Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.2.1. Ambient Air Pollutant Concentrations
2.2.2. Industrial Pollutant Concentrations
2.2.3. Land-Use Cover
2.2.4. Urban Forestry Cover
2.2.5. Daily Traffic Count
2.3. Overlay and Analysis
3. Results
3.1. The Effects of Urban Land Use on Air Pollutant Concentrations
3.2. The Effects of Different Urban Forestry Types on Air Pollutant Concentrations
4. Discussion
4.1. General Overview
4.2. The Inclusion of NPI Industrial Concentrations and Traffic Data
4.3. The Associations between Different Urban Land Uses and Air Pollutant Concentrations
4.4. The Association between Different Urban Forestry Types and Air Pollutant Concentrations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonnell, M.J.; MacGregor-Fors, I. The ecological future of cities. Science 2016, 352, 936–938. [Google Scholar] [CrossRef]
- World Health Organisation. Ambient (Outdoor) Air Pollution: World Health Organisation. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 16 December 2022).
- WHO Regional Office for Europe; OECD. Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; World Health Organization: Geneva, Switzerland, 2015; p. 62. [Google Scholar]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Isaifan, R. The dramatic impact of Coronavirus outbreak on air quality: Has it saved as much as it has killed so far? Global J. Environ. Sci. Manag. 2020, 6, 275–288. [Google Scholar]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; et al. The nexus between air pollution, green infrastructure and human health. Environ. Int. 2019, 133, 105181. [Google Scholar] [CrossRef]
- Douglas, A.N.J.; Irga, P.J.; Torpy, F.R. Determining broad scale associations between air pollutants and urban forestry: A novel multifaceted methodological approach. Environ. Pollut. 2019, 247, 474–481. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, P.; Niu, J.; Sun, Z.; Zhu, L.; Ni, G. Canopy stomatal uptake of NOX, SO2 and O3 by mature urban plantations based on sap flow measurement. Atmos. Environ. 2016, 125, 165–177. [Google Scholar] [CrossRef]
- Chaparro-Suarez, I.G.; Meixner, F.X.; Kesselmeier, J. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmos. Environ. 2011, 45, 5742–5750. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Su, Y.; Ouyang, Z. Estimating the nitrogen source apportionment of Sophora japonica in roadside green spaces using stable isotope. Sci. Total Environ. 2019, 689, 1348–1357. [Google Scholar] [CrossRef]
- Liang, D.; Ma, C.; Wang, Y.-Q.; Wang, Y.-J.; Zhao, C.-X. Quantifying PM 2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 2016, 23, 21176–21186. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Yu, X.; Zhang, Z.; Liu, M.; Liu, X. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J. Environ. Sci. 2015, 27, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- King, K.L.; Johnson, S.; Kheirbek, I.; Lu, J.W.T.; Matte, T. Differences in magnitude and spatial distribution of urban forest pollution deposition rates, air pollution emissions, and ambient neighborhood air quality in New York City. Landsc. Urban Plan. 2014, 128, 14–22. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Rao, M.; George, L.A.; Rosenstiel, T.N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ. Pollut. 2014, 194, 96–104. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 3218.0–Regional Population Growth, Australia, 2016–2017 Australia: Commonwealth of Australia. 2018. Available online: http://www.abs.gov.au/ausstats/[email protected]/Latestproducts/3218.0Main%20Features12016-17?opendocument&tabname=Summary&prodno=3218.0&issue=2016-17&num=&view= (accessed on 10 April 2018).
- Dirgawati, M.; Barnes, R.; Wheeler, A.J.; Arnold, A.-L.; McCaul, K.A.; Stuart, A.L.; Blake, D.; Hinwood, A.; Yeap, B.B.; Heyworth, J.S. Development of Land Use Regression models for predicting exposure to NO2 and NOx in Metropolitan Perth, Western Australia. Environ. Model. Softw. 2015, 74, 258–267. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Barnett, A.G. Assessing environmental inequalities in ambient air pollution across urban Australia. Spat. Spatio-Temporal Epidemiol. 2015, 13, 1–6. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Hewson, M.G.; Bechle, M.J.; Marshall, J.D.; Barnett, A.G. A national satellite-based land-use regression model for air pollution exposure assessment in Australia. Environ. Res. 2014, 135, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Meyers, J.; Barnett, G. Understanding the potential loss and inequities of green space distribution with urban densification. Urban For. Urban Green. 2015, 14, 952–958. [Google Scholar] [CrossRef]
- Rose, N.; Cowie, C.; Gillett, R.; Marks, G.B. Validation of a Spatiotemporal Land Use Regression Model Incorporating Fixed Site Monitors. Environ. Sci. Technol. 2011, 45, 294–299. [Google Scholar] [CrossRef]
- Gero, A.F.; Pitman, A.J.; Narisma, G.T.; Jacobson, C.; Pielke, R.A. The impact of land cover change on storms in the Sydney Basin, Australia. Glob. Planet. Chang. 2006, 54, 57–78. [Google Scholar] [CrossRef]
- Legislative Council. Health Impacts of Air Pollution in the Sydney Basin; New South Wales Parliament: Sydney, Australia, 2006. [Google Scholar]
- Duc, H.; Azzi, M.; Wahid, H.; Ha, Q.P. Background ozone level in the Sydney basin: Assessment and trend analysis. Int. J. Climatol. 2013, 33, 2298–2308. [Google Scholar] [CrossRef]
- Cohen, D.D.; Stelcer, E.; Garton, D.; Crawford, J. Fine particle characterisation, source apportionment and long-range dust transport into the Sydney Basin: A long term study between 1998 and 2009. Atmos. Pollut. Res. 2011, 2, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Cowie, C.T.; Ding, D.; Rolfe, M.I.; Mayne, D.J.; Jalaludin, B.; Bauman, A. Neighbourhood walkability, road density and socio-economic status in Sydney, Australia. Environ. Health 2016, 15, 58. [Google Scholar] [CrossRef] [Green Version]
- Knibbs, L.D.; Coorey, C.P.; Bechle, M.J.; Cowie, C.T.; Dirgawati, M.; Heyworth, J.S. Independent Validation of National Satellite-Based Land-Use Regression Models for Nitrogen Dioxide Using Passive Samplers. Environ. Sci. Technol. 2016, 50, 12331–12338. [Google Scholar] [CrossRef] [Green Version]
- Marquez, L.; Salim, V. Assessing impacts of urban freight measures on air toxic emissions in Inner Sydney. Environ. Model. Softw. 2007, 22, 515–525. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yeganeh, B.; Clifford, S.; Knibbs, L.D.; Morawska, L. Development of a land use regression model for daily NO2 and NOx concentrations in the Brisbane metropolitan area, Australia. Environ. Model. Softw. 2017, 95, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Department of Planning, Industry and Environment. Air Quality Data Services New South Wales: New South Wales Government. 2022. Available online: http://www.environment.nsw.gov.au/AQMS/search.htm (accessed on 15 July 2022).
- Department of Planning, Industry and Environment. Air Quality Monitoring Network New South Wales: New South Wales Government. 2022. Available online: https://www.environment.nsw.gov.au/topics/air/monitoring-air-quality (accessed on 15 July 2022).
- Department of Planning, Industry and Environment. Air New South Wales: New South Wales Government. 2022. Available online: http://www.environment.nsw.gov.au/topics/air (accessed on 15 July 2022).
- Department of the Environment. National Pollutant Inventory Guide Canberra: Commonwealth of Australia. 2015. Available online: http://www.npi.gov.au/resource/national-pollutant-inventory-guide (accessed on 17 April 2017).
- Boulter, P.G.; Borken-Kleefeld, J.; Ntziachristos, L. The Evolution and Control of NOx Emissions from Road Transport in Europe. In Urban Air Quality in Europe; Viana, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 31–53. [Google Scholar]
- Roads and Maritime Services. Traffic Volume Viewer New South Wales: Roads and Maritime Services. 2008. Available online: http://www.rms.nsw.gov.au/about/corporate-publications/statistics/traffic-volumes/aadt-map/index.html#/?z=6 (accessed on 20 February 2017).
- Australian Bureau of Statistics. 1209.0.55.002–Mesh Blocks Digital Boundaries, Australia, 2006 Australia: Commonwealth of Australia. 2009. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/1209.0.55.002Main+Features12006?OpenDocument (accessed on 17 April 2017).
- Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Phong, D.X. Production of Global Land Cover Data–GLCNMO2008. J. Geogr. Geol. 2014, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Geoscience Australia. Geocentric Datum of Australia (GDA) Canberra: Commonwealth of Australia. 2017. Available online: http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/geodetic-datums/gda (accessed on 16 February 2017).
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef]
- European Study of Cohorts for Air Pollution Effects. Study Manual; Institute for Risk Assessment Sciences; Utrecht University: Utrecht, The Netherlands, 2008. [Google Scholar]
- European Study of Cohorts for Air Pollution Effects. Exposure Assessment Manual; Institute for Risk Assessment Sciences; Utrecht University: Utrecht, The Netherlands, 2010. [Google Scholar]
- Tiwari, A.; Kumar, P. Integrated dispersion-deposition modelling for air pollutant reduction via green infrastructure at an urban scale. Sci. Total Environ. 2020, 723, 138078. [Google Scholar] [CrossRef]
- Al Koas, K.A.A.A. GIS-Based Mapping and Statistical Analysis of Air Pollution and Mortality in Brisbane; Queensland University of Technology: Brisbane, Australia, 2010. [Google Scholar]
- Narashid, R.H.; Mohd, W.M.N.W. (Eds.) Air Quality Monitoring Using Remote Sensing and GIS Technologies. In Proceedings of the 2010 International Conference on Science and Social Research (CSSR 2010), Kuala Lumpur, Malaysia, 5–7 December 2010. [Google Scholar]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS; Sage Publications: New York, NY, USA, 2009. [Google Scholar]
- Becker, L.A. General Linear Model (GLM): 2-Way, Between-Subjects Designs Colorado: University of Colorado Colorado Springs. 1999. Available online: https://www.uccs.edu/lbecker/glm_2way.html (accessed on 27 July 2022).
- Garbin, C. 2xk 2-Factor Between Groups ANOVA with EMMEANS Follow-ups Lincoln, Nebraska: Univerisyt of Nebraska-Lincoln. 2015. Available online: http://psych.unl.edu/psycrs/942/q2/2xk_factorial_142.pdf (accessed on 30 July 2022).
- Janhäll, S. Review on urban vegetation and particle air pollution–Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure–A case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599–600, 1728–1739. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Tsui, J.K.Y.; Chen, F.; Yip, W.-K.; Vrijmoed, L.L.P.; Liu, C.-H. Effects of Urban Vegetation on Urban Air Quality. Landsc. Res. 2011, 36, 173–188. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Kim, K.-H.; Sul, K.-H.; Szulejko, J.E.; Chambers, S.D.; Feng, X.; Lee, M.-H. Progress in the reduction of carbon monoxide levels in major urban areas in Korea. Environ. Pollut. 2015, 207, 420–428. [Google Scholar] [CrossRef]
- Ward, H.; Kotthaus, S.; Grimmond, C.; Bjorkegren, A.; Wilkinson, M.; Morrison, W.; Evans, J.; Morison, J.; Iamarino, M. Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England. Environ. Pollut. 2015, 198, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Mazaheri, M.; Reche, C.; Rivas, I.; Crilley, L.R.; Álvarez-Pedrerol, M.; Viana, M.; Tobias, A.; Alastuey, A.; Sunyer, J.; Querol, X.; et al. Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. Environ. Int. 2016, 88, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Jayaratne, E.R.; Mengersen, K.; Jamriska, M.; Thomas, S. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos. Environ. 2002, 36, 4375–4383. [Google Scholar] [CrossRef] [Green Version]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef]
- Cai, M.; Xin, Z.; Yu, X. Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environ. Pollut. 2017, 231 Pt 1, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Weyens, N.; Thijs, S.; Popek, R.; Witters, N.; Przybysz, A.; Espenshade, J.; Gawrońska, H.; Vangronsveld, J.; Gawronski, S.W. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int. J. Mol. Sci. 2015, 16, 25576–25604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Brack, C.L. Pollution mitigation and carbon sequestration by an urban forest. Environ. Pollut. 2002, 116, S195–S200. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Schnell, I. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 2014, 195, 73–83. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Change Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Zhou, X.; Ooka, R.; Chen, H.; Kawamoto, Y.; Kikumoto, H. Impacts of inland water area changes on the local climate of Wuhan, China. Indoor Built Environ. 2014, 25, 296–313. [Google Scholar] [CrossRef]
- Vos, P.E.; Maiheu, B.; Vankerkom, J.; Janssen, S. Improving local air quality in cities: To tree or not to tree? Environ. Pollut. 2013, 183, 113–122. [Google Scholar] [CrossRef]
- Xie, C.; Kan, L.; Guo, J.; Jin, S.; Li, Z.; Chen, D.; Li, X.; Che, S. A dynamic processes study of PM retention by trees under different wind conditions. Environ. Pollut. 2018, 233, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; van Aardenne, J.; Klimont, Z.; Andres, R.J.; Volke, A.; Arias, S.D. Delgado. Anthropogenic sulfur dioxide emissions: 1850-2005. Atmos. Chem. Phys. 2011, 11, 1101–1116. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Yang, S. Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environ. Monit. Assess. 2006, 117, 463–489. [Google Scholar] [CrossRef]
- New South Wales Government. Clean Air for NSW; New South Wales Government: Trundle, Australia, 2016. [Google Scholar]
- Broome, R.A.; Cope, M.E.; Goldsworthy, B.; Goldsworthy, L.; Emmerson, K.; Jegasothy, E.; Morgan, G.G. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environ. Int. 2016, 87 (Suppl. C), 85–93. [Google Scholar] [CrossRef]
- International Maritime Organization. IMO Sets 2020 Date for Ships to Comply with Low Sulphur Fuel Oil Requirement. 2016. Available online: http://www.imo.org/en/MediaCentre/PressBriefings/Pages/MEPC-70-2020sulphur.aspx (accessed on 10 October 2017).
- International Maritime Organization. Frequently Asked Questions: The 2020 Global Sulphur Limit. 2017. Available online: http://www.imo.org/en/MediaCentre/HotTopics/GHG/Documents/FAQ_2020_English.pdf (accessed on 10 October 2017).
- Jiang, N.; Scorgie, Y.; Hart, M.; Riley, M.L.; Crawford, J.; Beggs, P.J.; Edwards, G.C.; Chang, L.; Salter, D.; Di Virgilio, G. Visualising the relationships between synoptic circulation type and air quality in Sydney, a subtropical coastal-basin environment. Int. J. Climatol. 2017, 37, 1211–1228. [Google Scholar] [CrossRef]
- Cohen, D.; Atanacio, A.; Stelcer, E.; Garton, D. PM2.5 Source Apportionment in the Sydney Region between 2000 and 2014; Australian Nuclear Science and Technology Organisation: Lucas Heights, Australia, 2016. [Google Scholar]
- Crawford, J.; Griffiths, A.; Cohen, D.D.; Jiang, N.; Stelcer, E. Particulate Pollution in the Sydney Region: Source Diagnostics and Synoptic Controls. Aerosol Air Qual. Res. 2016, 16, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- New South Wales Environment Protection Authority. Tracking Sources of air Pollution in NSW Communities; New South Wales Government: Sydney, Australia, 2012. [Google Scholar]
- Zupancic, T.; Westmacott, C.; Bulthuis, M.B. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-narrative Systematic Review; David Suzuki Foundation: Vancouver, BC, Canada, 2015. [Google Scholar]
- Rose, N.; Cowie, C.; Gillett, R.; Marks, G.B. Weighted road density: A simple way of assigning traffic-related air pollution exposure. Atmos Environ. 2009, 43, 5009–5014. [Google Scholar] [CrossRef]
- Civan, M.Y.; Elbir, T.; Seyfioglu, R.; Kuntasal, Ö.O.; Bayram, A.; Doğan, G. Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmos. Environ. 2015, 103, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Khamyingkert, L.; Thepanondh, S. Analysis of Industrial Source Contribution to Ambient Air Concentration Using AERMOD Dispersion Model. Environ. Asia 2016, 9, 28–36. [Google Scholar]
- Islam, S.M.N.; Jackson, P.L.; Aherne, J. Ambient nitrogen dioxide and sulfur dioxide concentrations over a region of natural gas production, Northeastern British Columbia, Canada. Atmos. Environ. 2016, 143, 139–151. [Google Scholar] [CrossRef]
- Kinsela, A.S.; Denmead, O.T.; Macdonald, B.C.T.; Melville, M.D.; Reynolds, J.K.; White, I. Field-based measurements of sulfur gas emissions from an agricultural coastal acid sulfate soil, eastern Australia. Soil Res. 2011, 49, 471–480. [Google Scholar] [CrossRef]
- Feilberg, A.; Hansen, M.J.; Liu, D.; Nyord, T. Contribution of livestock H2S to total sulfur emissions in a region with intensive animal production. Nat. Commun. 2017, 8, 1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.-R.; Saha, C.K.; Ni, J.-Q.; Heber, A.J.; Blanes-Vidal, V.; Dunn, J.L. Characteristics of pollutant gas releases from swine, dairy, beef, and layer manure, and municipal wastewater. Water Res. 2015, 76 (Suppl. C), 110–119. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.-Q.; Heber, A.J.; Sutton, A.L.; Kelly, D.T.; Patterson, J.A.; Kim, S.-T. Effect of swine manure dilution on ammonia, hydrogen sulfide, carbon dioxide, and sulfur dioxide releases. Sci. Total Environ. 2010, 408, 5917–5923. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Parekh, J.; Li, Y.; Murphy, S.; Lei, Y. Adverse influences of drought and temperature extremes on survival of potential tree species for commercial environmental forestry in the dryland areas on the western slopes of New South Wales, Australia. Agric. For. Meteorol. 2014, 197, 188–205. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Yook, S.-J.; Ahn, K.-H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef]
- Attiwill, P.M.; Wilson, B. Ecology: An Australian Perspective; Attiwill, P.M., Wilson, B., Eds.; Oxford University Press: South Melbourne, Australia, 2006. [Google Scholar]
- Maiti, S.K.; Chowdhury, A. Effects of Anthropogenic Pollution on Mangrove Biodiversity: A Review. J. Environ. Prot. 2013, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.A.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Pallardy, S.G. Physiology of Woody Plants; Elsevier Science: Burlington, ON, Canada, 2007. [Google Scholar]
- Lange, O.L.; Nobel, P.S.; Osmond, C.B.; Ziegler, H. Physiological Plant Ecology II: Water Relations and Carbon Assimilation; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Wang, R.; Yu, G.; He, N.; Wang, Q.; Xia, F.; Zhao, N.; Xu, Z.; Ge, J. Elevation-Related Variation in Leaf Stomatal Traits as a Function of Plant Functional Type: Evidence from Changbai Mountain, China. PLoS ONE 2014, 9, e115395. [Google Scholar] [CrossRef]
- Australian Certified Organic. Australian Certified Organic Standard–2016; Australian Organic Ltd.: Nundah, Australia, 2017. [Google Scholar]
- Reef, R.; Feller, I.C.; Lovelock, C.E. Nutrition of mangroves. Tree Physiol. 2010, 30, 1148–1160. [Google Scholar] [CrossRef] [Green Version]
- Lymburner, L.; Bunting, P.; Lucas, R.; Scarth, P.; Alam, I.; Phillips, C.; Ticehurst, C.; Held, A. Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sens. Environ. 2020, 238, 111185. [Google Scholar] [CrossRef]
- Chauhan, R.; Ramanathan, A.L.; Adhya, T.K. Assessment of methane and nitrous oxide flux from mangroves along Eastern coast of India. Geofluids 2008, 8, 321–332. [Google Scholar] [CrossRef]
- Maher, D.T.; Sippo, J.Z.; Tait, D.R.; Holloway, C.; Santos, I.R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 2016, 6, 25701. [Google Scholar] [CrossRef] [Green Version]
- Jalota, S.K.; Vashisht, B.B.; Sharma, S.; Kaur, S. Chapter 1–Emission of Greenhouse Gases and Their Warming Effect. In Understanding Climate Change Impacts on Crop Productivity and Water Balance; Jalota, S.K., Vashisht, B.B., Sharma, S., Kaur, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–53. [Google Scholar]
Land Use | Parameters for Land Cover |
---|---|
Agricultural | Agricultural activities, e.g., farming. |
Commercial | Areas of business, no usual residences or dwellings, e.g., shopping malls. |
Educational | Institutions, e.g., schools or universities, that may contain a residential population in nonprivate dwellings such as student accommodation. |
Hospital and medical | Facilities such as hospitals and medical centres. |
Industrial | Areas of industry, no usual residences or dwellings, e.g., factories. |
Commonwealth land | Land that did not fit into other categories such as Defence sites and Commonwealth owned and operated lands. |
Parkland | Any public space, sporting arena, or outdoor facility, e.g., racecourses, golf courses, stadia, nature reserves, and other protected or conservation areas. |
Residential | Residential development. |
Shipping | Related to shipping activities, e.g., ports. |
Transport | Road, rail, and air transportation infrastructure. |
Water bodies | Artificial and natural water bodies that were not entirely enclosed by another land use, for example, a water body inside a university was not included in this count. |
Land Cover | Parameters for Land Cover |
---|---|
Broadleaf evergreen forest | Open to closed, 40–100% cover |
Needleleaf evergreen forest | Open to closed, 40–100% cover |
Tree open | Open woodland, 10–40% cover |
Shrub | Open to closed shrubland and thickets, 40–100% cover |
Herbaceous | Open to closed herbaceous vegetation as a single layer of vegetation, 40–100% cover |
Herbaceous with sparse tree/shrubland | Open to closed herbaceous vegetation with trees and shrubs, 40–100% cover |
Sparse vegetation | Sparse (<40% cover) herbaceous or woody vegetation |
Mangrove | Open to closed woody vegetation in a saline water environment, 40–100% cover |
Cropland | Cultivated areas of herbaceous crops |
Air Pollutant | Partial Eta Square (ηp2) | p Value | ||
---|---|---|---|---|
Traffic Density | NPI Pollutants | Traffic Density | NPI Pollutants | |
PM₁₀ | 0.374 | 0.123 | 0.000 | 0.000 |
NO₂ | 0.375 | 0.057 | 0.000 | 0.000 |
SO₂ | 0.529 | 0.182 | 0.000 | 0.000 |
Air Pollutant | Partial Eta Square (ηp2) | p-Value | ||
---|---|---|---|---|
Traffic Density | NPI Pollutants | Traffic Density | NPI Pollutants | |
PM₁₀ | 0.341 | 0.103 | 0.000 | 0.000 |
NO₂ | 0.360 | 0.045 | 0.000 | 0.000 |
SO₂ | 0.521 | 0.169 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douglas, A.N.J.; Irga, P.J.; Torpy, F.R. Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry. Environments 2023, 10, 32. https://doi.org/10.3390/environments10020032
Douglas ANJ, Irga PJ, Torpy FR. Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry. Environments. 2023; 10(2):32. https://doi.org/10.3390/environments10020032
Chicago/Turabian StyleDouglas, Ashley N. J., Peter J. Irga, and Fraser R. Torpy. 2023. "Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry" Environments 10, no. 2: 32. https://doi.org/10.3390/environments10020032
APA StyleDouglas, A. N. J., Irga, P. J., & Torpy, F. R. (2023). Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry. Environments, 10(2), 32. https://doi.org/10.3390/environments10020032