filtered through a Teflon filter and spiked with a mixed internal standards mixture (50 μL of 1 mg L−1) SPE extraction:
| LC-MS/MS
| [63] |
Site/Location | NEOs | Extraction | Analytical Device | References |
---|---|---|---|---|
Wuhan (n = 165) | Acetamiprid Clothianidin Dinotefuran Desmethyl-acetamiprid Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | Filtration of water sample and spiked isotope-labelled mixed internal standards (100 μL of 100 ng/mL) in 1 L water sample SPE extraction:
Nitrogen dried elutes and reconstituted in 1 mL 50% acetonitrile | UPLC-MS/MS
ACQUITY UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm, Waters Corporation, Mildford, MA, USA). | [61] |
Hangzhou (n = 71) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Nitenpyram | Liquid–liquid extraction:
| UPLC-MS/MS (UPLC-MS/MS, Waters Corporation, Milford, MA.)
| [59] |
Nationwide (n = 84) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | Water samples were spiked with mixed isotope internal standard solution (50 μL, 0.1 ng μL−1) and then filtered through 0.45 filter. SPE extraction:
| HPLC-MS/MS:
| [64] |
Nationwide (n =789) | Acetamiprid Clothianidin Dinotefuran Flonicamid Imidacloprid Imidaclothiz Thiacloprid Thiamethoxam | 500 mL water samples were spiked with 125 μL of Sodium sulphite (20 gL−1) and mixed isotope internal standard solution. SPE extraction:
| HPLC-MS/MS
| [65] |
Nationwide (n = 146) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | n.a. | HPLC-MS/MS
| [66] |
Site/Location (China) | NEOs | Detection Frequency (%) | Conc Range (ng L−1) | Median (ng L−1) | Ecological Risk Assessment | References |
---|---|---|---|---|---|---|
Taihu Lake, Wujin District, Jiangsu (n = 316) | Acetamiprid Imidacloprid | 90 | 0–38 | 8.25 | Risk Quotient: No obvious risk | [45] |
88 | 0–236 | 65.8 | ||||
31 | 0–53.4 | 10.0 | ||||
Taihu Lake Jiangsu (n= 208) | Acetamiprid | 100 | 0.3–368 | 11 | Risk Quotient and Risk index:
| [6] |
Clothianidin | 48 | 0–391 | n.d. 1 | |||
Imidacloprid | 97 | 0–907 | 31 | |||
Thiamethoxam | 83 | 0–952 | 9.8 | |||
Pearl River Guangdong (n = 66) | Acetamiprid | 100 | 18.8–157 | n.a. 2 | Probabilistic Ecological Risk Assess (chronic risk):
| [25] |
Clothianidin | 100 | 14.8–47.6 | ||||
Imidacloprid | 100 | 32.9–249 | ||||
Thiamethoxam | 71.4 | 0–52.4 | ||||
Pearl River Guangdong (n = 85) | Acetamiprid | 100 | 3.13–67.6 | 9.99 | Probabilistic Ecological Risk Assess (chronic risk)
| [60] |
Clothianidin | 100 | 0.55–67.2 | 11.9 | |||
Imidacloprid | 99 | 0.84–180 | 26 | |||
Thiacloprid | 100 | 0.18–12.4 | 0.71 | |||
Thiamethoxam | 72 | 4.97–102 | 26.7 | |||
Pearl River, Guangzhou (n = 14) | Acetamiprid | 100 | 6.24–77.1 | 34.4 | Probabilistic Ecological Risk Assess (chronic risk): n.a. | [13] |
Clothianidin | 100 | 13.1–38.0 | 25.2 | |||
Imidacloprid | 100 | 40.1–154 | 78.3 | |||
Thiacloprid | 92.9 | 0.44–2.97 | 1.03 | |||
Thiamethoxam | 100 | 16.3–70.2 | 53.2 | |||
Central Yangtze River From Zhijiang to Wuhan (n = 120) | Acetamiprid | 100 | 0.26–12.0 | 2.50 | Ecological Risk Class (Risk Quotient method):
| [46] |
Clothianidin | 64 | n.d.-10.5 | 0.10 | |||
Imidacloprid | 100 | 0.02–44.4 | 4.37 | |||
Nitenpyram | 73 | n.d.-3.50 | 0.34 | |||
Thiacloprid | 87 | n.d.-0.26 | 0.02 | |||
Thiamethoxam | 95 | n.d.-236 | 1.10 | |||
Yangtze River Wuhan (n = 14) | Acetamiprid | 100 | 3.82–9.98 | 4.71 | n.a. | [61] |
Clothianidin | 100 | 0.78–4.20 | 1.09 | |||
Dinotefuran | 64.3 | n.d.-1.20 | 0.29 | |||
Desmethyl-acetamiprid | 100 | 0.16–0.44 | 0.28 | |||
Imidacloprid | 100 | 3.96–28.5 | 7.81 | |||
Nitenpyram | 100 | 0.36–8.70 | 0.74 | |||
Thiacloprid | 100 | 0.02–0.16 | 0.05 | |||
Thiamethoxam | 100 | 3.54–19.8 | 4.60 | |||
Han River Wuhan (n = 6) | Acetamiprid | 100 | 7.90–22.7 | 10.5 | Compare median ∑NEOs with chronic risk threshold (35 ng L−1): Long-term chronic risk to aquatic species (median ∑NEOs > 35 ng L−1) | [61] |
Clothianidin | 100 | 1.10–10.5 | 3.43 | |||
Dinotefuran | 83.3 | n.d.-3.02 | 1.43 | |||
Desmethyl-acetamiprid | 100 | 0.28–0.96 | 0.41 | |||
Imidacloprid | 100 | 10.9–82.4 | 26.9 | |||
Nitenpyram | 100 | 0.36–1.66 | 0.79 | |||
Thiacloprid | 100 | 0.02–0.28 | 0.10 | |||
Thiamethoxam | 100 | 5.48–64.8 | 18.8 | |||
Rivers surrounding Bohai Sea (summer) (n = 72) | Acetamiprid | 100 | 0.82–128 | 16.0 | Ecological Risk Class (Risk quotient method):
| [62] |
Clothianidin | 100 | 0.55–55.2 | 4.9 | |||
Desnitro-imidacloprid | 100 | 0.42–67.3 | 8.6 | |||
Dinotefuran | 47 | n.d.-17.2 | n.d. | |||
Fipronil | 94 | n.d.-4.0 | 0.38 | |||
Fipronil-desulfinyl | 92 | n.d.-5.1 | 0.82 | |||
Fipronil-sulphide | 94 | n.d.-3.2 | 0.39 | |||
Fipronil-sulfone | 97 | n.d.-8.9 | 0.92 | |||
Imidacloprid | 100 | 1.31–104 | 12.9 | |||
Thiacloprid | 42 | n.d.-5.44 | n.d. | |||
Thiamethoxam | 100 | 0.54–99.8 | 9.2 | |||
Bohai Sea water (summer) (n = 81) | Acetamiprid | 100 | 0.16–0.94 | 0.37 | Ecological Risk Class (Risk quotient):
| [62] |
Desnitro-imidacloprid | 88 | n.d.-0.87 | 0.14 | |||
Fipronil | 47 | n.d.-0.13 | n.d. | |||
Fipronil-desulfi-nyl | 12 | n.d.-0.06 | n.d. | |||
Thiacloprid | 47 | n.d.-0.08 | n.d. | |||
Songhua River, Harbin (n = 13) | Acetamiprid | 100 | 0.20–10.8 | 0.51 | SSD model:
| [63] |
Clothianidin | 100 | 1.66–13.1 | 2.11 | |||
Dinotefuran | 23.1 | n.d.-5.91 | n.d. | |||
Imidacloprid | 100 | 10.9–83.5 | 11.9 | |||
Imidaclothiz | 15.4 | n.d.-0.04 | n.d. | |||
Thiacloprid | 15.4 | n.d.-1.21 | n.d. | |||
Thiamethoxam | 100 | 16.3–83.5 | 26.7 |
Site/location (China) | NEOs | Detection Frequency (%) | Conc Range (ng L−1) | Median (ng L−1) | Ecological Risk Assessment | References |
---|---|---|---|---|---|---|
Wuhan (n = 165) | Acetamiprid | n.d. 1 | 0.65–20.7 | 2.78 | Estimation of human exposure to NEOs through ingestion (L kg−1 bw−1 day−1) of water (RPF method):
| [61] |
Clothianidin | n.d.-8.98 | 1.28 | ||||
Dinotefuran | n.d.-54.8 | 0.2 | ||||
Desmethyl-acetamiprid | 0.05–0.80 | 0.2 | ||||
Imidacloprid | 1.16–76.7 | 4.3 | ||||
Nitenpyram | n.d.-54.8 | 0.2 | ||||
Thiacloprid | n.d.-0.26 | 0.04 | ||||
Thiamethoxam | 0.38–47.0 | 3.54 | ||||
Hangzhou (n = 71) | Acetamiprid | n.d. | 0–16.6 | 6.15 | Total IMIRPF (ng L−1) in tap water (Risk assessment of total neonics intake through drinking water consumption)
| [59] |
Clothianidin | 2.9–7.5 | 3.85 | ||||
Dinotefuran | 3.4–25 | 7.75 | ||||
Imidacloprid | 1.5–10.6 | 4.5 | ||||
Nitenpyram | 1.9–22.6 | 6.05 | ||||
Nationwide (n = 84) | Acetamiprid | 94 | 0.002–69.2 | 2.72 | In China, the average EDI (median, age from 2 -> 65, ng kg−1 bw−1 day−1) of NEOs via tap water consumption. (Estimated daily taken method):
| [64] |
Clothianidin | 92 | 0.005–104 | 5.46 | |||
Dinotefuran | 90 | <0.03–312 | 4.55 | |||
Imidacloprid | 99 | <0.02–68.3 | 7.59 | |||
Thiacloprid | 86 | 0.002–74.2 | 0.38 | |||
Thiamethoxam | 87 | <0.03–214 | 4.5 | |||
Nationwide (n = 789) | Acetamiprid | 94 | 8.10–182 | 0.42 | n.a. 2 | [65] |
Clothianidin | 70 | 13.4–98.8 | 0.16 | |||
Dinotefuran | 26 | 3.02–13.7 | n.d. | |||
Flonicamid | 4.4 | n.d.-0.70 | n.d. | |||
Imidacloprid | 84 | 24.8–233 | 0.86 | |||
Imidaclothiz | 4.9 | n.d.-0.62 | n.d. | |||
Thiacloprid | 42 | 0.20–7.18 | n.d. | |||
Thiamethoxam | 68 | 29.1–232 | 0.28 | |||
Nationwide (n= 146) | Acetamiprid | 78.1 | n.d.-15.5 | 0.47 | n.a. | [66] |
Clothianidin | 80.1 | n.d.-109 | 0.73 | |||
Imidacloprid | 83.6 | n.d.-55 | 1.76 | |||
Thiacloprid | 24 | n.d.-3.11 | 0.04 | |||
Thiamethoxam | 63 | n.d.-88.5 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jiang, J.-Q. Occurrence and Distribution of Neonicotinoid Pesticides in Chinese Waterways: A Review. Environments 2023, 10, 206. https://doi.org/10.3390/environments10120206
Zhang S, Jiang J-Q. Occurrence and Distribution of Neonicotinoid Pesticides in Chinese Waterways: A Review. Environments. 2023; 10(12):206. https://doi.org/10.3390/environments10120206
Chicago/Turabian StyleZhang, Shaoqing, and Jia-Qian Jiang. 2023. "Occurrence and Distribution of Neonicotinoid Pesticides in Chinese Waterways: A Review" Environments 10, no. 12: 206. https://doi.org/10.3390/environments10120206
APA StyleZhang, S., & Jiang, J. -Q. (2023). Occurrence and Distribution of Neonicotinoid Pesticides in Chinese Waterways: A Review. Environments, 10(12), 206. https://doi.org/10.3390/environments10120206