Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review
Abstract
:1. Introduction
2. Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Bibliometric Analysis
3. Doped Diamond Technology Add-Ons
3.1. Indirect Electrolysis
3.2. Photoelectrocatalysis
4. EAOPs Synergism with Doped Diamond Technology
4.1. Electro-Fenton
4.2. Photo-Enhanced Electro-Fenton Processes
5. Final Considerations and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diya’uddeen, B.H.; Daud, W.M.A.W.; Aziz, A.R.A. Treatment Technologies for Petroleum Refinery Effluents: A Review. Process Saf. Environ. Prot. 2011, 89, 95–105. [Google Scholar] [CrossRef]
- Gargouri, B.; Gargouri, O.D.; Gargouri, B.; Trabelsi, S.K.; Abdelhedi, R.; Bouaziz, M. Application of Electrochemical Technology for Removing Petroleum Hydrocarbons from Produced Water Using Lead Dioxide and Boron-Doped Diamond Electrodes. Chemosphere 2014, 117, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahzadeh, S.; Azizmohseni, F.; Golmohammad, F.; Shokouhi, H.; Khademhaghighat, F. Biodegradation Potential and Bacterial Diversity of a Petrochemical Wastewater Treatment Plant in Iran. Bioresour. Technol. 2008, 99, 6127–6133. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Persistent Organic Pollutants: A Global Issue, A Global Response. Available online: https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response (accessed on 6 October 2022).
- Arfanis, M.K.; Adamou, P.; Moustakas, N.G.; Triantis, T.M.; Kontos, A.G.; Falaras, P. Photocatalytic Degradation of Salicylic Acid and Caffeine Emerging Contaminants Using Titania Nanotubes. Chem. Eng. J. 2017, 310, 525–536. [Google Scholar] [CrossRef]
- Verma, A.K.; Dash, R.R.; Bhunia, P. A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters. J. Environ. Manag. 2012, 93, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Mollah, M.Y.A.; Morkovsky, P.; Gomes, J.A.G.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, Present and Future Perspectives of Electrocoagulation. J. Hazard. Mater. 2004, 114, 199–210. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Dickhout, J.M.; Moreno, J.; Biesheuvel, P.M.; Boels, L.; Lammertink, R.G.H.; de Vos, W.M. Produced Water Treatment by Membranes: A Review from a Colloidal Perspective. J. Colloid Interface Sci. 2017, 487, 523–534. [Google Scholar] [CrossRef]
- Truc, L.V.T.; Can, L.D.; Luu, T.L. Electron Beam as an Effective Wastewater Treatment Technology in Lab-Scale Application. J. Hazard. Toxic Radioact. Waste 2021, 25, 03120003. [Google Scholar] [CrossRef]
- Kim, K.-H.; Ihm, S.-K. Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A Review. J. Hazard. Mater. 2011, 186, 16–34. [Google Scholar] [CrossRef]
- Koparal, A.S.; Öğütveren, Ü.B. Removal of Nitrate from Water by Electroreduction and Electrocoagulation. J. Hazard. Mater. 2002, 89, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, R.; Wei, W.; Wei, W.; Zou, W.; Li, J.; Ni, B.-J.; Chen, H. Recycling Spent Water Treatment Adsorbents for Efficient Electrocatalytic Water Oxidation Reaction. Resour. Conserv. Recycl. 2022, 178, 106037. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Liu, X.; Ni, B.-J. Emerging Electrochemical Techniques for Identifying and Removing Micro/Nanoplastics in Urban Waters. Water Res. 2022, 221, 118846. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhao, H.; Zhao, X.; He, Z.; Lai, Y.; Shan, W.; Bekana, D.; Li, G.; Liu, J. Defect Sites in Ultrathin Pd Nanowires Facilitate the Highly Efficient Electrochemical Hydrodechlorination of Pollutants by H* ads. Environ. Sci. Technol. 2018, 52, 9992–10002. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.R.; Crooks, R.M. Electrokinetic Separation Techniques for Studying Nano- and Microplastics. Chem. Sci. 2022, 13, 12616–12624. [Google Scholar] [CrossRef]
- Ternes, T.A.; Stüber, J.; Herrmann, N.; McDowell, D.; Ried, A.; Kampmann, M.; Teiser, B. Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances from Wastewater? Water Res. 2003, 37, 1976–1982. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-Huitle, C.A.; Oturan, M.A. Electrochemical Advanced Oxidation Processes for Wastewater Treatment: Advances in Formation and Detection of Reactive Species and Mechanisms. Curr. Opin. Electrochem. 2021, 27, 100678. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Sires, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. Int. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Brillas, E. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.W.; Chapin, D.H. The Chemistry of Water-Treatment Processes Involving Ozone, Hydrogen-Peroxide and Ultraviolet-Radiation. Ozone-Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Matthée, T.; Fryda, M.; Schäfer, L.; Tröster, I. Electrochemical Advanced Oxidation Process Using DiaChem®electrodes. Water Sci. Technol. 2004, 49, 207–212. [Google Scholar]
- Martinez-Huitle, C.A.; Ferro, S.; De Battisti, A. Electrochemical Incineration of Oxalic Acid: Role of Electrode Material. Electrochim. Acta 2004, 49, 4027–4034. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D. J. Chem. Technol. Biotechnol. 2008, 83, 769–776. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Divyapriya, G.; Oturan, N.; Trellu, C.; Oturan, M.A. Environmental Applications of Boron-Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019, 6, 2124–2142. [Google Scholar] [CrossRef]
- Luong, J.H.; Male, K.B.; Glennon, J.D. Boron-Doped Diamond Electrode: Synthesis, Characterization, Functionalization and Analytical Applications. Analyst 2009, 134, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Angus, J.C.; Martin, H.B.; Landau, U.; Evstefeeva, Y.E.; Miller, B.; Vinokur, N. Conducting Diamond Electrodes: Applications in Electrochemistry. New Diam. Front. Carbon Technol. 1999, 9, 175–187. [Google Scholar]
- Zhou, B.; Yu, Z.; Wei, Q.; Long, H.; Xie, Y.; Wang, Y. Electrochemical Oxidation of Biological Pretreated and Membrane Separated Landfill Leachate Concentrates on Boron Doped Diamond Anode. Appl. Surf. Sci. 2016, 377, 406–415. [Google Scholar] [CrossRef]
- Swain, G.M. The Use of CVD Diamond Thin Films in Electrochemical Systems. Adv. Mater. 1994, 6, 388–392. [Google Scholar] [CrossRef]
- Ramesham, R.; Rose, M.F. Electrochemical Characterization of Doped and Undoped CVD Diamond Deposited by Microwave Plasma. Diam. Relat. Mater. 1997, 6, 17–26. [Google Scholar] [CrossRef]
- Swain, G.M. The Susceptibility to Surface Corrosion in Acidic Fluoride Media: A Comparison of Diamond, HOPG, and Glassy Carbon Electrodes. J. Electrochem. Soc. 2019, 141, 3382–3393. [Google Scholar] [CrossRef]
- Balmer, R.S.; Brandon, J.R.; Clewes, S.L.; Dhillon, H.K.; Dodson, J.M.; Friel, I.; Inglis, P.N.; Madgwick, T.D.; Markham, M.L.; Mollart, T.P.; et al. Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications. J. Phys. Condens. Matter 2009, 21, 364221. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Yu, S.; Macpherson, J.V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G.M.; Jiang, X. Conductive Diamond: Synthesis, Properties, and Electrochemical Applications. Chem. Soc. Rev. 2019, 48, 157–204. [Google Scholar] [CrossRef]
- Srikanth, V.V.S.S.; Jiang, X. Synthesis of Diamond Films. In Synthetic Diamond Films; Brillas, E., Martínez-Huitle, C.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 21–55. ISBN 978-1-118-06236-4. [Google Scholar]
- Das, D.; Singh, R.N. A Review of Nucleation, Growth and Low Temperature Synthesis of Diamond Thin Films. Int. Mater. Rev. 2007, 52, 29–64. [Google Scholar] [CrossRef]
- Poferl, D.J.; Gardner, N.C.; Angus, J.C. Growth of Boron-doped Diamond Seed Crystals by Vapor Deposition. J. Appl. Phys. 1973, 44, 1428–1434. [Google Scholar] [CrossRef]
- Macpherson, J.V. A Practical Guide to Using Boron Doped Diamond in Electrochemical Research. Phys. Chem. Chem. Phys. 2015, 17, 2935–2949. [Google Scholar] [CrossRef]
- Kajihara, S.A.; Antonelli, A.; Bernholc, J.; Car, R. Nitrogen and Potential n -Type Dopants in Diamond. Phys. Rev. Lett. 1991, 66, 2010–2013. [Google Scholar] [CrossRef]
- Haenen, K.; Nesládek, M.; De Schepper, L.; Kravets, R.; Vaněček, M.; Koizumi, S. The Phosphorous Level Fine Structure in Homoepitaxial and Polycrystalline N-Type CVD Diamond. Diam. Relat. Mater. 2004, 13, 2041–2045. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Guo, Z.; Zhang, W.; Li, H.; Huang, W. Recent Developments and Advances in Boron-Doped Diamond Electrodes for Electrochemical Oxidation of Organic Pollutants. Sep. Purif. Technol. 2019, 212, 802–821. [Google Scholar] [CrossRef]
- Iniesta, J.; Michaud, P.A.; Panizza, M.; Cerisola, G.; Aldaz, A.; Comninellis, C. Electrochemical Oxidation of Phenol at Boron-Doped Diamond Electrode. Electrochim. Acta 2001, 46, 3573–3578. [Google Scholar] [CrossRef]
- Flox, C.; Ammar, S.; Arias, C.; Brillas, E.; Vargas-Zavala, A.V.; Abdelhedi, R. Electro-Fenton and Photoelectro-Fenton Degradation of Indigo Carmine in Acidic Aqueous Medium. Appl. Catal. B Environ. 2006, 67, 93–104. [Google Scholar] [CrossRef]
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the Anode Materials on the Electrochemical Oxidation Efficiency. Application to Oxidative Degradation of the Pharmaceutical Amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Samet, Y.; Agengui, L.; Abdelhédi, R. Electrochemical Degradation of Chlorpyrifos Pesticide in Aqueous Solutions by Anodic Oxidation at Boron-Doped Diamond Electrodes. Chem. Eng. J. 2010, 161, 167–172. [Google Scholar] [CrossRef]
- Gomez-Ruiz, B.; Gómez-Lavín, S.; Diban, N.; Boiteux, V.; Colin, A.; Dauchy, X.; Urtiaga, A. Efficient Electrochemical Degradation of Poly- and Perfluoroalkyl Substances (PFASs) from the Effluents of an Industrial Wastewater Treatment Plant. Chem. Eng. J. 2017, 322, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Segura, S.; Keller, J.; Brillas, E.; Radjenovic, J. Removal of Organic Contaminants from Secondary Effluent by Anodic Oxidation with a Boron-Doped Diamond Anode as Tertiary Treatment. J. Hazard. Mater. 2015, 283, 551–557. [Google Scholar] [CrossRef]
- Anglada, A.; Urtiaga, A.; Ortiz, I. Pilot Scale Performance of the Electro-Oxidation of Landfill Leachate at Boron-Doped Diamond Anodes. Environ. Sci. Technol. 2009, 43, 2035–2040. [Google Scholar] [CrossRef]
- Daldrup-Link, H.E. Writing a Review Article—Are You Making These Mistakes? Nanotheranostics 2018, 2, 197–200. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, H.; Dewey, A.; Drahota, A.; Kilburn, S.; Kalra, P.R.; Fogg, C.; Zachariah, D. Systematic Reviews: What They Are, Why They Are Important, and How to Get Involved. J. Clin. Prev. Cardiol. 2012, 1, 193–202. [Google Scholar]
- Brennan, M.L.; Arlt, S.P.; Belshaw, Z.; Buckley, L.; Corah, L.; Doit, H.; Fajt, V.R.; Grindlay, D.J.C.; Moberly, H.K.; Morrow, L.D.; et al. Critically Appraised Topics (CATs) in Veterinary Medicine: Applying Evidence in Clinical Practice. Front. Vet. Sci. 2020, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com// (accessed on 25 October 2022).
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Brillas, E. Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Treatments of Organics in Waters Using a Boron-Doped Diamond Anode: A Review. J. Mex. Chem. Soc. 2014, 58, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Brillas, E. A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton. J. Braz. Chem. Soc. 2014, 25, 393–417. [Google Scholar] [CrossRef]
- Bennedsen, L.R.; Muff, J.; Søgaard, E.G. Influence of Chloride and Carbonates on the Reactivity of Activated Persulfate. Chemosphere 2012, 86, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- de Araújo, D.M.; Sáez, C.; Martínez-Huitle, C.A.; Cañizares, P.; Rodrigo, M.A. Influence of Mediated Processes on the Removal of Rhodamine with Conductive-Diamond Electrochemical Oxidation. Appl. Catal. B Environ. 2015, 166–167, 454–459. [Google Scholar] [CrossRef]
- Farhat, A.; Keller, J.; Tait, S.; Radjenovic, J. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. Environ. Sci. Technol. 2015, 49, 14326–14333. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M. Sulfate-Mediated Electrooxidation of X-Ray Contrast Media on Boron-Doped Diamond Anode. Water Res. 2016, 94, 128–135. [Google Scholar] [CrossRef]
- Bu, L.; Zhou, S.; Shi, Z.; Deng, L.; Gao, N. Removal of 2-MIB and Geosmin by Electrogenerated Persulfate: Performance, Mechanism and Pathways. Chemosphere 2017, 168, 1309–1316. [Google Scholar] [CrossRef]
- Groenen Serrano, K. Chapter 6—Indirect Electrochemical Oxidation Using Hydroxyl Radical, Active Chlorine, and Peroxodisulfate. In Electrochemical Water and Wastewater Treatment; Martínez-Huitle, C.A., Rodrigo, M.A., Scialdone, O., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 133–164. ISBN 978-0-12-813160-2. [Google Scholar]
- Chen, L.; Lei, C.; Li, Z.; Yang, B.; Zhang, X.; Lei, L. Electrochemical Activation of Sulfate by BDD Anode in Basic Medium for Efficient Removal of Organic Pollutants. Chemosphere 2018, 210, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Niu, T.; Shi, P.; Zhao, G. Boron-Doped Diamond for Hydroxyl Radical and Sulfate Radical Anion Electrogeneration, Transformation, and Voltage-Free Sustainable Oxidation. Small 2019, 15, 1900153. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.W.; Navarro, E.M.O.; Rodrigues, M.A.S.; Bernardes, A.M.; Pérez-Herranz, V. Using P-Si/BDD Anode for the Electrochemical Oxidation of Norfloxacin. J. Electroanal. Chem. 2019, 832, 112–120. [Google Scholar] [CrossRef]
- da Silva, S.W.; do Prado, J.M.; Heberle, A.N.A.; Schneider, D.E.; Rodrigues, M.A.S.; Bernardes, A.M. Electrochemical Advanced Oxidation of Atenolol at Nb/BDD Thin Film Anode. J. Electroanal. Chem. 2019, 844, 27–33. [Google Scholar] [CrossRef]
- Shin, Y.-U.; Yoo, H.-Y.; Ahn, Y.-Y.; Kim, M.S.; Lee, K.; Yu, S.; Lee, C.; Cho, K.; Kim, H.; Lee, J. Electrochemical Oxidation of Organics in Sulfate Solutions on Boron-Doped Diamond Electrode: Multiple Pathways for Sulfate Radical Generation. Appl. Catal. B Environ. 2019, 254, 156–165. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, M.; Pan, Y.; Du, X.; Lu, X. Extremely Efficient Electrochemical Degradation of Organic Pollutants with Co-Generation of Hydroxyl and Sulfate Radicals on Blue-TiO2 Nanotubes Anode. Appl. Catal. B Environ. 2019, 257, 117902. [Google Scholar] [CrossRef]
- Li, W.; Liu, G.; Miao, D.; Li, Z.; Chen, Y.; Gao, X.; Liu, T.; Wei, Q.; Ma, L.; Zhou, K.; et al. Electrochemical Oxidation of Reactive Blue 19 on Boron-Doped Diamond Anode with Different Supporting Electrolyte. J. Environ. Chem. Eng. 2020, 8, 103997. [Google Scholar] [CrossRef]
- Yang, W.; Liu, G.; Chen, Y.; Miao, D.; Wei, Q.; Li, H.; Ma, L.; Zhou, K.; Liu, L.; Yu, Z. Persulfate Enhanced Electrochemical Oxidation of Highly Toxic Cyanide-Containing Organic Wastewater Using Boron-Doped Diamond Anode. Chemosphere 2020, 252, 126499. [Google Scholar] [CrossRef]
- Nashat, M.; Mossad, M.; El-Etriby, H.K.; Gar Alalm, M. Optimization of Electrochemical Activation of Persulfate by BDD Electrodes for Rapid Removal of Sulfamethazine. Chemosphere 2022, 286, 131579. [Google Scholar] [CrossRef] [PubMed]
- Feijoo, S.; Kamali, M.; Pham, Q.-K.; Assoumani, A.; Lestremau, F.; Cabooter, D.; Dewil, R. Electrochemical Advanced Oxidation of Carbamazepine: Mechanism and Optimal Operating Conditions. Chem. Eng. J. 2022, 446, 137114. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, L.; Gao, W.; Zhai, Z.; Song, H.; Chen, B.; Zheng, Z.; Yang, B.; Geng, C.; Liang, J.; et al. Manufacturing 3D Nano-Porous Architecture for Boron-Doped Diamond Film to Efficient Abatement of Organic Pollutant: Synergistic Effect of Hydroxyl Radical and Sulfate Radical. Sep. Purif. Technol. 2022, 302, 122080. [Google Scholar] [CrossRef]
- Meas, Y.; Godinez, L.A.; Bustos, E. Ozone Generation Using Boron-Doped Diamond Electrodes. In Synthetic Diamond Films; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 311–331. ISBN 978-1-118-06236-4. [Google Scholar]
- Medel, A.; Lugo, F.; Meas, Y. Application of Electrochemical Processes for Treating Effluents from Hydrocarbon Industries. In Electrochemical Water and Wastewater Treatment; Butterworth-Heinemann: Oxford, UK, 2018; pp. 365–392. [Google Scholar]
- Gągol, M.; Przyjazny, A.; Boczkaj, G. Effective Method of Treatment of Industrial Effluents under Basic PH Conditions Using Acoustic Cavitation—A Comprehensive Comparison with Hydrodynamic Cavitation Processes. Chem. Eng. Process. Process Intensif. 2018, 128, 103–113. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic PH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Okada, F.; Naya, K.; Okada, F.; Naya, K. Electrolysis for Ozone Water Production; IntechOpen: Rijeka, Croatia, 2012; ISBN 978-953-51-0793-4. [Google Scholar]
- Wang, Y.-H.; Chen, Q.-Y. Anodic Materials for Electrocatalytic Ozone Generation. Int. J. Electrochem. 2013, 2013, e128248. [Google Scholar] [CrossRef]
- Katsuki, N.; Takahashi, E.; Toyoda, M.; Kurosu, T.; Iida, M.; Wakita, S.; Nishiki, Y.; Shimamune, T. Water Electrolysis Using Diamond Thin-Film Electrodes. J. Electrochem. Soc. 1998, 145, 2358. [Google Scholar] [CrossRef]
- Michaud, P.-A.; Panizza, M.; Ouattara, L.; Diaco, T.; Foti, G.; Comninellis, C. Electrochemical Oxidation of Water on Synthetic Boron-Doped Diamond Thin Film Anodes. J. Appl. Electrochem. 2003, 33, 151–154. [Google Scholar] [CrossRef]
- Park, S.-G. Stable Ozone Generation by Using Boron-Doped Diamond Electrodes. Russ. J. Electrochem. 2003, 39, 321–322. [Google Scholar] [CrossRef]
- Park, S.G.; Kim, G.S.; Park, J.E.; Einaga, Y.; Fujishima, A. Use of Boron-Doped Diamond Electrode in Ozone Generation. J. New Mater. Electrochem. Syst. 2005, 8, 65–68. [Google Scholar]
- Arihara, K.; Terashima, C.; Fujishima, A. Application of Freestanding Perforated Diamond Electrodes for Efficient Ozone-Water Production. Electrochem. Solid-State Lett. 2006, 9, D17. [Google Scholar] [CrossRef]
- Kraft, A.; Stadelmann, M.; Wünsche, M.; Blaschke, M. Electrochemical Ozone Production Using Diamond Anodes and a Solid Polymer Electrolyte. Electrochem. Commun. 2006, 5, 883–886. [Google Scholar] [CrossRef]
- Sekido, K.; Kitaori, N. Development of a Small-Sized Generator of Ozonated Water Using an Electro-Conductive Diamond Electrode. Biocontrol. Sci. 2008, 13, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaori, N.; Yoshioka, M.; Sekido, K.; Ohnishi, N.; Maeda, N.; Matsuishi, S. Development of a Small-Sized Electrolyzed Water Generator for Sterilization. Electrochemistry 2013, 81, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Honda, Y.; Ivandini, T.A.; Watanabe, T.; Murata, K.; Einaga, Y. An Electrolyte-Free System for Ozone Generation Using Heavily Boron-Doped Diamond Electrodes. Diam. Relat. Mater. 2013, 40, 7–11. [Google Scholar] [CrossRef]
- Choi, J.; Kim, C.; Kim, J.; Kim, S.; Tak, Y.; Lee, C.; Yoon, J. Electrochemical Ozone Production in Inert Supporting Electrolytes on a Boron-Doped Diamond Electrode with a Solid Polymer Electrolyte Electrolyzer. Desalination Water Treat. 2016, 57, 10152–10158. [Google Scholar] [CrossRef]
- Park, Y.M.; Bae, M.K.; Kim, J.W.; Kim, T.G. Electrochemical Oxidation of High-Concentration Ozone Generation in Flowing Water Through Boron Doped Diamond Electrodes. Nanosci. Nanotechnol. Lett. 2019, 11, 1257–1262. [Google Scholar] [CrossRef]
- Kanfra, X.; Elhady, A.; Thiem, H.; Pleger, S.; Höfer, M.; Heuer, H. Ozonated Water Electrolytically Generated by Diamond-Coated Electrodes Controlled Phytonematodes in Replanted Soil. J. Plant Dis. Prot. 2021, 128, 1657–1665. [Google Scholar] [CrossRef]
- Liu, F.; Deng, Z.; Miao, D.; Chen, W.; Wang, Y.; Zhou, K.; Ma, L.; Wei, Q. A Highly Stable Microporous Boron-Doped Diamond Electrode Etched by Oxygen Plasma for Enhanced Electrochemical Ozone Generation. J. Environ. Chem. Eng. 2021, 9, 106369. [Google Scholar] [CrossRef]
- Wood, G.; Rodriguez, I.T.; Tully, J.; Chaudhuri, S.; Macpherson, J. Electrochemical Ozone Generation Using Compacted High Pressure High Temperature Boron Doped Diamond Microparticle Electrodes. J. Electrochem. Soc. 2021, 168, 126514. [Google Scholar] [CrossRef]
- Li, H.Y.; Deng, C.; Zhao, L.; Gong, C.H.; Zhu, M.F.; Chen, J.W. Ozone Water Production Using a SPE Electrolyzer Equipped with Boron Doped Diamond Electrodes. Water Supply 2022, 22, 3993–4005. [Google Scholar] [CrossRef]
- Vahid, B.; Khataee, A. Photoassisted Electrochemical Recirculation System with Boron-Doped Diamond Anode and Carbon Nanotubes Containing Cathode for Degradation of a Model Azo Dye. Electrochim. Acta 2013, 88, 614–620. [Google Scholar] [CrossRef]
- Hurwitz, G.; Pornwongthong, P.; Mahendra, S.; Hoek, E.M.V. Degradation of Phenol by Synergistic Chlorine-Enhanced Photo-Assisted Electrochemical Oxidation. Chem. Eng. J. 2014, 240, 235–243. [Google Scholar] [CrossRef]
- Hurwitz, G.; Hoek, E.M.V.; Liu, K.; Fan, L.; Roddick, F.A. Photo-Assisted Electrochemical Treatment of Municipal Wastewater Reverse Osmosis Concentrate. Chem. Eng. J. 2014, 249, 180–188. [Google Scholar] [CrossRef]
- Souza, F.L.; Saéz, C.; Lanza, M.R.V.; Cañizares, P.; Rodrigo, M.A. Removal of Pesticide 2,4-D by Conductive-Diamond Photoelectrochemical Oxidation. Appl. Catal. B Environ. 2016, 180, 733–739. [Google Scholar] [CrossRef]
- Souza, F.; Quijorna, S.; Lanza, M.R.V.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Applicability of Electrochemical Oxidation Using Diamond Anodes to the Treatment of a Sulfonylurea Herbicide. Catal. Today 2017, 280, 192–198. [Google Scholar] [CrossRef]
- dos Santos, E.V.; Sáez, C.; Cañizares, P.; Rodrigo, M.A.; Martínez-Huitle, C.A. Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine. J. Electrochem. Soc. 2018, 165, E262. [Google Scholar] [CrossRef] [Green Version]
- Cotillas, S.; Clematis, D.; Cañizares, P.; Carpanese, M.P.; Rodrigo, M.A.; Panizza, M. Degradation of Dye Procion Red MX-5B by Electrolytic and Electro-Irradiated Technologies Using Diamond Electrodes. Chemosphere 2018, 199, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, I.F.; Cotillas, S.; Díaz, E.; Sáez, C.; Mohedano, Á.F.; Rodrigo, M.A. Sono- and Photoelectrocatalytic Processes for the Removal of Ionic Liquids Based on the 1-Butyl-3-Methylimidazolium Cation. J. Hazard. Mater. 2019, 372, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Marchante, C.M.; Souza, F.L.; Millán, M.; Lobato, J.; Rodrigo, M.A. Does Intensification with UV Light and US Improve the Sustainability of Electrolytic Waste Treatment Processes? J. Environ. Manag. 2021, 279, 111597. [Google Scholar] [CrossRef]
- Zheng, Z.; Yuan, J.; Jiang, X.; Han, G.; Tao, Y.; Wu, X. Combining Ultraviolet Photolysis with In-Situ Electrochemical Oxidation for Degrading Sulfonamides in Wastewater. Catalysts 2022, 12, 711. [Google Scholar] [CrossRef]
- Ochiai, T.; Nakata, K.; Murakami, T.; Fujishima, A.; Yao, Y.; Tryk, D.A.; Kubota, Y. Development of Solar-Driven Electrochemical and Photocatalytic Water Treatment System Using a Boron-Doped Diamond Electrode and TiO2 Photocatalyst. Water Res. 2010, 44, 904–910. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Muneer, M.; Haq, A.; Akram, N. Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review. RSC Adv. 2015, 5, 14610–14630. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Mousset, E.; Dionysiou, D.D. Photoelectrochemical Reactors for Treatment of Water and Wastewater: A Review. Environ. Chem. Lett. 2020, 18, 1301–1318. [Google Scholar] [CrossRef]
- Zhang, C.; Gu, L.; Lin, Y.; Wang, Y.; Fu, D.; Gu, Z. Degradation of X-3B Dye by Immobilized TiO2 Photocatalysis Coupling Anodic Oxidation on BDD Electrode. J. Photochem. Photobiol. A Chem. 2009, 207, 66–72. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.; Qu, J. Photoelectrocatalytic Degradation of Organic Contaminant at Hybrid BDD-ZnWO4 Electrode. Catal. Commun. 2010, 12, 76–79. [Google Scholar] [CrossRef]
- Wang, P.; Cao, M.; Ao, Y.; Wang, C.; Hou, J.; Qian, J. Investigation on Ce-Doped TiO2-Coated BDD Composite Electrode with High Photoelectrocatalytic Activity under Visible Light Irradiation. Electrochem. Commun. 2011, 13, 1423–1426. [Google Scholar] [CrossRef]
- Yu, Q.; Li, J.; Li, H.; Wang, Q.; Cheng, S.; Li, L. Fabrication, Structure, and Photocatalytic Activities of Boron-Doped ZnO Nanorods Hydrothermally Grown on CVD Diamond Film. Chem. Phys. Lett. 2012, 539–540, 74–78. [Google Scholar] [CrossRef]
- Gao, S.; Jiao, S.; Lei, B.; Li, H.; Wang, J.; Yu, Q.; Wang, D.; Guo, F.; Zhao, L. Efficient Photocatalyst Based on ZnO Nanorod Arrays/p-Type Boron-Doped-Diamond Heterojunction. J. Mater. Sci. Mater. Electron. 2015, 26, 1018–1022. [Google Scholar] [CrossRef]
- Fan, J.; Shi, H.; Xiao, H.; Zhao, G. Double-Layer 3D Macro–Mesoporous Metal Oxide Modified Boron-Doped Diamond with Enhanced Photoelectrochemical Performance. ACS Appl. Mater. Interfaces 2016, 8, 28306–28315. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, L.; Wang, Y.; Zhang, H.; Zhang, S. Photoelectrocatalytic Activity of an Ordered and Vertically Aligned TiO2 Nanorod Array/BDD Heterojunction Electrode. Sci. Bull. 2017, 62, 619–625. [Google Scholar] [CrossRef]
- Jian, Z.; Yang, N.; Vogel, M.; Zhou, Z.; Zhao, G.; Kienitz, P.; Schulte, A.; Schönherr, H.; Jiao, T.; Zhang, W.; et al. Tunable Photo-Electrochemistry of Patterned TiO2/BDD Heterojunctions. Small Methods 2020, 4, 2000257. [Google Scholar] [CrossRef]
- Suzuki, N.; Okazaki, A.; Kuriyama, H.; Serizawa, I.; Hirami, Y.; Hara, A.; Hirano, Y.; Nakabayashi, Y.; Roy, N.; Terashima, C.; et al. Synergetic Effect in Water Treatment with Mesoporous TiO2/BDD Hybrid Electrode. RSC Adv. 2020, 10, 1793–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alulema-Pullupaxi, P.; Fernández, L.; Debut, A.; Santacruz, C.P.; Villacis, W.; Fierro, C.; Espinoza-Montero, P.J. Photoelectrocatalytic Degradation of Glyphosate on Titanium Dioxide Synthesized by Sol-Gel/Spin-Coating on Boron Doped Diamond (TiO2/BDD) as a Photoanode. Chemosphere 2021, 278, 130488. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, K.; Toe, C.Y.; Amal, R.; Zhang, X.; McCarthy, D.T.; Deletic, A. Stormwater Herbicides Removal with a Solar-Driven Advanced Oxidation Process: A Feasibility Investigation. Water Res. 2021, 190, 116783. [Google Scholar] [CrossRef]
- Sigcha-Pallo, C.; Peralta-Hernández, J.M.; Alulema-Pullupaxi, P.; Carrera, P.; Fernández, L.; Pozo, P.; Espinoza-Montero, P.J. Photoelectrocatalytic Degradation of Diclofenac with a Boron-Doped Diamond Electrode Modified with Titanium Dioxide as a Photoanode. Environ. Res. 2022, 212, 113362. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Meng, A.; Zhang, Z.; Ma, G.; Long, Y.; Li, X.; Han, P.; He, B. Porous BiVO4/Boron-Doped Diamond Heterojunction Photoanode with Enhanced Photoelectrochemical Activity. Molecules 2022, 27, 5218. [Google Scholar] [CrossRef]
- Fenton, H.J.H. LXXIII.—Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Brillas, E.; Mur, E.; Casado, J. Iron(II) Catalysis of the Mineralization of Aniline Using a Carbon-PTFE O 2—Fed Cathode. J. Electrochem. Soc. 1996, 143, L49–L53. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef] [PubMed]
- Bocos, E.; Brillas, E.; Sanromán, M.Á.; Sirés, I. Electrocoagulation: Simply a Phase Separation Technology? The Case of Bronopol Compared to Its Treatment by EAOPs. Environ. Sci. Technol. 2016, 50, 7679–7686. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R.; Sanjini, N.S. NaHCO3 Enhanced Rhodamine B Removal from Aqueous Solution by Graphite–Graphite Electro Fenton System. Sep. Purif. Technol. 2014, 132, 568–576. [Google Scholar] [CrossRef]
- Orata, E.D.; De Leon, P.D.P.; Doma, B.T. Degradation of Metformin in Water Using Electro-Fenton Process. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Macao, China, 16–19 July 2019; Weng, C.-H., Ed.; Institute of Physics Publishing: New York, NY, USA, 2019; Volume 344. [Google Scholar]
- Ramírez-Pereda, B.; Álvarez-Gallegos, A.; Rangel-Peraza, J.G.; Bustos-Terrones, Y.A. Kinetics of Acid Orange 7 Oxidation by Using Carbon Fiber and Reticulated Vitreous Carbon in an Electro-Fenton Process. J. Environ. Manag. 2018, 213, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Zhou, M.; Ren, G.; Lu, X.; Du, X.; Song, G. A Carbon Nanotube-Confined Iron Modified Cathode with Prominent Stability and Activity for Heterogeneous Electro-Fenton Reactions. J. Mater. Chem. A 2019, 7, 24408–24419. [Google Scholar] [CrossRef]
- Olvera-Vargas, H.; Wee, V.Y.H.; Garcia-Rodriguez, O.; Lefebvre, O. Near-Neutral Electro-Fenton Treatment of Pharmaceutical Pollutants: Effect of Using a Triphosphate Ligand and BDD Electrode. ChemElectroChem 2019, 6, 937–946. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y.; Koparal, A.S.; Oturan, M.A. A Comparative Study on the Efficiency of Electro-Fenton Process in the Removal of Propham from Water. Appl. Catal. B Environ. 2009, 89, 620–626. [Google Scholar] [CrossRef]
- Thiam, A.; Sirés, I.; Salazar, R.; Brillas, E. On the Performance of Electrocatalytic Anodes for Photoelectro-Fenton Treatment of Synthetic Solutions and Real Water Spiked with the Herbicide Chloramben. J. Environ. Manag. 2018, 224, 340–349. [Google Scholar] [CrossRef]
- Oturan, M.A. Outstanding Performances of the BDD Film Anode in Electro-Fenton Process: Applications and Comparative Performance. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100925. [Google Scholar] [CrossRef]
- Sudoh, M.; Kodera, T.; Sakai, K.; Zhang, J.Q.; Koide, K. Oxidative Degradation of Aqueous Phenol Effluent with Electrogenerated Fenton’s Reagent. J. Chem. Eng. Jpn. 1986, 19, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Brillas, E. Solar-Assisted Electro-Fenton Systems for Wastewater Treatment. In Electro-Fenton Process; Zhou, M., Oturan, M.A., Sirés, I., Eds.; Springer: Singapore, 2017; Volume 61, pp. 313–342. ISBN 978-981-10-6405-0. [Google Scholar]
- Pignatello, J.J.; Liu, D.; Huston, P. Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction. Environ. Sci. Technol. 1999, 33, 1832–1839. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Brillas, E.; Mur, E.; Sauleda, R.; Sànchez, L.; Peral, J.; Domènech, X.; Casado, J. Aniline Mineralization by AOP’s: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes. Appl. Catal. B Environ. 1998, 16, 31–42. [Google Scholar] [CrossRef]
- Masomboon, N.; Lu, M.-C.; Ratanatamskul, C. Effect of Hydrogen Peroxide on the Degradation of 2,6-Dimethylaniline by Fenton Processes. Fresenius Environ. Bull. 2008, 17, 1073–1081. [Google Scholar]
- Wang, A.; Qu, J.; Liu, H.; Ru, J. Mineralization of an Azo Dye Acid Red 14 by Photoelectro-Fenton Process Using an Activated Carbon Fiber Cathode. Appl. Catal. B Environ. 2008, 84, 393–399. [Google Scholar] [CrossRef]
- Brillas, E.; Boye, B.; Sirés, I.; Garrido, J.A.; Rodríguez, R.M.; Arias, C.; Cabot, P.-L.; Comninellis, C. Electrochemical Destruction of Chlorophenoxy Herbicides by Anodic Oxidation and Electro-Fenton Using a Boron-Doped Diamond Electrode. Electrochim. Acta 2004, 49, 4487–4496. [Google Scholar] [CrossRef]
- Flox, C.; Arias, C.; Brillas, E.; Savall, A.; Groenen-Serrano, K. Electrochemical Incineration of Cresols: A Comparative Study between PbO2 and Boron-Doped Diamond Anodes. Chemosphere 2009, 74, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Ganiyu, S.O.; Oturan, N.; Trellu, C.; Raffy, S.; Cretin, M.; Causserand, C.; Oturan, M.A. Abatement of Analgesic Antipyretic 4-Aminophenazone Using Conductive Boron-Doped Diamond and Sub-Stoichiometric Titanium Oxide Anodes: Kinetics, Mineralization and Toxicity Assessment. ChemElectroChem 2019, 6, 1808–1817. [Google Scholar] [CrossRef] [Green Version]
- Klidi, N.; Proietto, F.; Vicari, F.; Galia, A.; Ammar, S.; Gadri, A.; Scialdone, O. Electrochemical Treatment of Paper Mill Wastewater by Electro-Fenton Process. J. Electroanal. Chem. 2019, 841, 166–171. [Google Scholar] [CrossRef]
- Dirany, A.; Sirés, I.; Oturan, N.; Oturan, M.A. Electrochemical Abatement of the Antibiotic Sulfamethoxazole from Water. Chemosphere 2010, 81, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Murati, M.; Oturan, N.; Zdravkovski, Z.; Stanoeva, J.P.; Aaron, S.E.; Aaron, J.-J.; Oturan, M.A. Application of the Electro-Fenton Process to Mesotrione Aqueous Solutions: Kinetics, Degradation Pathways, Mineralization, and Evolution of Toxicity. Maced. J. Chem. Chem. Eng. 2014, 33, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Olvera-Vargas, H.; Oturan, N.; Aravindakumar, C.T.; Paul, M.M.S.; Sharma, V.K.; Oturan, M.A. Electro-Oxidation of the Dye Azure B: Kinetics, Mechanism, and by-Products. Environ. Sci. Pollut. Res. 2014, 21, 8379–8386. [Google Scholar] [CrossRef] [PubMed]
- Oturan, N.; Brillas, E.; Oturan, M.A. Unprecedented Total Mineralization of Atrazine and Cyanuric Acid by Anodic Oxidation and Electro-Fenton with a Boron-Doped Diamond Anode. Environ. Chem. Lett. 2012, 10, 165–170. [Google Scholar] [CrossRef]
- Pinheiro, V.S.; Paz, E.C.; Aveiro, L.R.; Parreira, L.S.; Souza, F.M.; Camargo, P.H.C.; Santos, M.C. Mineralization of Paracetamol Using a Gas Diffusion Electrode Modified with Ceria High Aspect Ratio Nanostructures. Electrochim. Acta 2019, 295, 39–49. [Google Scholar] [CrossRef]
- Skoumal, M.; Rodríguez, R.M.; Cabot, P.L.; Centellas, F.; Garrido, J.A.; Arias, C.; Brillas, E. Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Degradation of the Drug Ibuprofen in Acid Aqueous Medium Using Platinum and Boron-Doped Diamond Anodes. Electrochim. Acta 2009, 54, 2077–2085. [Google Scholar] [CrossRef]
- Muddemann, T.; Neuber, R.; Haupt, D.; Graßl, T.; Issa, M.; Bienen, F.; Enstrup, M.; Möller, J.; Matthée, T.; Sievers, M.; et al. Improving the Treatment Efficiency and Lowering the Operating Costs of Electrochemical Advanced Oxidation Processes. Processes 2021, 9, 1482. [Google Scholar] [CrossRef]
- Pérez, J.F.; Llanos, J.; Sáez, C.; López, C.; Cañizares, P.; Rodrigo, M.A. On the Design of a Jet-Aerated Microfluidic Flow-through Reactor for Wastewater Treatment by Electro-Fenton. Sep. Purif. Technol. 2019, 208, 123–129. [Google Scholar] [CrossRef]
- Cruz-González, K.; Torres-López, O.; García-León, A.; Guzmán-Mar, J.L.; Reyes, L.H.; Hernández-Ramírez, A.; Peralta-Hernández, J.M. Determination of Optimum Operating Parameters for Acid Yellow 36 Decolorization by Electro-Fenton Process Using BDD Cathode. Chem. Eng. J. 2010, 160, 199–206. [Google Scholar] [CrossRef]
- Espinoza-Montero, P.J.; Vasquez-Medrano, R.; Ibanez, J.G.; Frontana-Uribe, B.A. Efficient Anodic Degradation of Phenol Paired to Improved Cathodic Production of H2O2 at BDD Electrodes. J. Electrochem. Soc. 2013, 160, G3171–G3177. [Google Scholar] [CrossRef]
- García, O.; Isarain-Chávez, E.; Garcia-Segura, S.; Brillas, E.; Peralta-Hernández, J.M. Degradation of 2,4-Dichlorophenoxyacetic Acid by Electro-Oxidation and Electro-Fenton/BDD Processes Using a Pre-Pilot Plant. Electrocatalysis 2013, 4, 224–234. [Google Scholar] [CrossRef]
- Villaseñor-Basulto, D.; Picos-Benítez, A.; Bravo-Yumi, N.; Perez-Segura, T.; Bandala, E.R.; Peralta-Hernández, J.M. Electro-Fenton Mineralization of Diazo Dye Black NT2 Using a Pre-Pilot Flow Plant. J. Electroanal. Chem. 2021, 895, 115492. [Google Scholar] [CrossRef]
- Garza-Campos, B.R.; Guzmán-Mar, J.L.; Reyes, L.H.; Brillas, E.; Hernández-Ramírez, A.; Ruiz-Ruiz, E.J. Coupling of Solar Photoelectro-Fenton with a BDD Anode and Solar Heterogeneous Photocatalysis for the Mineralization of the Herbicide Atrazine. Chemosphere 2014, 97, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Pignatello, J.J. Photochemical Reactions Involved in the Total Mineralization of 2,4-D by Iron(3+)/Hydrogen Peroxide/UV. Environ. Sci. Technol. 1993, 27, 304–310. [Google Scholar] [CrossRef]
- Andreozzi, R. Advanced Oxidation Processes (AOP) for Water Purification and Recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Casado, J.; Fornaguera, J.; Galán, M.I. Mineralization of Aromatics in Water by Sunlight-Assisted Electro-Fenton Technology in a Pilot Reactor. Environ. Sci. Technol. 2005, 39, 1843–1847. [Google Scholar] [CrossRef]
- Skoumal, M.; Arias, C.; Cabot, P.L.; Centellas, F.; Garrido, J.A.; Rodríguez, R.M.; Brillas, E. Mineralization of the Biocide Chloroxylenol by Electrochemical Advanced Oxidation Processes. Chemosphere 2008, 71, 1718–1729. [Google Scholar] [CrossRef]
- Alcaide, F.; Álvarez, G.; Guelfi, D.R.V.; Brillas, E.; Sirés, I. A Stable CoSP/MWCNTs Air-Diffusion Cathode for the Photoelectro-Fenton Degradation of Organic Pollutants at Pre-Pilot Scale. Chem. Eng. J. 2020, 379, 122417. [Google Scholar] [CrossRef]
- Fernandes, C.H.M.; Silva, B.F.; Aquino, J.M. On the Performance of Distinct Electrochemical and Solar-Based Advanced Oxidation Processes to Mineralize the Insecticide Imidacloprid. Chemosphere 2021, 275, 130010. [Google Scholar] [CrossRef]
- Tirado, L.; Gökkuş, Ö.; Brillas, E.; Sirés, I. Treatment of Cheese Whey Wastewater by Combined Electrochemical Processes. J. Appl. Electrochem. 2018, 48, 1307–1319. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Yumi, N.; Villaseñor-Basulto, D.L.; Pérez-Segura, T.; Pacheco-Álvarez, M.A.; Picos-Benitez, A.; Rodriguez-Narvaez, O.M.; Peralta-Hernández, J.M. Comparison and Statistical Analysis for Post-Tanning Synthetic Wastewater Degradation Using Different Electrochemical Processes. Chem. Eng. Process. Process Intensif. 2021, 159, 108244. [Google Scholar] [CrossRef]
- da Silva, L.M.; Gozzi, F.; Cavalcante, R.P.; de Oliveira, S.C.; Brillas, E.; Sirés, I.; Machulek, A. Assessment of 4-Aminoantipyrine Degradation and Mineralization by Photoelectro-Fenton with a Boron-Doped Diamond Anode: Optimization, Treatment in Municipal Secondary Effluent, and Toxicity. ChemElectroChem 2019, 6, 865–875. [Google Scholar] [CrossRef]
- Steter, J.R.; Brillas, E.; Sirés, I. Solar Photoelectro-Fenton Treatment of a Mixture of Parabens Spiked into Secondary Treated Wastewater Effluent at Low Input Current. Appl. Catal. B Environ. 2018, 224, 410–418. [Google Scholar] [CrossRef]
- Machado, M.L.O.; Paz, E.C.; Pinheiro, V.S.; de Souza, R.A.S.; Neto, A.M.P.; Gaubeur, I.; dos Santos, M.C. Use of WO2.72 Nanoparticles/Vulcan® XC72 GDE Electrocatalyst Combined with the Photoelectro-Fenton Process for the Degradation of 17α-Ethinylestradiol (EE2). Electrocatalysis 2022, 13, 457–468. [Google Scholar] [CrossRef]
- Coria, G.; Sirés, I.; Brillas, E.; Nava, J.L. Influence of the Anode Material on the Degradation of Naproxen by Fenton-Based Electrochemical Processes. Chem. Eng. J. 2016, 304, 817–825. [Google Scholar] [CrossRef]
- Salmerón, I.; Plakas, K.V.; Sirés, I.; Oller, I.; Maldonado, M.I.; Karabelas, A.J.; Malato, S. Optimization of Electrocatalytic H2O2 Production at Pilot Plant Scale for Solar-Assisted Water Treatment. Appl. Catal. B Environ. 2019, 242, 327–336. [Google Scholar] [CrossRef]
- Salazar, R.; Brillas, E.; Sirés, I. Finding the Best Fe2+/Cu2+ Combination for the Solar Photoelectro-Fenton Treatment of Simulated Wastewater Containing the Industrial Textile Dye Disperse Blue 3. Appl. Catal. B Environ. 2012, 115–116, 107–116. [Google Scholar] [CrossRef]
- Clematis, D.; Panizza, M. Electro-Fenton, Solar Photoelectro-Fenton and UVA Photoelectro-Fenton: Degradation of Erythrosine B Dye Solution. Chemosphere 2021, 270, 129480. [Google Scholar] [CrossRef]
- Da Costa Soares, I.C.; Oriol, R.; Ye, Z.; Martínez-Huitle, C.A.; Cabot, P.L.; Brillas, E.; Sirés, I. Photoelectro-Fenton Treatment of Pesticide Triclopyr at Neutral PH Using Fe(III)–EDDS under UVA Light or Sunlight. Environ. Sci. Pollut. Res. 2021, 28, 23833–23848. [Google Scholar] [CrossRef]
- Ye, Z.; Guelfi, D.R.V.; Álvarez, G.; Alcaide, F.; Brillas, E.; Sirés, I. Enhanced Electrocatalytic Production of H2O2 at Co-Based Air-Diffusion Cathodes for the Photoelectro-Fenton Treatment of Bronopol. Appl. Catal. B Environ. 2019, 247, 191–199. [Google Scholar] [CrossRef]
- Moreira, F.C.; Soler, J.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical Advanced Oxidation Processes for Sanitary Landfill Leachate Remediation: Evaluation of Operational Variables. Appl. Catal. B Environ. 2016, 182, 161–171. [Google Scholar] [CrossRef]
- Moreira, F.C.; Soler, J.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Incorporation of Electrochemical Advanced Oxidation Processes in a Multistage Treatment System for Sanitary Landfill Leachate. Water Res. 2015, 81, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Antonin, V.S.; Garcia-Segura, S.; Santos, M.C.; Brillas, E. Degradation of Evans Blue Diazo Dye by Electrochemical Processes Based on Fenton’s Reaction Chemistry. J. Electroanal. Chem. 2015, 747, 1–11. [Google Scholar] [CrossRef]
- Flox, C.; Garrido, J.A.; Rodríguez, R.M.; Cabot, P.-L.; Centellas, F.; Arias, C.; Brillas, E. Mineralization of Herbicide Mecoprop by Photoelectro-Fenton with UVA and Solar Light. Catal. Today 2007, 129, 29–36. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Murrieta, M.F.; Castañeda, L.F.; Nava, J.L. Characterization of the Reaction Environment in Flow Reactors Fitted with BDD Electrodes for Use in Electrochemical Advanced Oxidation Processes: A Critical Review. Electrochim. Acta 2020, 331, 135373. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Murrieta, M.F.; Castañeda, L.F.; Nava, J.L. Electrochemical Reactors Equipped with BDD Electrodes: Geometrical Aspects and Applications in Water Treatment. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100935. [Google Scholar] [CrossRef]
- Cañizares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A. Costs of the Electrochemical Oxidation of Wastewaters: A Comparison with Ozonation and Fenton Oxidation Processes. J. Environ. Manag. 2009, 90, 410–420. [Google Scholar] [CrossRef]
- Mousset, E.; Loh, W.H.; Lim, W.S.; Jarry, L.; Wang, Z.; Lefebvre, O. Cost Comparison of Advanced Oxidation Processes for Wastewater Treatment Using Accumulated Oxygen-Equivalent Criteria. Water Res. 2021, 200, 117234. [Google Scholar] [CrossRef]
EAOP | Boolean Advanced Search Query | Scopus Results (September 2022) |
---|---|---|
Anodic oxidation/electrochemical oxidation (AO/EO) | (TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (“anodic oxidation” OR “electrochemical oxidation”)) AND (LIMIT-TO (LANGUAGE, “English”)) | 1410 |
Anodic oxidation with electrogenerated H2O2 (AO-H2O2) | (TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (“anodic oxidation” OR “electrochemical oxidation”) AND TITLE-ABS-KEY (“electrogeneration of H2O2” OR “electrogenerated H2O2” OR “AO-H2O2” OR “EO-H2O2” OR “AO/H2O2” OR “EO/H2O2”)) AND (LIMIT-TO (LANGUAGE, “English”)) | 67 |
All Fenton-based processes | (TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (*fenton)) AND (LIMIT-TO (LANGUAGE, “English”)) | 364 |
Electro-Fenton (EF) | (TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (fenton) AND NOT TITLE-ABS-KEY (“photo-Fenton” OR “photoelectro-Fenton” OR “PEF” OR “Solar photoelectro-Fenton” OR “SPEF” OR “photoassisted” OR “photo-assisted” OR “photo enhanced” OR “photo-enhanced” OR “sunlight” OR “solar”)) AND (LIMIT-TO (LANGUAGE, “English”)) | 209 |
Photoelectro-Fenton (PEF) | (TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (fenton) AND TITLE-ABS-KEY (“photo-Fenton” OR “photoelectro-Fenton” OR “PEF” OR “photoassisted” OR “photo-assisted” OR “photo enhanced” OR “photo-enhanced”)) AND (LIMIT-TO (LANGUAGE, “English”)) | 153 |
Solar photoelectro-Fenton (SPEF) | (TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (fenton) AND TITLE-ABS-KEY (“Solar photoelectro-Fenton” OR “SPEF” OR “sunlight” OR “solar”)) AND (LIMIT-TO (LANGUAGE, “English”)) | 55 |
Theme | Boolean Advanced Search | Scopus Results |
---|---|---|
Electrochemical Advanced Oxidation Processes using diamond technology | (TITLE-ABS-KEY (diamond AND eaop*) OR TITLE-ABS-KEY (diamond AND aop*)) AND (LIMIT-TO (LANGUAGE, “English”)) | 164 (September 2022) |
Boolean Advanced Search | Scopus Results |
---|---|
(((TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (“anodic oxidation” OR “electrochemical oxidation”))) AND NOT (((TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (“anodic oxidation” OR “electrochemical oxidation”) AND NOT TITLE-ABS-KEY (“electrogeneration of H2O2” OR “electrogenerated H2O2” OR “AO-H2O2” OR “EO-H2O2” OR “AO/H2O2” OR “EO/H2O2” OR “Fenton” OR “electro-Fenton” OR “Fered-Fenton” OR “EF” OR “photoelectro-Fenton” OR “PEF” OR “Solar photoelectro-Fenton” OR “SPEF” OR “photoassisted” OR “photo-assisted” OR “photo enhanced” OR “photo-enhanced”))) AND NOT (((TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (“anodic oxidation” OR “electrochemical oxidation”) AND TITLE-ABS-KEY (“electrogeneration of H2O2” OR “electrogenerated H2O2” OR “AO-H2O2” OR “EO-H2O2” OR “AOH2O2” OR “EO/H2O2”))) OR ((TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (fenton) AND NOT TITLE-ABS-KEY (“photo-Fenton” OR “photoelectro-Fenton” OR “PEF” OR “Solar photoelectro-Fenton” OR “SPEF” OR “photoassisted” OR “photo-assisted” OR “photo enhanced” OR “photo-enhanced”))) OR ((TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (fenton) AND TITLE-ABS-KEY (“photo-Fenton” OR “photoelectro-Fenton” OR “PEF” OR “photoassisted” OR “photo-assisted” OR “photo enhanced” OR “photo-enhanced”))) OR ((TITLE-ABS-KEY (bdd OR “doped diamond”) AND TITLE-ABS-KEY (fenton) AND TITLE-ABS-KEY (“Solar photoelectro-Fenton” OR “SPEF” OR “sunlight” OR “solar”)))))) AND NOT ((TITLE-ABS-KEY (diamond AND eaop*)) OR (TITLE-ABS-KEY (diamond AND aop*))) AND (LIMIT-TO (LANGUAGE, “English”)) | 154 (September 2022) |
Support | Catalyst | Pollutant | EAOP | * TOC % | * COD % | ** ED % | Ref. |
---|---|---|---|---|---|---|---|
Thin film | TiO2 | Red X-3B | TiO2 + UV BDD + UV TiO2@BDD + UV | 29.8 67.6 74.2 | [114] | ||
Thin film | ZnWO4 | Red X-3B | ZnWO4 + UV BDD + UV ZnWO4@BDD + UV | - | - | - | [115] |
Thin film | Ce-TiO2 | Red X-3B | Ce-TiO2 + UV BDD Ce-TiO2@BDD + UV | 0.067 (h−1) 0.137 (h−1) 0.445 (h−1) | [116] | ||
Thin film | ZnO | Yellow 15 | ZnO@BDD + UV B-ZnO@BDD + UV | 35 73 | [117] | ||
Film | ZnO | Methyl orange | ZnO@BDD + UV | ~85 | [118] | ||
Thin film | TiO2/Sb-doped SnO2 | Bisphenol A | BDD TiO2/Sb-doped SnO2@BDD + UV | 58.9 67.3 | [119] | ||
Film | TiO2 | - | TiO2@BDD + UV | - | - | - | [120] |
Thin film | TiO2 | Methyl orange | TiO2 + simulated solar light BDD TiO2@BDD + simulated solar light | 45 56 100 (4 h) | [121] | ||
Thin film | TiO2 | Methylene blue | BDD TiO2@BDD + UV | ~20 ~55 | [122] | ||
Thin film | TiO2 | Glyphosate | BDD TiO2@BDD + UV | 67 85.3 | 81 95.2 | [123] | |
Nanoparticles | TiO2 | Herbicides | TiO2 + simulated solar light BDD TiO2@BDD + simulated solar light | 90 (18.05 h) 90 (1.98 h) 90 (1.15 h) | [124] | ||
Thin film | TiO2 | Diclofenac | BDD TiO2@BDD + UV | 76.1 80.1 | 83.6 84.7 | 85.6 98.5 | [125] |
Thin film | BiVO4 | Tetracycline hydrochloride | BiVO4@BDD + simulated solar light | 45.1 (10 min) | [126] |
Pollutant | EAOP | Anode | Cathode |
Fe2+ conc. (mM) | pH |
Initial
conc. (mM) |
Initial
TOC (mg/L) |
% TOC
Removal |
Time
(min) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
bronopol | AO-H2O2 | BDD | carbon-PTFE | - | 3 | 2.78 | 100 | 95% | 480 | [130] |
AO-H2O2 | BDD | carbon-PTFE | - | - | 2.78 | 100 |
simulated water:
90% | 480 | ||
EF | BDD | carbon-PTFE | 0.5 | 3 | 2.78 | 100 | >99% | 480 | ||
EF | BDD | carbon-PTFE | 0.5 | - | 2.78 | 100 |
simulated water:
>99% | 480 | ||
sulfamethoxazole | EF | BDD | carbon-felt | 0.2 | 3 | 1.3 | 150 | 88% | 600 | [150] |
EF | Pt | carbon-felt | 0.2 | 3 | 1.3 | 150 | 84% | 600 | ||
4-Aminophenazone | AO-H2O2 | BDD | carbon-felt cathode | - | 3 | 0.192 | 30 | 98% | 480 | [148] |
AO-H2O2 | Pt | carbon-felt cathode | - | 3 | 0.192 | 30 | 82 % | 480 | ||
EF | BDD | carbon-felt cathode | 0.2 | 3 | 0.192 | 30 | 99% | 480 | ||
EF | Pt | carbon-felt cathode | 0.2 | 3 | 0.192 | 30 | 94% | 480 | ||
paper mill wastewater | EF | BDD | modified carbon felt | 0.5 | 3 | - | 115 | 85% | 300 | [149] |
EF | DSA | modified carbon felt | 0.5 | 3 | - | 115 | 40% | 300 | ||
mesotrione | AO | BDD | carbon-felt | - | 3 | 0.1 | 17 | 95% | 480 | [151] |
EF | BDD | carbon-felt | 0.1 | 3 | 0.1 | 17 | 94% | 480 | ||
EF | Pt | carbon-felt | 0.1 | 3 | 0.1 | 17 | 91% | 480 | ||
azure B | AO-H2O2 | BDD | carbon-felt piece | - | 3 | 0.1 | 18 | 96% | 480 | [152] |
EF | BDD | carbon-felt piece | 0.1 | 3 | 0.1 | 18 | 95% | 480 | [135] | |
EF | Pt | carbon-felt piece | 0.1 | 3 | 0.1 | 18 | 85% | 480 | ||
pharmaceuticals mixture | EF | BDD | carbon-fiber brush |
3.33
* mg/L | 6 | - | 40 | 97.3% | 360 | [135] |
EF | Ti/IrO2−RuO2 | carbon-fiber brush |
3.33
* mg/L | 6 | - | 40 | ~91% | 360 | ||
atrazine | AO | BDD | carbon felt | - | 6.7 | 0.1 | 10 | 93% | 480 | [153] |
EF | BDD | carbon felt | 0.1 | 3 | 0.1 | 10 | 97% | 480 | ||
EF | Pt | carbon felt | 0.1 | 3 | 0.1 | 10 | 81% | 480 | ||
propham | EF | BDD | carbon sponge | 0.2 | 3 | 0.5 | 62.3 | 78% | 120 | [136] |
EF | BDD | Pt | 0.2 | 3 | 0.50 | 62.3 | 68% | 120 | ||
EF | Pt | carbon sponge | 0.2 | 3 | 0.50 | 62.3 | 61% | 120 |
Pollutant | EAOP |
Fe2+ conc. (mM) | pH |
Initial
conc. (mg/L) |
Initial TOC
(mg/L) |
%TOC
Removal | EC (kWh/kgTOC) |
Time
(min) | Ref. |
---|---|---|---|---|---|---|---|---|---|
bentazon | AO-H2O2 | - | 3 | 20 | - | <3% | - | 240 | [167] |
PEF | 0.5 | 3 | 20 | - | 77.0% | * 10.1 kWh/m3 | 240 | ||
4-Aminoantipyrine | PEF |
* 47.75
mg/L | 3 | 62.5 | 40.6 | pure water: 64.6% | - | 170 | [171] |
PEF |
* 47.75
mg/L | 3 | 62.5 | 51.1 | municipal secondary wastewater: 65.8% | - | 170 | ||
Disperse Blue 3 dye | EF | 0.5 | 3 |
* 200
mM | ~427 | 90% | ~69 | 360 | [176] |
Solar AO-H2O2 | - | 3 |
* 200
mM | ~328 | 93% | ~87 | 360 | ||
SPEF | 0.5 | 3 |
* 200
mM | ~427 | 96% | ~64 | 360 | ||
paracetamol | AO | - | 2.9–3.0 | 157 | 100 | 62.4% | 5141 | 360 | [154] |
EF | 1 | 2.9–3.0 | 157 | 100 | 90.2% | 2080 | 360 | ||
PEF | 1 | 2.9–3.0 | 157 | 100 | 98.4% | 1967 | 360 | ||
chloroxylenol | AO | - | 3 | 100 | 61.5 | 94.6% | - | 360 | [166] |
EF | 1 | 3 | 100 | 61.5 | 82.5% | - | 360 | ||
PEF | 1 | 3 | 100 | 61.5 | 97% | - | 300 | ||
imidacloprid | AO | - | 3 | 50 | - | 42% | - | 360 | [168] |
PEF | 1 | 3 | 50 | - | 66% | - | 360 | ||
AO + UV | - | 3 | 50 | - | 49% | - | 360 | ||
Photochemical oxidation | - | 3 | 50 | - |
−4%
(increased) | - | 360 | ||
SPEF | 1 | 3 | 50 | - | 89% | - | 360 | ||
chloramben | PEF | 0.5 | 3.4 |
* 1.19
mM | 100 | 96.3% | - | 300 | [137] |
o-cresol | EF | 0.25 | 3 | 128 | 100 | ~53% | - | 180 | [147] |
SPEF | 0.25 | 3 | 128 | 100 | ~95% | - | 180 | ||
SPEF | 1 | 3 | 128 | 100 | >98% | 155 | 180 | ||
m-cresol | SPEF | 0.25 | 3 | 128 | 100 | ~96% | - | 180 | |
SPEF | 1 | 3 | 128 | 100 | >98% | 155 | 180 | ||
p-cresol | SPEF | 0.25 | 3 | 128 | 100 | ~94% | - | 180 | |
SPEF | 1 | 3 | 128 | 100 | >98% | 155 | 180 | ||
mixtures of methyl, ethyl, and propyl paraben | AO-H2O2 | - | 3 |
* 0.3
mM each | - | 35% | - | 240 | [172] |
EF | 0.2 | 3 |
* 0.3
mM each | - | 36% | - | 240 | ||
SPEF | 0.2 | 3 |
* 0.3
mM each | - | real wastewater: 66% | 84 | 240 | ||
SPEF | 0.2 | 3 |
* 0.3
mM each | - | 51% | - | 240 | ||
cheese whey wastewater | AO | - | 3 | - | 21.6 | 34.7% | - | 420 | [169] |
AO + UV | - | 3 | - | 21.6 | 48.8% | - | 420 | ||
PEF | - | 3 | - | 21.6 | 41.8% | - | 420 | ||
UVA light alone | - | 3 | - | 21.6 | 32.2% | - | 420 | ||
17α-Ethinylestradiol (EE2) | PEF | 0.5 | 3 | 20 | - | deionized water: 74.5% | - | 180 | [173] |
PEF | 0.5 | 3 | 20 | - | reuse water: 88.4% | 8598 | 180 | ||
PEF | 0.5 | 3 | 20 | - | tap water: 88.3% | 8952 | 180 | ||
PEF | 0.5 | 3 | 20 | - | mineral water: 93.6% | 7764 | 180 | ||
erythrosine B dye | EF | 0.1 | 3 | 100 | 115 | ~90% | * 21 kWh/m3 | 120 | [177] |
PEF | 0.1 | 3 | 100 | 115 | >99% | * 515.6 kWh/m3 | 120 | ||
SPEF | 0.1 | 3 | 100 | 115 | >99% |
* 20.9
kWh/m3 | 120 | ||
triclopyr | AO-H2O2 | - | 7 |
* 12
mM | 17.2 | 38% | * 2.34 kWh/gTOC | 300 | [178] |
EF | 0.06 mM Fe(III)–EDDS (1:1) | 7 |
* 12
mM | 17.2 | 47% | * 1.81 kWh/gTOC | 300 | ||
PEF | 0.06 mM Fe(III)–EDDS (1:1) | 7 |
* 12
mM | 17.2 | 65% | * 19.2 kWh/gTOC | 300 | ||
SPEF | 0.06 mM Fe(III)–EDDS (1:1) | 7 |
* 12
mM | 17.2 | 62% | * 1.33 kWh/gTOC | 300 | ||
bronopol | AO-H2O2 | - | 3 |
* 0.28
mM | 10 | 58% | - | 360 | [179] |
PEF | 0.50 | 3 |
* 0.28
mM | 10 | ~91% | - | 360 | ||
SPEF | 0.50 | 3 |
* 0.28
mM | 10 | 94% | * 4 kWh/gTOC | 360 | ||
landfill leachate | EF | * [TDI]0 = 60 mg//L | 2.8 | - | * 337–430 mg/L DOC |
~43%
DOC | - | 300 | [180,181] |
PEF | * [TDI]0 = 60 mg//L | 2.8 | - | * 337–430 mg/L DOC |
~72%
DOC | - | 300 | ||
SPEF | * [TDI]0 = 60 mg//L | 2.8 | - |
* 337–430
mg/L DOC |
~78%
DOC | * 137 kWh/kgDOC | 300 | ||
Evans Blue diazo dye | EF | 0.5 | 3 |
* 0.245
mM |
* 100
mg/L DOC |
~85%
DOC | - | 360 | [182] |
PEF | 0.5 | 3 |
* 0.245
mM |
* 100
mg/L DOC |
>98%
DOC | - | 360 | ||
SPEF | 0.5 | 3 |
* 0.245
mM |
* 100
mg/L DOC |
>96%
DOC | - | 150 | ||
ibuprofen | EF | 0.5 | 3 | 41 |
* 31
mg/L DOC |
81%
DOC | - | 360 | [155] |
PEF | 0.5 | 3 | 41 |
* 31
mg/L DOC |
94%
DOC | - | 360 | ||
SPEF | 0.5 | 3 | 41 |
* 31
mg/L DOC |
92%
DOC | - | 240 | ||
mecoprop | AO | - | 3 | 100 | 56 | 49% | - | 540 | [183] |
EF | 0.5 | 3 | 100 | 56 | 69% | - | 540 | ||
PEF | 0.5 | 3 | 100 | 56 | >96% | - | 540 | ||
SPEF | 0.5 | 3 | 100 | 56 | >96% | - | 540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brosler, P.; Girão, A.V.; Silva, R.F.; Tedim, J.; Oliveira, F.J. Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review. Environments 2023, 10, 15. https://doi.org/10.3390/environments10020015
Brosler P, Girão AV, Silva RF, Tedim J, Oliveira FJ. Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review. Environments. 2023; 10(2):15. https://doi.org/10.3390/environments10020015
Chicago/Turabian StyleBrosler, Priscilla, Ana V. Girão, Rui F. Silva, João Tedim, and Filipe J. Oliveira. 2023. "Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review" Environments 10, no. 2: 15. https://doi.org/10.3390/environments10020015
APA StyleBrosler, P., Girão, A. V., Silva, R. F., Tedim, J., & Oliveira, F. J. (2023). Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review. Environments, 10(2), 15. https://doi.org/10.3390/environments10020015