Slow-Release Lanthanum Effectively Reduces Phosphate in Eutrophic Ponds without Accumulating in Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site Description
2.2. Fish Collection and Sampling from Densmore Pond
2.3. Lanthanum-Spiked Aquarium Experiment
2.4. Dissection and Tissue Removal
2.5. Liver, Tissue, and Statistical Analysis
3. Results and Discussion
3.1. Field Site Results: Improvements in Water Quality
3.2. Field Site Results: Fish Analysis
3.3. Controlled Tank Results: Lanthanum Treated versus Control
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and Solutions. Eutrophication Causes Conseq. Control 2013, 1–15. [Google Scholar] [CrossRef]
- Pieterse, N.M.; Bleuten, W.; Jørgensen, S.E. Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. J. Hydrol. 2003, 271, 213–225. [Google Scholar] [CrossRef]
- Malmqvist, P.-A. Urban Stormwater Pollutant Sources: An Analysis of Inflows and Outflows of Nitrogen, Phosphorus, Lead, Zinc, and Copper in Urban Areas; Chalmers Tekniska Hogskola: Göteborg, Sweden, 1983. [Google Scholar]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, D. The Blue Baby Syndrome. Resonance 2003, 8, 20–30. [Google Scholar] [CrossRef]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Glibert, P.; Seitzinger, S.; Heil, C.; Burkholder, J.A.; Parrow, M.; Codispoti, L.; Kelly, V. The role of eutrophication in the global proliferation of harmful algal blooms. Oceanography 2005, 18, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Durham, M.M. Effects of Eutrophication. In Eutrophication: Causes, Consequences and Control; Springer: Dordrecht, The Netherlands, 2013; pp. 29–44. [Google Scholar]
- McKercher, L.J.; Messer, T.L.; Mittelstet, A.R.; Comfort, S.D. A biological and chemical approach to restoring water quality: A case study in an urban eutrophic pond. J. Environ. Manag. 2022, 318, 115463. [Google Scholar] [CrossRef]
- Pavlineri, N.; Skoulikidis, N.T.; Tsihrintzis, V.A. Constructed floating wetlands: A review of research, design, operation and management aspects, and data meta-analysis. Chem. Eng. J. 2017, 308, 1120–1132. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhang, C.; Hjorth, R.; Baun, A.; Duckworth, O.W.; Call, D.F.; Knappe, D.R.U.; Jones, J.L.; Grieger, K. Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environ. Int. 2020, 145, 106115. [Google Scholar] [CrossRef] [PubMed]
- Yamada-Ferraz, T.M.; Sueitt, A.P.; Oliveira, A.F.; Botta, C.M.R.; Fadini, P.S.; Nascimento, M.R.L.; Faria, B.M.; Mozeto, A.A. Assessment of Phoslock® application in a tropical eutrophic reservoir: An integrated evaluation from laboratory to field experiments. Environ. Technol. Innov. 2015, 4, 194–205. [Google Scholar] [CrossRef]
- Spears, B.M.; Lürling, M.; Yasseri, S.; Castro-Castellon, A.T.; Gibbs, M.; Meis, S.; McDonald, C.; McIntosh, J.; Sleep, D.; Van Oosterhout, F. Lake responses following lanthanum-modified Bentonite clay (Phoslock®) application: An analysis of water column lanthanum data from 16 case study lakes. Water Res. 2013, 47, 5930–5942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada-Ferraz, J.A. Lange’s Handbook of Chemistry, 14th ed.; McGraw Hill: New York, NY, USA, 1992. [Google Scholar]
- Bishop, W.M.; Richardson, R.J. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. 2018, 25, 4544–4557. [Google Scholar] [CrossRef] [PubMed]
- FAU IACUC. Guidelines for the Preparation and Use of MS222 (TMS, Tricaine Methanesulfonate) for Animal Procedures. 2014. Available online: https://www.fau.edu/research-admin/comparative-medicine/files/guidelines-for-the-preparation-and-use-of-ms222-final.pdf (accessed on 1 September 2022).
- United States Environmental Protection Agency. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. Method 3052. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf (accessed on 1 September 2022).
- Landman, M.; Brijs, J.; Glover, C.; Ling, N. Lake Okareka and Tikitapu Fish Health Monitoring; Scion Report; SCION: Rotorua, New Zealand, 2007. [Google Scholar]
- Herrmann, H.; Nolde, J.; Berger, S.; Heise, S. Aquatic ecotoxicity of lanthanum—A review and an attempt to derive water and sediment quality criteria. Ecotoxicol. Environ. Saf. 2016, 124, 213–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, S.; Xiaorong, W.; Zhaozhe, H.; Chonghua, W.; Liansheng, W.; Lemei, D.; Zhong, L.; Yijun, C. Bioconcentration and elimination of five light rare earth elements in carp (Cyprinus carpio L.). Chemosphere 1996, 33, 1475–1483. [Google Scholar] [CrossRef]
- Behets, G.J.; Mubiana, K.V.; Lamberts, L.; Finsterle, K.; Traill, N.; Blust, R.; D’Haese, P.C. Use of lanthanum for water treatment a matter of concern? Chemosphere 2020, 239, 124780. [Google Scholar] [CrossRef]
- Mayfield, D.B.; Fairbrother, A. Examination of rare earth element concentration patterns in freshwater fish tissues. Chemosphere 2015, 120, 68–74. [Google Scholar] [CrossRef]
- SePRO Corporation. An Overview of Phoslock and Use in Aquatic Environments; SePRO Corporation: Carmel, IN, USA, 2012. [Google Scholar]
- Albaaj, F.; Hutchison, A.J. Lanthanum carbonate (Fosrenol®): A novel agent for the treatment of hyperphosphataemia in renal failure and dialysis patients. Int. J. Clin. Pract. 2005, 59, 1091–1096. [Google Scholar] [CrossRef]
- Harrison, T.S.; Scott, L.J. Lanthanum carbonate. Drugs 2004, 64, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Reed, P.; Francis-Floyd, R. Red Sore Disease in Game Fish. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 2011. Available online: https://wbefc.org/wp-content/uploads/2017/05/Sores-on-Fish.pdf (accessed on 1 September 2022).
- Arienzo, M.; Ferrara, L.; Trifuoggi, M.; Toscanesi, M. Advances in the Fate of Rare Earth Elements, REE, in Transitional Environments: Coasts and Estuaries. Water 2022, 14, 401. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. Sustainable Development. Available online: https://sdgs.un.org (accessed on 13 January 2023).
Organ | Average (µg g−1) | Number of Samples | Standard Deviation | p-Value | Significance (α = 0.05) |
---|---|---|---|---|---|
Flesh | 0.50 | 11 | 0.46 | 0.30 | Not significant |
Liver | 1.02 | 10 | 1.56 |
Treatment/Organs | Average (µg g−1) | Number of Samples | Standard Deviation | p-Value | Significance (α = 0.05) |
---|---|---|---|---|---|
Lanthanum—Flesh | 0.50 | 11 | 0.46 | 0.18 | Not significant |
Control—Flesh | 0.27 | 9 | 0.20 | ||
Lanthanum—Liver | 1.02 | 10 | 1.55 | 0.31 | Not significant |
Control—Liver | 0.33 | 6 | 0.32 |
Treatment/Organs | Average (µg g−1) | Number of Samples | Standard Deviation | p-Value | Significance (α = 0.05) |
---|---|---|---|---|---|
Lanthanum—Flesh | 3.54 | 6 | 1.80 | 0.27 | Not significant |
Control—Flesh | 2.63 | 7 | 0.98 | ||
Lanthanum—Liver | 1.92 | 7 | 2.05 | 0.31 | Not significant |
Control—Liver | 2.71 | 7 | 0.32 |
Treatment/Organs | Average (µg g−1) | Number of Samples | Standard Deviation | p-Value | Significance (α = 0.05) |
---|---|---|---|---|---|
FE—Flesh | 3.54 | 6 | 1.80 | 0.86 | Not significant |
PD—Flesh | 3.86 | 5 | 4.07 | ||
FE—Liver | 1.92 | 7 | 2.05 | 0.14 | Not significant |
PD—Liver | 4.91 | 5 | 4.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCright, C.; McCoy, J.; Robbins, N.; Comfort, S. Slow-Release Lanthanum Effectively Reduces Phosphate in Eutrophic Ponds without Accumulating in Fish. Environments 2023, 10, 20. https://doi.org/10.3390/environments10020020
McCright C, McCoy J, Robbins N, Comfort S. Slow-Release Lanthanum Effectively Reduces Phosphate in Eutrophic Ponds without Accumulating in Fish. Environments. 2023; 10(2):20. https://doi.org/10.3390/environments10020020
Chicago/Turabian StyleMcCright, Callie, Jenna McCoy, Natalie Robbins, and Steve Comfort. 2023. "Slow-Release Lanthanum Effectively Reduces Phosphate in Eutrophic Ponds without Accumulating in Fish" Environments 10, no. 2: 20. https://doi.org/10.3390/environments10020020
APA StyleMcCright, C., McCoy, J., Robbins, N., & Comfort, S. (2023). Slow-Release Lanthanum Effectively Reduces Phosphate in Eutrophic Ponds without Accumulating in Fish. Environments, 10(2), 20. https://doi.org/10.3390/environments10020020