Environmental Impact Assessment of Plastic Waste Management Scenarios in the Canadian Context
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison between End-of-Life Treatments
3.2. Environmental Impact of Different Scenarios for Managing Plastic Waste
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogelj, J.; Geden, O.; Cowie, A.; Reisinger, A. Three ways to improve net-zero emissions targets. Nature 2021, 591, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Höhne, N.; Gidden, M.J.; Elzen, M.D.; Hans, F.; Fyson, C.; Geiges, A.; Jeffery, M.L.; Gonzales-Zuñiga, S.; Mooldijk, S.; Hare, W.; et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Chang. 2021, 11, 820–822. [Google Scholar] [CrossRef]
- Government of Canada. Canada 2030 Emissions Reduction Plan: Canada’s Next Steps for Clean Air and a Strong Economy; Environment and Climate Change Canada: Montreal, QC, Canada, 2022.
- Kerry, J. The Long-Term Strategy of the United States, Pathways to Net-Zero Greenhouse Gas Emissions by 2050; United States Department of State: Washington, DC, USA, 2022.
- Committee, C.C. The Sixth Carbon Budget: The UK’s Path to Net Zero; Climate Change Committee: London, UK, 2020. [Google Scholar]
- State Council. Action Plan for Carbon Dioxide Peaking before 2030; State Council: Beijing, China, 2021.
- Grimault, J.; Tronquet, C.; Bellassen, V.; Bonvillain, T.; Foucherot, C. Carbon Sinks: Is France’s Ambition Realistic? Analysis of the National Low Carbon Strategy 2; Institute for Climate Economics: Paris, France, 2022. [Google Scholar]
- Ohta, H. Japan’s Policy on Net Carbon Neutrality by 2050. East Asian Policy 2021, 13, 19–32. [Google Scholar] [CrossRef]
- Gautam, M.; Agrawal, M. Greenhouse Gas Emissions from Municipal Solid Waste Management: A Review of Global Scenario. In Carbon Footprint Case Studies: Municipal Solid Waste Management, Sustainable Road Transport and Carbon Sequestration; Muthu, S.S., Ed.; In Environmental Footprints and Eco-design of Products and Processes; Springer: Singapore, 2021; pp. 123–160. [Google Scholar] [CrossRef]
- Idumah, C.I.; Nwuzor, I.C. Novel trends in plastic waste management. SN Appl. Sci. 2019, 1, 1402. [Google Scholar] [CrossRef]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Tan, X.; Zhu, K.; Meng, X.; Gu, B.; Wang, Y.; Meng, F.; Liu, G.; Tu, T.; Li, H. Research on the status and priority needs of developing countries to address climate change. J. Clean. Prod. 2021, 289, 125669. [Google Scholar] [CrossRef]
- Tejaswini, M.S.S.R.; Pathak, P.; Ramkrishna, S.; Ganesh, P.S. A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Sci. Total Environ. 2022, 825, 153973. [Google Scholar] [CrossRef]
- Hole, G.; Hole, A.S. Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview. Sustain. Prod. Consum. 2020, 23, 42–51. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly (ethylene terephthalate)(Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Shen, M.; Hu, T.; Huang, W.; Song, B.; Qin, M.; Yi, H.; Zeng, G.; Zhang, Y. Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant. Sci. Total Environ. 2021, 779, 146528. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar] [CrossRef]
- Chen, H.; Wan, K.; Zhang, Y.; Wang, Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem 2021, 14, 4123–4136. [Google Scholar] [CrossRef] [PubMed]
- Environment and Climate Change Canada. Economic Study of the Canadian Plastic Industry, Markets and Waste: Summary Report to Environment and Climate Change Canada; Environment and Climate Change Canada: Montreal, QC, Canada, 2019.
- 2016_postconcumerplasticrecyclingincanada_v9_1.pdf. Available online: https://www.plasticsmarkets.org/jsfcode/srvyfiles/wd_151/2016_postconcumerplasticrecyclingincanada_v9_1.pdf (accessed on 12 November 2023).
- Canada Parliament; House of Commons; Standing Committee on Environment and Sustainable Development; Aldag, J. The Last Straw: Turning the Tide on Plastic Pollution in Canada; House of Commons Canada (Chambre des Communes Canada): Ottawa, ON, Canada, 2019.
- CCME. Canada-Wide Action Plan on Zero Plastic Waste: Phase 2; PN 1606; CCME: Winnipeg, MB, Canada, 2020. [Google Scholar]
- Abbott, J.K.; Sumaila, U.R. Reducing marine plastic pollution: Policy insights from economics. Rev. Environ. Econ. Policy 2019, 13, 327–336. [Google Scholar] [CrossRef]
- Lau, W.W.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.H.; Damgaard, A.; Levis, J.; Zhao, Y.; Björklund, A.; Arena, U.; Barlaz, M.; Starostina, V.; Boldrin, A.; Astrup, T.; et al. Application of LCA modelling in integrated waste management. Waste Manag. 2020, 118, 313–322. [Google Scholar] [CrossRef]
- Khandelwal, H.; Dhar, H.; Thalla, A.K.; Kumar, S. Application of life cycle assessment in municipal solid waste management: A worldwide critical review. J. Clean. Prod. 2019, 209, 630–654. [Google Scholar] [CrossRef]
- Finkbeiner, M. Product environmental footprint—Breakthrough or breakdown for policy implementation of life cycle assessment? Int. J. Life Cycle Assess 2014, 19, 266–271. [Google Scholar] [CrossRef]
- Del Borghi, A. LCA and communication: Environmental Product Declaration. Int. J. Life Cycle Assess 2013, 18, 293–295. [Google Scholar] [CrossRef]
- Huertas-Valdivia, I.; Ferrari, A.M.; Settembre-Blundo, D.; García-Muiña, F.E. Social Life-Cycle Assessment: A Review by Bibliometric Analysis. Sustainability 2020, 12, 6211. [Google Scholar] [CrossRef]
- Hauschild, M.Z. Introduction to LCA methodology. In Life Cycle Assessment: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 59–66. [Google Scholar]
- Recycle BC. Annual Report; Recycle BC: Vancouver, BC, Canada, 2019. [Google Scholar]
- Patil, A.; Patel, A.; Purohit, R. An overview of Polymeric Materials for Automotive Applications. Mater. Today Proc. 2017, 4, 3807–3815. [Google Scholar] [CrossRef]
- Vieyra, H.; Molina-Romero, J.M.; Calderón-Nájera, J.d.D.; Santana-Díaz, A. Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Polymers 2022, 14, 3412. [Google Scholar] [CrossRef] [PubMed]
- Maris, E.; Botané, P.; Wavrer, P.; Froelich, D. Characterizing plastics originating from WEEE: A case study in France. Miner. Eng. 2015, 76, 28–37. [Google Scholar] [CrossRef]
- Recycling of Textiles into Fibers, Production Mix, at Plant. Fiber Composition Estimated as 60% Synthetic Fiber and 40% Natural Fiber, Collection, Transport, Sorting, Fibration, Spinning, Textile Waste, Efficiency 85%. Available online: https://nexus.openlca.org/search/ (accessed on 30 November 2023).
- Cooke, T.; Pomeroy, R.S. Chapter 11—The bioplastics market: History, commercialization trends, and the new eco-consumer. In Rethinking Polyester Polyurethanes; Pomeroy, R.S., Ed.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; pp. 261–280. [Google Scholar] [CrossRef]
- CleanBC Plastics Action Fund. Available online: https://www.alacritycanada.com/plasticsactionfund/ (accessed on 30 November 2023).
- Advancing Recycling in B.C.—Extended Producer Responsibility Action Plan 2021–2026. Available online: https://www2.gov.bc.ca/assets/gov/environment/waste-management/recycling/recycle/extended_producer_five_year_action_plan.pdf (accessed on 30 November 2023).
- openLCA.org|openLCA is a Free, Professional Life Cycle Assessment (LCA) and Footprint Software with a Broad Range of Features and Many Available Databases, Created by GreenDelta since 2006. Available online: https://www.openlca.org/ (accessed on 16 August 2023).
- Bjelle, E.L.; Stadler, K.; Wood, R. EXIOBASE 3rx; Zenodo: Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- Welcome!—Sphera Solutions GmbH. Available online: https://lcdn.thinkstep.com/ (accessed on 17 August 2023).
- Al-Salem, S.M. 3—Energy Production From Plastic Solid Waste (PSW). In Plastics to Energy; Al-Salem, S.M., Ed.; Plastics Design Library; William Andrew Publishing: New York, NY, USA, 2019; pp. 45–64. [Google Scholar] [CrossRef]
- Chirayil, C.J.; Mishra, R.K.; Thomas, S. 3—Materials Recovery, Direct Reuse and Incineration of PET Bottles. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., Abitha, V.K., Thomas, M.G., Eds.; Plastics Design Library; William Andrew Publishing: New York, NY, USA, 2019; pp. 37–60. [Google Scholar] [CrossRef]
- Cudjoe, D.; Wang, H. Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Process. Technol. 2022, 237, 107470. [Google Scholar] [CrossRef]
- Porshnov, D. Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, e421. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; Volume 7. [Google Scholar]
- Çolak, A.; Laratte, B.; Elevli, B.; Çoruh, S. Abiotic Depletion of Boron: An Update Characterization Factors for CML 2002 and ReCiPe. Minerals 2022, 12, 435. [Google Scholar] [CrossRef]
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packaging wastes—The environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Rigamonti, L.; Grosso, M.; Møller, J.; Sanchez, V.M.; Magnani, S.; Christensen, T.H. Environmental evaluation of plastic waste management scenarios. Resour. Conserv. Recycl. 2014, 85, 42–53. [Google Scholar] [CrossRef]
- Lee, K.J.L.; Wong, S.F. Comparative environmental and socioeconomic assessment on mixed plastic waste management: A Singapore case study. Sci. Total Environ. 2023, 893, 164884. [Google Scholar] [CrossRef]
- Esnouf, A.; Heijungs, R.; Coste, G.; Latrille, É.; Steyer, J.-P.; Hélias, A. A tool to guide the selection of impact categories for LCA studies by using the representativeness index. Sci. Total Environ. 2019, 658, 768–776. [Google Scholar] [CrossRef]
- Bai, S.; Zhu, X.; Wang, X.; Ren, N. Identify stakeholders’ understandings of life cycle assessment results on wastewater related issues. Sci. Total Environ. 2018, 622–623, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; MacDonald, A.; Allen, S.; Allen, D. The potential for a plastic recycling facility to release microplastic pollution and possible filtration remediation effectiveness. J. Hazard. Mater. Adv. 2023, 10, 100309. [Google Scholar] [CrossRef]
- Neo, E.R.K.; Soo, G.C.Y.; Tan, D.Z.L.; Cady, K.; Tong, K.T.; Low, J.S.C. Life cycle assessment of plastic waste end-of-life for India and Indonesia. Resour. Conserv. Recycl. 2021, 174, 105774. [Google Scholar] [CrossRef]
- Anshassi, M.; Sackles, H.; Townsend, T.G. A review of LCA assumptions impacting whether landfilling or incineration results in less greenhouse gas emissions. Resour. Conserv. Recycl. 2021, 174, 105810. [Google Scholar] [CrossRef]
- Zulkernain, N.H.; Gani, P.; Chuan, N.C.; Uvarajan, T. Utilisation of plastic waste as aggregate in construction materials: A review. Constr. Build. Mater. 2021, 296, 123669. [Google Scholar] [CrossRef]
Category | % of Product Category | Plastic Type | Durable/ Non-Durable |
---|---|---|---|
Films | 12.45% | LDPE (100%) | Non-durable |
Bottles | 10.66% | PET (100%) | Non-durable |
Non-bottle rigid products | 10.15% | HDPE (100%) | Non-durable |
Other packaging | 4.28% | PVC (33%), PS (33%), PP (33%) | Non-durable |
Foam plastic in building | 17.64% | PS (100%) | Durable |
Paints and coating | 4.49% | PVC (100%) | Durable |
Building profiles | 4.49% | PVC (100%) | Durable |
Automotive | 11.50% | Nylon (18%), ABS (18%), PP (18%), PU (18%), | Durable |
Rubber (28%) | |||
Textiles | 6.45% | Textiles (100%) | Durable |
Agriculture | 1.11% | LLDPE (100%) | Non-durable |
Other plastics | 16.77% | ABS (8%), Nylon (8%), HDPE (9%), LDPE (9%), PET (9%), LLDPE (8%), PVC (8%), PS (9%), PP (8%), Rubber (16%), PB (8%) | Durable |
Type of Plastic | Durable | Non-Durable |
---|---|---|
PS | 19.15% | 1.41% |
LDPE | 1.51% | 12.45% |
PVC | 10.33% | 1.41% |
PET | 1.51% | 10.66% |
HDPE | 1.51% | 10.15% |
Textiles | 6.45% | - |
Rubber | 5.90% | - |
PP | 3.41% | 1.45% |
Nylon | 3.41% | - |
ABS | 3.41% | - |
LLDPE | 1.34% | 1.11% |
PU | 2.07% | - |
PB | 1.34% | - |
End-of-Life Treatment | Scenario | ||
---|---|---|---|
As-Is | Intermediate | Zero Plastic Waste | |
Landfill | 85.5% | 67.6% | 15.3% |
Unmanaged dumps or leaks | 0.9% | 0.1% | 0.1% |
Incineration | 4.2% | 4.2% | 22.4% |
Mechanical recycling | 7.8% | 26.6% | 26.6% |
Chemical recycling | 1.5% | 1.5% | 35.6% |
Impact Indicator | Incineration | Mechanical Recycling | Gasification | Pyrolysis |
---|---|---|---|---|
Abiotic depletion | −6.01 × 10−1 | 2.38 × 103 | - | - |
Acidification | 2.37 | 6.01 × 10−2 | 9.34 × 10−2 | 1.06 × 104 |
Eutrophication | 7.90 × 10−2 | 2.34 × 10−3 | 3.59 × 10−3 | 3.04 × 10−2 |
Freshwater aquatic ecotoxicity | 4.35 × 10−1 | 1.85 × 10−4 | 6.38 × 10−2 | - |
GWP100a | 4.21 × 10−1 | - | 2.79 | 1.55 × 10−1 |
Human toxicity | 3.73 | 1.03 × 10−2 | 9.66 × 10−1 | 3.76 × 103 |
Marine aquatic ecotoxicity | 9.78 | 9.77 × 10−4 | 9.47 × 10−3 | - |
ODP | 9.79 × 10−1 | - | - | - |
Photochemical oxidation | 2.51 × 10−1 | −6.42 × 10−2 | - | 8.06 × 102 |
Terrestrial ecotoxicity | 4.94 × 10 | 1.45 | 2.17 | - |
Impact Indicator | Incineration | Mechanical Recycling | Gasification | Pyrolysis |
---|---|---|---|---|
Abiotic depletion | −3.25 | 4.25 × 103 | - | - |
Acidification | 1.55 | 7.77 × 10−3 | 1.55 × 10−1 | 1.75 × 10−4 |
Eutrophication | 1.80 × 10−1 | 1.02 × 10−3 | 2.02 × 10−2 | 1.70 × 10−1 |
Freshwater aquatic ecotoxicity | 1.83 × 10−1 | 7.86 × 10−5 | 3.19 × 10−2 | - |
GWP100a | 3.20 × 10 | - | 3.88 × 10 | 2.10 |
Human toxicity | 3.94 | 1.31 × 10−2 | 1.26 | 4.52 × 103 |
Marine aquatic ecotoxicity | 5.39 | 2.73 × 10−3 | 7.73 × 10−3 | - |
ODP | 9.12 × 10−1 | - | - | - |
Photochemical oxidation | 1.01 | −5.06 × 10−2 | - | 8.16 × 103 |
Terrestrial ecotoxicity | 3.40 | 7.59 × 10−1 | 1.61 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, O.; Takaffoli, M.; Ertz, M.; Addar, W. Environmental Impact Assessment of Plastic Waste Management Scenarios in the Canadian Context. Environments 2023, 10, 213. https://doi.org/10.3390/environments10120213
Zhang O, Takaffoli M, Ertz M, Addar W. Environmental Impact Assessment of Plastic Waste Management Scenarios in the Canadian Context. Environments. 2023; 10(12):213. https://doi.org/10.3390/environments10120213
Chicago/Turabian StyleZhang, Ophela, Mahdi Takaffoli, Myriam Ertz, and Walid Addar. 2023. "Environmental Impact Assessment of Plastic Waste Management Scenarios in the Canadian Context" Environments 10, no. 12: 213. https://doi.org/10.3390/environments10120213
APA StyleZhang, O., Takaffoli, M., Ertz, M., & Addar, W. (2023). Environmental Impact Assessment of Plastic Waste Management Scenarios in the Canadian Context. Environments, 10(12), 213. https://doi.org/10.3390/environments10120213