Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Column Leaching Assay
2.2. Soil Analysis after Leaching Process
2.3. Statistical Analysis
3. Results
3.1. pH and EC of Leachate
3.2. Phosphorus in Leachate
3.3. Nitrate, Chloride, and Sulfate in Leachates
3.4. Calcium, Magnesium, Sodium, Potassium, and Heavy Metals in Leachates
3.5. Soil Analysis after Leaching
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- UNDESA (United Nations, Department of Economic and Social Affairs, Population Division). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Le Mouël, C.; Forslund, A. How Can We Feed the World in 2050? A Review of the Responses from Global Scenario Studies. Eur. Rev. Agric. Econ. 2017, 44, 541–591. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reijnders, L. Phosphorus Resources, Their Depletion and Conservation, a Review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; Neset, T.S.S. Phosphorus Vulnerability: A Qualitative Framework for Assessing the Vulnerability of National and Regional Food Systems to the Multi-Dimensional Stressors of Phosphorus Scarcity. Glob. Environ. Chang. 2014, 24, 108–122. [Google Scholar] [CrossRef]
- Elser, J.J. Phosphorus: A Limiting Nutrient for Humanity? Curr. Opin. Biotechnol. 2012, 23, 833–838. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU. Com (2017) 490 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490&from=EN (accessed on 1 December 2022).
- Cordell, D.; White, S. Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef] [Green Version]
- Heckenmüller, M.; Narita, D.; Klepper, G. Global Availability of Phosphorus and Its Implications for Global Food Supply: An Economic Overview; Kiel Working Paper, No. 1897; Kiel Institute for the World Economy (IfW): Kiel, Germany, 2014. [Google Scholar]
- Cordell, D.; Drangert, J.O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Smil, V. Phosphorus in the Environment: Natural Flows and Human Interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar] [CrossRef] [Green Version]
- European Fertilizer Manufacturers Association. Phosphorus: Essential Element for Food Production; European Fertilizer Manufacturers Association (EFMA): Brussels, Belgium, 2000. [Google Scholar]
- Reza, A.; Shim, S.; Kim, S.; Ahmed, N.; Won, S.; Ra, C. Nutrient Leaching Loss of Pre-Treated Struvite and Its Application in Sudan Grass Cultivation as an Eco-Friendly and Sustainable Fertilizer Source. Sustainability 2019, 11, 4204. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus Recovery from Municipal Wastewater: An Integrated Comparative Technological, Environmental and Economic Assessment of P Recovery Technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egle, L.; Zoboli, O.; Thaler, S.; Rechberger, H.; Zessner, M. The Austrian P Budget as a Basis for Resource Optimization. Resour. Conserv. Recycl. 2014, 83, 152–162. [Google Scholar] [CrossRef]
- Zoboli, O.; Laner, D.; Zessner, M.; Rechberger, H. Added Values of Time Series in Material Flow Analysis: The Austrian Phosphorus Budget from 1990 to 2011. J. Ind. Ecol. 2016, 20, 1334–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard, J.L. Elimination of eutrophication through resource recovery. In International Conference on Nutrient Recovery from Wastewater Streams, Vancouver, 2009; Ashley, K., Mavinic, D., Koch, F., Eds.; IWA Publishing: London, UK, 2009; ISBN 9781843392323. [Google Scholar]
- De-Bashan, L.E.; Bashan, Y. Recent Advances in Removing Phosphorus from Wastewater and Its Future Use as Fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef]
- European Commission. Directive 91/271/EEC of the European Council of 21 May 1991 concerning urban waste water treatment. Off. J. Eur. Communities 1991, 135, 40–52. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for the Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, 327, 1–72. [Google Scholar]
- Gilbert, N. The Disappearing Nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef] [Green Version]
- Gaterell, M.R.; Gay, R.; Wilson, R.; Gochin, R.J.; Lester, J.N. An Economic and Environmental Evaluation of the Opportunities for Substituting Phosphorus Recovered from Wastewater Treatment Works in Existing UK Fertiliser Markets. Environ. Technol. 2000, 21, 1067–1084. [Google Scholar] [CrossRef]
- Shu, L.; Schneider, P.; Jegatheesan, V.; Johnson, J. An Economic Evaluation of Phosphorus Recovery as Struvite from Digester Supernatant. Bioresour. Technol. 2006, 97, 2211–2216. [Google Scholar] [CrossRef]
- Nongqwenga, N.; Muchaonyerwa, P.; Hughes, J.; Odindo, A.; Bame, I. Possible Use of Struvite as an Alternative Phosphate Fertilizer. J. Soil Sci. Plant Nutr. 2017, 17, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus Recovery as Struvite: Recent Concerns for Use of Seed, Alternative Mg Source, Nitrogen Conservation and Fertilizer Potential. Resour. Conserv. Recycl. 2016, 107, 142–156. [Google Scholar] [CrossRef]
- Maaß, O.; Grundmann, P.; Von Bock Und Polach, C. Added-Value from Innovative Value Chains by Establishing Nutrient Cycles via Struvite. Resour. Conserv. Recycl. 2014, 87, 126–136. [Google Scholar] [CrossRef]
- Munir, M.T.; Li, B.; Boiarkina, I.; Baroutian, S.; Yu, W.; Young, B.R. Phosphate Recovery from Hydrothermally Treated Sewage Sludge Using Struvite Precipitation. Bioresour. Technol. 2017, 239, 171–179. [Google Scholar] [CrossRef]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of Slow Release Crystal Fertilizer from Wastewaters through Struvite Crystallization—A Review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Zhao, Q.L. Recovery of Ammonium-Nitrogen from Landfill Leachate as a Multi-Nutrient Fertilizer. Ecol. Eng. 2003, 20, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Negrea, A.; Lupa, L.; Negrea, P.; Ciopec, M.; Muntean, C. Simultaneous Removal of Ammonium and Phosphate Ions from Wastewaters and Characterization of the Resulting Product. Chem. Bull. Politeh. Univ. 2010, 55, 136–142. [Google Scholar]
- El Rafie, S.; Hawash, S.; Shalaby, M.S. Evaluation of Struvite Precipitated from Chemical Fertilizer Industrial Effluents. Adv. Appl. Sci. Res. 2013, 4, 113–123. [Google Scholar]
- Gell, K.; de Ruijter, F.J.; Kuntke, P.; de Graaff, M.; Smit, A.L. Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. J. Agric. Sci. 2011, 3, 67–80. [Google Scholar] [CrossRef]
- Huygens, D.; Saveyn, H.G.M.; Tonini, D.; Eder, P.; Delgado Sancho, L. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009)—Process and Quality Criteria, and Assessment of Environmental and Market Impacts for Precipitated Phosphate Salts & Derivates, Thermal Oxidation Materials & Derivates and Pyrolysis & Gasification Materials, EUR 29841 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-09888-1. [Google Scholar]
- Ricardo, G.P.; López-de-Sá, E.G.; Plaza, C. Lettuce Response to Phosphorus Fertilization with Struvite Recovered from Municipal Wastewater. HortScience 2009, 44, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.D.; Lim, C.S.; Kim, Y.K.; Kim, K.Y.; Lee, S.I. Recovery of Struvite Obtained from Semiconductor Wastewater and Reuse as a Slow-Release Fertilizer. Environ. Eng. Sci. 2012, 29, 540–548. [Google Scholar] [CrossRef]
- Wen, G.; Huang, L.; Zhang, X.; Hu, Z. Uptake of Nutrients and Heavy Metals in Struvite Recovered from a Mixed Wastewater of Human Urine and Municipal Sewage by Two Vegetables in Calcareous Soil. Environ. Technol. Innov. 2019, 15, 100384. [Google Scholar] [CrossRef]
- Plaza, C.; Sanz, R.; Clemente, C.; Fernández, J.M.; González, R.; Polo, A.; Colmenarejo, M.F. Greenhouse Evaluation of Struvite and Sludges from Municipal Wastewater Treatment Works as Phosphorus Sources for Plants. J. Agric. Food Chem. 2007, 55, 8206–8212. [Google Scholar] [CrossRef] [PubMed]
- Ponce, R.; Sa, M.E. Efficacy of Magnesium Ammonium Phosphate Recovered from Wastewater on White Lupin Plant. A Greenhouse Experiment. Agrochimica 2008, 52, 352–359. [Google Scholar]
- Ryu, H.D.; Lim, C.S.; Kang, M.K.; Lee, S.I. Evaluation of Struvite Obtained from Semiconductor Wastewater as a Fertilizer in Cultivating Chinese Cabbage. J. Hazard. Mater. 2012, 221–222, 248–255. [Google Scholar] [CrossRef]
- Degryse, F.; Baird, R.; da Silva, R.C.; McLaughlin, M.J. Dissolution Rate and Agronomic Effectiveness of Struvite Fertilizers—Effect of Soil PH, Granulation and Base Excess. Plant Soil 2017, 410, 139–152. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. Struvite: A Slow-Release Fertiliser for Sustainable Phosphorus Management? Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H. Water Pollution from Agriculture: A Global Review; The Food and Agriculture Organization of the United Nations: Rome Italy, 2017. [Google Scholar]
- Degryse, F.; McLaughlin, M.J. Phosphorus Diffusion from Fertilizer: Visualization, Chemical Measurements, and Modeling. Soil Sci. Soc. Am. J. 2014, 78, 832–842. [Google Scholar] [CrossRef]
- Faucon, M.P.; Houben, D.; Reynoird, J.P.; Mercadal-Dulaurent, A.M.; Armand, R.; Lambers, H. Advances and Perspectives to Improve the Phosphorus Availability in Cropping Systems for Agroecological Phosphorus Management. Adv. Agron. 2015, 134, 51–79. [Google Scholar] [CrossRef]
- Lombi, E.; McLaughlin, M.J.; Johnston, C.; Armstrong, R.D.; Holloway, R.E. Mobility and Lability of Phosphorus from Granular and Fluid Monoammonium Phosphate Differs in a Calcareous Soil. Soil Sci. Soc. Am. J. 2004, 68, 682–689. [Google Scholar] [CrossRef]
- Bolan, N.S.; Hedley, M.J. Dissolution of Phosphate Rocks in Soils. 1. Evaluation of Extraction Methods for the Measurement of Phosphate Rock Dissolution. Fertil. Res. 1989, 19, 65–75. [Google Scholar] [CrossRef]
- von Wandruszka, R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 2006, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, J.P.; Albano, J.P.; Merhaut, D.J.; Blythe, E.K. Nutrient Release from Controlled-Release Fertilizers in a Neutral-PH Substrate in an Outdoor Environment: I. Leachate Electrical Conductivity, PH, and Nitrogen, Phosphorus, and Potassium Concentrations. HortScience 2006, 41, 1674–1682. [Google Scholar] [CrossRef]
- Pittaway, P.A.; Melland, A.R.; Antille, D.L.; Marchuk, S. Dissolved Organic Carbon in Leachate after Application of Granular and Liquid N-P-K Fertilizers to a Sugarcane Soil. J. Environ. Qual. 2018, 47, 522–529. [Google Scholar] [CrossRef]
- Hart, M.R.; Quin, B.F.; Nguyen, M.L. Phosphorus Runoff from Agricultural Land and Direct Fertilizer Effects: A Review. J. Environ. Qual. 2004, 33, 1954–1972. [Google Scholar] [CrossRef] [PubMed]
- García-Pintado, J.; Martínez-Mena, M.; Barberá, G.G.; Albaladejo, J.; Castillo, V.M. Anthropogenic Nutrient Sources and Loads from a Mediterranean Catchment into a Coastal Lagoon: Mar Menor, Spain. Sci. Total Environ. 2007, 373, 220–239. [Google Scholar] [CrossRef]
- Ott, C.; Rechberger, H. The European Phosphorus Balance. Resour. Conserv. Recycl. 2012, 60, 159–172. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Rufí-Salís, M.; Parada, F.; Petit-Boix, A.; Gabarrell, X.; Villalba, G. Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Sci. Total Environ. 2021, 799, 149424. [Google Scholar] [CrossRef]
Soil | pH | EC (dS/m) | N (%) | OM (%) | P | Ca | Mg | Na | K | Pb | Cd | Cu | Ni | Zn | Cr | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/kg) | (%) | |||||||||||||||||
Acidic | 5.15 | 0.67 | 0.06 | 0.83 | 42 | 751 | 103 | 21 | 144 | <DL | <DL | <DL | <DL | 8 | 17 | 24 | 64 | 12 |
Neutral | 7.66 | 0.22 | 0.15 | 3.23 | 83 | 1943 | 121 | 23 | 210 | <DL | <DL | <DL | <DL | 10 | 22 | 47 | 41 | 12 |
Alkaline | 8.57 | 0.22 | 0.11 | 1.49 | 29 | 2877 | 310 | 17 | 379 | 19 | <DL | 16 | 13 | 52 | 57 | 58 | 4 | 38 |
STR | NPK | MAP | SSP | |
---|---|---|---|---|
Water soluble P2O5 (%) | 1.3 | 14.1 | 46.5 | 17.5 |
Citrate-soluble P2O5 (%) | 22.3 | 15.2 | 61.6 | 18.0 |
Soluble in mineral acids P2O5 (%) | 28.8 | 15.1 | 61.5 | 19.2 |
Total N (%) | 5.7 | 14.4 | 12.2 | 0.5 |
Ammonium N (%) | 5.5 | 14.1 | 11.9 | 0.3 |
Nitrate N (%) | 0.1 | 0.2 | 0.2 | 0.1 |
Ureic N (%) | <1.0 | <1.0 | <1.0 | <1.0 |
K water soluble (in K2O) % | <1.0 | 15.3 | <1 | <1 |
Cd (mg/kg DM) | <0.5 | <0.5 | <0.5 | 18.5 |
Cu (mg/kg DM) | <20.0 | <20.0 | <20.0 | 21.5 |
Cr (mg/kg DM) | <10.0 | <10.0 | <10.0 | 38.0 |
Hg (mg/kg DM) | <0.4 | <0.4 | <0.4 | <0.4 |
Ni (mg/kg DM) | <5.0 | <5.0 | <5.0 | 31.6 |
Pb(mg/kg DM) | <5.0 | <5.0 | <5.0 | <5.0 |
Zn (mg/kg DM) | <25.0 | <25.0 | <25.0 | 286 |
As (mg/kg DM) | <2.0 | <2.0 | <2.0 | 5 |
B (mg/kg DM) | <4.0 | <4.0 | <4.0 | 19.2 |
Mo (mg/kg DM) | <0.5 | <0.5 | <0.5 | 17.9 |
Mn (mg/kg DM) | 36.2 | 142.0 | <10.0 | 20.5 |
Alkaline Soil | Neutral Soil | Acidic Soil | |
---|---|---|---|
NPK | 0.61 | 24.80 | 64.24 |
STR | 0.10 | 0.24 | 1.72 |
MAP | 0.10 | 12.42 | 60.65 |
SSP | 0.11 | 8.46 | 11.93 |
PO43− (mg) | NO3− (mg) | Cl− (mg) | SO42− (mg) | K+ (mg) | Na+ (mg) | Ca2+ (mg) | Mg2+ (mg) | ||
---|---|---|---|---|---|---|---|---|---|
Alkaline soil | Control | 1.13 ± 0.01 | 34.08 ± 0.79 | 6.77 ± 0.01 a | 5.13 ± 0.07 a | 25.40 ± 1.05 a | 4.62 ± 0.47 | 52.82 ± 0.95 a | 11.93 ± 0.25 a |
STR | 1.16 ± 0.02 | 34.75 ± 0.97 | 6.99 ± 0.09 a | 5.14 ± 0.01 a | 25.37 ± 0.50 a | 4.38 ± 0.03 | 54.61 ± 0.54 ab | 12.29 ± 0.17 a | |
NPK | 1.32 ± 0.23 | 33.78 ± 0.24 | 26.56 ± 3.42 b | 63.4 ± 16.52 c | 31.15 ± 2.16 b | 4.83 ± 0.05 | 86.00 ± 1.13 d | 16.67 ± 0.45 b | |
MAP | 1.12 ± 0.01 | 38.02 ± 0.47 | 6.77 ± 0.03 a | 5.03 ± 0.17 a | 26.88 ± 1.16 a | 4.61 ± 0.19 | 57.40 ± 1.71 bc | 12.40 ± 0.17 a | |
SSP | 1.17 ± 0.10 | 34.99 ± 0.23 | 7.93 ± 0.10 a | 29.31 ± 5.15 b | 25.43 ± 0.95 a | 6.87 ± 2.44 | 59.30 ± 0.74 c | 17.44 ± 0.49 b | |
Neutral soil | Control | 6.34 ± 0.06 a | 88.02 ± 1.73 a | 4.43 ± 0.33 a | 4.33 ± 0.02 a | 11.01 ± 1.07 a | 4.44 ± 0.20 a | 67.61 ± 5.13 a | 6.71 ± 0.64 a |
STR | 6.41 ± 0.01 a | 100.38 ± 1.68 b | 4.88 ± 0.01 a | 4.32 ± 0.03 a | 17.53 ± 0.35 a | 4.54 ± 0.03 a | 68.46 ± 0.03 a | 7.07 ± 0.05 a | |
NPK | 13.90 ± 2.16 c | 109.73 ± 3.34 c | 17.37 ± 0.18 c | 39.94 ± 0.13 c | 10.26 ± 0.55 b | 5.47 ± 0.06 c | 102.48 ± 1.37 b | 10.44 ± 0.17 b | |
MAP | 10.12 ± 0.68 ab | 112.87 ± 1.19 c | 4.82 ± 0.01 a | 4.45 ± 0.26 a | 11.58 ± 0.61 a | 4.94 ± 0.04 b | 71.33 ± 2.69 a | 7.27 ± 0.24 a | |
SSP | 8.91 ± 0.07 b | 94.45 ± 1.04 ab | 5.75 ± 0.24 b | 26.21 ± 3.86 b | 11.89 ± 0.49 a | 4.94 ± 0.22 b | 70.32 ± 1.00 a | 7.34 ± 0.07 a | |
Acidic soil | Control | 10.41 ± 2.39 a | 340.65 ± 6.56 a | 13.69 ± 0.07 a | 59.62 ± 6.22 a | 18.26 ± 0.08 a | 6.84 ± 0.18 | 85.61 ± 2.91 | 14.34 ± 0.09 |
STR | 10.93 ± 0.85 a | 342.51 ± 3.41 a | 14.14 ± 0.49 ab | 60.76 ± 0.78 a | 19.07 ± 0.02 ab | 7.80 ± 0.90 | 82.14 ± 10.48 | 14.38 ± 0.47 | |
NPK | 30.00 ± 3.17 b | 357.40 ± 6.43 b | 43.58 ± 1.15 c | 126.96 ± 1.11 c | 22.50 ± 1.72 c | 7.28 ± 0.32 | 102.76 ± 4.83 | 20.85 ± 4.71 | |
MAP | 28.91 ± 3.67 b | 358.52 ± 5.87 b | 15.47 ± 0.04 b | 60.73 ± 3.01 a | 19.92 ± 0.17 ab | 7.36 ± 0.17 | 86.33 ± 0.81 | 13.81 ± 2.08 | |
SSP | 14.05 ± 2.06 a | 342.14 ± 3.96 a | 15.41 ± 0.37 b | 79.08 ± 2.17 b | 21.06 ± 1.09 bc | 7.62 ± 0.01 | 85.53 ± 1.31 | 14.09 ± 1.25 |
pH | E.C. | N | M.O. | P | Ca | Mg | Na | K | Pb | Cd | Cu | Ni | Zn | Cr | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(dS/m) | (%) | (%) | (mg/kg) | |||||||||||||
Alkaline soil | Control | 8.10 ± 0.04 a | 0.231 ± 0.005 a | 0.131 ± 0.001 | 1.84 ± 0.07 | 37 ± 1 a | 3141 ± 51 | 385 ± 4 | 12 ± 3 | 415 ± 4 | 19 ± 1 | <DL | 16 ± 0 | 13 ± 1 | 50 ± 1 | 45 ± 1 |
STR | 8.14 ± 0.05 a | 0.233 ± 0.008 a | 0.132 ± 0.000 | 1.92 ± 0.06 | 66 ± 3 c | 3135 ± 44 | 378 ± 18 | 14 ± 5 | 394 ± 25 | 19 ± 1 | <DL | 17 ± 1 | 13 ± 0 | 52 ± 1 | 45 ± 1 | |
NPK | 8.09 ± 0.04 a | 0.262 ± 0.006 b | 0.131 ± 0.001 | 1.90 ± 0.08 | 56 ± 2 b | 3055 ± 17 | 349 ± 3 | 18 ± 1 | 423 ± 34 | 18 ± 1 | <DL | 17 ± 1 | 13 ± 1 | 51 ± 1 | 44 ± 5 | |
MAP | 8.07 ± 0.02 ab | 0.230 ± 0.008 a | 0.133 ± 0.006 | 1.72 ± 0.02 | 60 ± 8 bc | 3257 ± 18 | 390 ± 26 | 16 ± 3 | 386 ± 1 | 18 ± 1 | <DL | 16 ± 0 | 13 ± 0 | 51 ± 0 | 45 ± 1 | |
SSP | 7.97 ± 0.03 b | 0.301 ± 0.02 c | 0.131 ± 0.004 | 1.78 ± 0.07 | 56 ± 2 b | 2973 ± 45 | 352 ± 18 | 13 ± 6 | 379 ± 23 | 19 ± 1 | <DL | 16 ± 0 | 14 ± 1 | 51 ± 1 | 46 ± 4 | |
Neutral soil | Control | 7.35 ± 0.03 a | 0.230 ± 0.138 | 0.152 ± 0.014 a | 3.38 ± 0.18 | 84 ± 11 a | 1933 ± 63 | 105 ± 1 | 12 ± 0 | 140 ± 4 a | 14 ± 1 | <DL | 11 ± 3 | <DL | 57 ± 4 | <DL |
STR | 7.58 ± 0.01 b | 0.132 ± 0.010 | 0.191 ± 0.000 b | 3.52 ± 0.31 | 112 ± 6 c | 1937 ± 86 | 119 ± 7 | 14 ± 2 | 144 ± 3 a | 14 ± 1 | <DL | 9 ± 0 | <DL | 53 ± 3 | <DL | |
NPK | 7.53 ± 0.03 b | 0.171 ± 0.001 | 0.192 ± 0.000 b | 2.94 ± 0.08 | 87 ± 1 a | 2074 ± 101 | 111 ± 1 | 14 ± 2 | 203 ± 11 b | 13 ± 0 | <DL | 9 ± 0 | <DL | 53 ± 4 | <DL | |
MAP | 7.59 ± 0.06 b | 0.121 ± 0.007 | 0.174 ± 0.007 ab | 3.26 ± 0.19 | 86 ± 3 a | 2072 ± 10 | 114 ± 4 | 14 ± 4 | 149 ± 1 a | 16 ± 5 | <DL | 10 ± 0 | <DL | 51 ± 6 | <DL | |
SSP | 7.56 ± 0.04 b | 0.172 ± 0.004 | 0.193 ± 0.014 b | 3.38 ± 0.21 | 102 ± 3 b | 1991 ± 12 | 110 ± 1 | 11 ± 1 | 141 ± 4 a | 16 ± 0 | <DL | 8 ± 0 | <DL | 50 ± 0 | <DL | |
Acidic soil | Control | 5.96 ± 0.08 a | 0.042 ± 0.002 a | 0.056 ± 0.000 a | 0.69 ± 0.03 | 44 ± 1 a | 428 ± 13 | 59 ± 1 a | 9 ± 1 | 97 ± 3 a | 13 ± 0 | <DL | <DL | <DL | 23 ± 1 | <DL |
STR | 6.20 ± 0.06 b | 0.051 ± 0.001 ab | 0.062 ± 0.003 ab | 0.77 ± 0.06 | 58 ± 2 c | 409 ± 27 | 84 ± 1 b | 10 ± 1 | 98 ± 6 a | 13 ± 1 | <DL | <DL | <DL | 22 ± 1 | <DL | |
NPK | 6.24 ± 0.01 b | 0.061 ± 0.001 b | 0.061 ± 0.001 b | 0.73 ± 0.04 | 51 ± 4 b | 381 ± 25 | 54 ± 2 a | 12 ± 4 | 139 ± 4 b | 11 ± 0 | <DL | <DL | <DL | 21 ± 1 | <DL | |
MAP | 6.05 ± 0.02 a | 0.055 ± 0.001 ab | 0.053 ± 0.001 ab | 0.67 ± 0.06 | 53 ± 2 bc | 419 ± 18 | 58 ± 1 a | 10 ± 0 | 101 ± 3 a | 12 ± 1 | <DL | <DL | <DL | 21 ± 1 | <DL | |
SSP | 5.94 ± 0.05 a | 0.082 ± 0.011 c | 0.052 ± 0.001 a | 0.64 ± 0.06 | 58 ± 1 c | 484 ± 16 | 58 ± 1 a | 10 ± 1 | 100 ± 3 a | 13 ± 0 | <DL | <DL | <DL | 22 ± 0 | <DL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancho, C.; Diez-Pascual, S.; Alonso, J.; Gil-Díaz, M.; Lobo, M.C. Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer. Environments 2023, 10, 22. https://doi.org/10.3390/environments10020022
Mancho C, Diez-Pascual S, Alonso J, Gil-Díaz M, Lobo MC. Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer. Environments. 2023; 10(2):22. https://doi.org/10.3390/environments10020022
Chicago/Turabian StyleMancho, Carolina, Sergio Diez-Pascual, Juan Alonso, Mar Gil-Díaz, and M. Carmen Lobo. 2023. "Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer" Environments 10, no. 2: 22. https://doi.org/10.3390/environments10020022
APA StyleMancho, C., Diez-Pascual, S., Alonso, J., Gil-Díaz, M., & Lobo, M. C. (2023). Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer. Environments, 10(2), 22. https://doi.org/10.3390/environments10020022