Combining Constructed Wetlands and UV Photolysis for the Advanced Removal of Organic Matter, Nitrogen, and Emerging Pollutants from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Combined HD–VF–PD Lab-Scale System
2.2. Operational Characteristics
2.3. Sampling and Analytical Methodology
2.4. Solids Accumulation and Biological Assays
2.5. Comparative Study of Eps Removal by PD Cell Treating Raw and Pre-Treated Effluent
3. Results and Discussion
3.1. Evaluation of the Performance of HD and VF Units Regarding Organic Matter and Nitrogen Removal
3.2. Effect of PD Unit on Suspended Solids, Organic Matter, and Nitrogen Conversion
3.3. Overall Treatment Performance and Unit Contribution
3.4. VF Performance
3.5. HD Performance and Biomass Characteristics
3.6. Emerging Pollutant Removal
3.6.1. Presence of EPs in Influent Wastewater
3.6.2. Overall EP Removal per Periods
3.6.3. EP Removal by System Steps
3.6.4. Removal Efficiency of the PD Cell Treating Raw Wastewater and CW Effluent
4. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Álvarez, J.A.; Ruíz, I.; Soto, M. Anaerobic Digesters as a Pretreatment for Constructed Wetlands. Ecol. Eng. 2008, 33, 54–67. [Google Scholar] [CrossRef]
- Ruiz, I.; Díaz, M.A.; Crujeiras, B.; García, J.; Soto, M. Solids Hydrolysis and Accumulation in a Hybrid Anaerobic Digester-Constructed Wetlands System. Ecol. Eng. 2010, 36, 1007–1016. [Google Scholar] [CrossRef]
- Pedescoll, A.; Corzo, A.; Álvarez, E.; García, J.; Puigagut, J. The Effect of Primary Treatment and Flow Regime on Clogging Development in Horizontal Subsurface Flow Constructed Wetlands: An Experimental Evaluation. Water Res. 2011, 45, 3579–3589. [Google Scholar] [CrossRef]
- del Castillo, A.F.; Garibay, M.V.; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; de Anda, J.; Gradilla-Hernández, M.S. A Review of the Sustainability of Anaerobic Reactors Combined with Constructed Wetlands for Decentralized Wastewater Treatment. J. Clean. Prod. 2022, 133428. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Torrens, A.; Buttiglieri, G.; Monclús, H.; Arias, C.A.; Carvalho, P.N.; Galvao, A.; Comas, J. Nature-Based Solutions Coupled with Advanced Technologies: An Opportunity for Decentralized Water Reuse in Cities. J. Clean. Prod. 2022, 340, 130660. [Google Scholar] [CrossRef]
- Pinto da Silva, C.; Xavier de Campos, S. Combined Process of Chemically Enhanced Sedimentation and Rapid Filtration for Urban Wastewater Treatment for Potable Reuse. Environ. Technol. 2022, 1–12. [Google Scholar] [CrossRef]
- Gonzalo, O.G.; Ruiz, I.; Soto, M. Integrating Pretreatment and Denitrification in Constructed Wetland Systems. Sci. Total Environ. 2017, 584–585, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, S.C.; Aktaş, Ö.; Fındık, N.; Akça, L.; Kınacı, C. Effect of Recirculation on Nitrogen Removal in a Hybrid Constructed Wetland System. Ecol. Eng. 2012, 40, 1–5. [Google Scholar] [CrossRef]
- Tanner, C.C.; Sukias, J.P.S.; Headley, T.R.; Yates, C.R.; Stott, R. Constructed Wetlands and Denitrifying Bioreactors for on-Site and Decentralised Wastewater Treatment: Comparison of Five Alternative Configurations. Ecol. Eng. 2012, 42, 112–123. [Google Scholar] [CrossRef]
- Duarte, N.C.; Barbosa, A.C.; Magalhães, T.M.; Montagner, C.C.; de Oliveira Cruz, L.M.; Tonetti, A.L. Conventional Anaerobic Reactors Applied to Denitrification: A Comparison Between Packed Bed and UASB Reactors under Low COD Conditions. Water Air Soil Pollut. 2021, 232, 54. [Google Scholar] [CrossRef]
- Magalhães, T.M.; Duarte, N.C.; de Alencar Neves, T.; Bueno, D.A.C.; Delforno, T.P.; de Oliveira, V.M.; Tonetti, A.L. The Challenge of Making Wastewater Treatment Plants Composed by Anaerobic Reactors Capable of Removing Nitrogen. Water Air Soil Pollut. 2019, 230, 234. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Surampalli, R.Y. Comparative Performance of UASB and Anaerobic Hybrid Reactors for the Treatment of Complex Phenolic Wastewater. Bioresour. Technol. 2012, 123, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A Review on Occurrences, Eco-Toxic Effects, and Remediation of Emerging Contaminants from Wastewater: Special Emphasis on Biological Treatment Based Hybrid Systems. J. Environ. Chem. Eng. 2021, 9, 105282. [Google Scholar] [CrossRef]
- Khasawneh, O.; Palaniandy, P. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions—A Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Matamoros, V.; Caselles-Osorio, A.; García, J.; Bayona, J.M. Behaviour of Pharmaceutical Products and Biodegradation Intermediates in Horizontal Subsurface Flow Constructed Wetland. A Microcosm Experiment. Sci. Total Environ. 2008, 394, 171–176. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I.; van Hullebusch, E.D. The Anaerobic Biodegradation of Emerging Organic Contaminants by Horizontal Subsurface Flow Constructed Wetlands. Water Sci. Technol. 2021, 83, 2809–2828. [Google Scholar] [CrossRef]
- Ávila, C.; Bayona, J.M.; Martín, I.; Salas, J.J.; García, J. Emerging Organic Contaminant Removal in a Full-Scale Hybrid Constructed Wetland System for Wastewater Treatment and Reuse. Ecol. Eng. 2015, 80, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Venditti, S.; Brunhoferova, H.; Hansen, J. Behaviour of 27 Selected Emerging Contaminants in Vertical Flow Constructed Wetlands as Post-Treatment for Municipal Wastewater. Sci. Total Environ. 2022, 819, 153234. [Google Scholar] [CrossRef]
- Mathon, B.; Ferreol, M.; Coquery, M.; Choubert, J.M.; Chovelon, J.M.; Miège, C. Direct Photodegradation of 36 Organic Micropollutants under Simulated Solar Radiation: Comparison with Free-Water Surface Constructed Wetland and Influence of Chemical Structure. J. Hazard. Mater. 2021, 407, 124801. [Google Scholar] [CrossRef] [PubMed]
- Nuel, M.; Laurent, J.; Bois, P.; Heintz, D.; Wanko, A. Seasonal and Ageing Effect on the Behaviour of 86 Drugs in a Full-Scale Surface Treatment Wetland: Removal Efficiencies and Distribution in Plants and Sediments. Sci. Total Environ. 2018, 615, 1099–1109. [Google Scholar] [CrossRef]
- Reyes-Contreras, C.; Matamoros, V.; Ruiz, I.; Soto, M.; Bayona, J.M. Evaluation of PPCPs Removal in a Combined Anaerobic Digester-Constructed Wetland Pilot Plant Treating Urban Wastewater. Chemosphere 2011, 84, 1200–1207. [Google Scholar] [CrossRef]
- Matamoros, V.; García, J.; Bayona, J.M. Organic Micropollutant Removal in a Full-Scale Surface Flow Constructed Wetland Fed with Secondary Effluent. Water Res. 2008, 42, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Ruiz, I.; Soto, M. The Potential of Constructed Wetland Systems and Photodegradation Processes for the Removal of Emerging Contaminants—A Review. Environments 2022, 9, 116. [Google Scholar] [CrossRef]
- Ávila, C.; Matamoros, V.; Reyes-Contreras, C.; Piña, B.; Casado, M.; Mita, L.; Rivetti, C.; Barata, C.; García, J.; Bayona, J.M. Attenuation of Emerging Organic Contaminants in a Hybrid Constructed Wetland System under Different Hydraulic Loading Rates and Their Associated Toxicological Effects in Wastewater. Sci. Total Environ. 2014, 470–471, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The Ability of Biologically Based Wastewater Treatment Systems to Remove Emerging Organic Contaminants—A Review. Environ. Sci. Pollut. Res. 2014, 21, 11708–11728. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A Review on Removing Pharmaceutical Contaminants from Wastewater by Constructed Wetlands: Design, Performance and Mechanism. Sci. Total Environ. 2014, 468–469, 908–932. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. How Efficient Are Constructed Wetlands in Removing Pharmaceuticals from Untreated and Treated Urban Wastewaters? A Review. Sci. Total Environ. 2014, 470–471, 1281–1306. [Google Scholar] [CrossRef]
- Torrijos, V.; Gonzalo, O.G.; Trueba-Santiso, A.; Ruiz, I.; Soto, M. Effect of by-Pass and Effluent Recirculation on Nitrogen Removal in Hybrid Constructed Wetlands for Domestic and Industrial Wastewater Treatment. Water Res. 2016, 103, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. The Use of Hybrid Constructed Wetlands for Wastewater Treatment with Special Attention to Nitrogen Removal: A Review of a Recent Development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and Tracks in Removal of Emerging Contaminants from the Wastewater through Hybrid Treatment Systems: A Review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef] [PubMed]
- Araña, J.; Garriga i Cabo, C.; Fernández Rodríguez, C.; Herrera Melián, J.A.; Ortega Méndez, J.A.; Doña Rodríguez, J.M.; Pérez Peña, J. Combining TiO2-Photocatalysis and Wetland Reactors for the Efficient Treatment of Pesticides. Chemosphere 2008, 71, 788–794. [Google Scholar] [CrossRef]
- Colina-Márquez, J.; Machuca-Martínez, F.; Salas, W. Enhancement of the Potential Biodegradability and the Mineralization of a Pesticides Mixture after Being Treated by a Coupled Process of TiO2-Based Solar Photocatalysis with Constructed Wetlands. Ing. Compet. 2013, 15, 181–190. [Google Scholar]
- Mahne, D.; Štangar, U.L.; Trebše, P.; Bulc, T.G. TiO2-Based Photocatalytic Treatment of Raw and Constructed-Wetland Pretreated Textile Wastewater. Int. J. Photoenergy 2012, 2012, 725692. [Google Scholar] [CrossRef] [Green Version]
- Horn, T.B.; Zerwes, F.V.; Kist, L.T.; Machado, Ê.L. Constructed Wetland and Photocatalytic Ozonation for University Sewage Treatment. Ecol. Eng. 2014, 63, 134–141. [Google Scholar] [CrossRef]
- Lazar, M.; Varghese, S.; Nair, S. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates. Catalysts 2012, 2, 572–601. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, O.G.; Marín, Z.; Fernández, M.I.; Santaballa, J.A.; Ruiz, I.; Torres, E.; Canle, M.; Soto, M. Combination of Constructed Wetlands and Photodegradation Processes for the Elimination of Persistent Organic Pollutants from Municipal Wastewater. In Proceedings of the 14th International IWA Conference on Sustainable Solutions for Small Water and Wastewater Treatment Systems (S2Small2017), Nantes, France, 22–26 October 2017; IWA Publishing: Nantes, France, 2017. [Google Scholar]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC, USA, 2017; ISBN 978-0-87553-287-5. [Google Scholar]
- Soto, M.; Méndez, R.; Lema, J.M. Methanogenic and Non-Methanogenic Activity Tests. Theoretical Basis and Experimental Set up. Water Res. 1993, 27, 1361–1376. [Google Scholar] [CrossRef]
- Ferreiro, N.; Soto, M. Anaerobic Hydrolysis of Primary Sludge: Influence of Sludge Concentration and Temperature. Water Sci. Technol. 2003, 47, 239–246. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Zapico, C.A.; Gómez, M.; Presas, J.; Soto, M. Anaerobic Hydrolysis of a Municipal Wastewater in a Pilot-Scale Digester. Water Sci. Technol. 2003, 47, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G. A Comprehensive Review on Nutrients and Organics Removal from Different Wastewaters Employing Subsurface Flow Constructed Wetlands. Crit. Rev. Environ. Sci. Technol. 2017, 47, 203–288. [Google Scholar] [CrossRef]
- Torrijos, V.; Ruiz, I.; Soto, M. Microbial Activities and Process Rates in Two-Step Vertical and Horizontal Subsurface Flow Gravel and Sand Filters. Water Air Soil Pollut. 2018, 229, 290. [Google Scholar] [CrossRef]
- Winter, K.J.; Goetz, D. The Impact of Sewage Composition on the Soil Clogging Phenomena of Vertical Flow Constructed Wetlands. In Water Science and Technology; IWA Publishing: London, UK, 2003; Volume 48, pp. 9–14. [Google Scholar]
- Fan, J.; Wang, W.; Zhang, B.; Guo, Y.; Ngo, H.H.; Guo, W.; Zhang, J.; Wu, H. Nitrogen Removal in Intermittently Aerated Vertical Flow Constructed Wetlands: Impact of Influent COD/N Ratios. Bioresour. Technol. 2013, 143, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, O.G.; Ruiz, I.; Soto, M. Effect of Different Bypass Rates and Unit Area Ratio in Hybrid Constructed Wetlands. Environ. Sci. Pollut. Res. 2020, 27, 40355–40369. [Google Scholar] [CrossRef] [PubMed]
- De la Varga, D.; Díaz, M.A.; Ruiz, I.; Soto, M. Avoiding Clogging in Constructed Wetlands by Using Anaerobic Digesters as Pre-Treatment. Ecol. Eng. 2013, 52, 262–269. [Google Scholar] [CrossRef]
- Pascual, A.; de la Varga, D.; Arias, C.A.; Van Oirschot, D.; Kilian, R.; Álvarez, J.A.; Soto, M. Hydrolytic Anaerobic Reactor and Aerated Constructed Wetland Systems for Municipal Wastewater Treatment—HIGHWET Project. Environ. Technol. 2017, 38, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, I.; Álvarez, J.A.; Díaz, M.A.; Serrano, L.; Soto, M. Municipal Wastewater Treatment in an Anaerobic Digester-Constructed Wetland System. Environ. Technol. 2008, 29, 1249–1256. [Google Scholar] [CrossRef]
- Hua, G.F.; Zhu, W.; Zhao, L.F.; Huang, J.Y. Clogging Pattern in Vertical-Flow Constructed Wetlands: Insight from a Laboratory Study. J. Hazard. Mater. 2010, 180, 668–674. [Google Scholar] [CrossRef]
- Nivala, J.; Van Afferden, M.; Hasselbach, R.; Langergraber, G.; Molle, P.; Rustige, H.; Nowak, J. The New German Standard on Constructed Wetland Systems for Treatment of Domestic and Municipal Waste Water. Water Sci. Technol. 2018, 78, 2414–2426. [Google Scholar] [CrossRef] [Green Version]
- Ávila, C.; García, J.; Garfí, M. Influence of Hydraulic Loading Rate, Simulated Storm Events and Seasonality on the Treatment Performance of an Experimental Three-Stage Hybrid CW System. Ecol. Eng. 2016, 87, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Moharram, M.A.; Abdelhalim, H.S.; Rozaik, E.H. Anaerobic up Flow Fluidized Bed Reactor Performance as a Primary Treatment Unit in Domestic Wastewater Treatment. HBRC J. 2016, 12, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Nivala, J.; Boog, J.; Headley, T.; Aubron, T.; Wallace, S.; Brix, H.; Mothes, S.; van Afferden, M.; Müller, R.A. Side-by-Side Comparison of 15 Pilot-Scale Conventional and Intensified Subsurface Flow Wetlands for Treatment of Domestic Wastewater. Sci. Total Environ. 2019, 658, 1500–1513. [Google Scholar] [CrossRef]
- Henze, M.; Harremoës, P.; Cour Jansen, J.; Arvin, E. Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 1997; ISBN 978-3-662-22607-0. [Google Scholar]
- De la Varga, D.; Ruiz, I.; Álvarez, J.A.; Soto, M. Methane and Carbon Dioxide Emissions from Constructed Wetlands Receiving Anaerobically Pretreated Sewage. Sci. Total Environ. 2015, 538, 824–833. [Google Scholar] [CrossRef]
- Torrijos, V.; Ruiz, I.; Soto, M. Effect of Step-Feeding on the Performance of Lab-Scale Columns Simulating Vertical Flow-Horizontal Flow Constructed Wetlands. Environ. Sci. Pollut. Res. 2017, 24, 22649–22662. [Google Scholar] [CrossRef]
- Dordio, A.V.; Carvalho, A.J.P. Organic Xenobiotics Removal in Constructed Wetlands, with Emphasis on the Importance of the Support Matrix. J. Hazard. Mater. 2013, 252–253, 272–292. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Vymazal, J.; Březinová, T.; Koželuh, M.; Kule, L.; Huang, J.; Chen, Z. Occurrence, Removal and Environmental Risk Assessment of Pharmaceuticals and Personal Care Products in Rural Wastewater Treatment Wetlands. Sci. Total Environ. 2016, 566–567, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, E.; Verlicchi, P.; Young, T.M. Paracetamol Removal in Subsurface Flow Constructed Wetlands. J. Hydrol. 2011, 404, 130–135. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Koottatep, T.; Chapagain, S.K.; Panuvatvanich, A.; Polprasert, C.; Nguyen, T.M.H.; Chaiwong, C.; Nguyen, N.L. Removal and Monitoring Acetaminophen-Contaminated Hospital Wastewater by Vertical Flow Constructed Wetland and Peroxidase Enzymes. J. Environ. Manag. 2019, 250, 109526. [Google Scholar] [CrossRef]
- Vymazal, J.; Dvořáková Březinová, T.; Koželuh, M.; Kule, L. Occurrence and Removal of Pharmaceuticals in Four Full-Scale Constructed Wetlands in the Czech Republic—The First Year of Monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Kim, I.; Tanaka, H. Photodegradation Characteristics of PPCPs in Water with UV Treatment. Environ. Int. 2009, 35, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Yamashita, N.; Tanaka, H. Performance of UV and UV/H2O2 Processes for the Removal of Pharmaceuticals Detected in Secondary Effluent of a Sewage Treatment Plant in Japan. J. Hazard. Mater. 2009, 166, 1134–1140. [Google Scholar] [CrossRef]
- He, Y.; Sutton, N.B.; Lei, Y.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Fate and Distribution of Pharmaceutically Active Compounds in Mesocosm Constructed Wetlands. J. Hazard. Mater. 2018, 357, 198–206. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Reyes-Contreras, C.; Domínguez, C.; Bécares, E.; Bayona, J.M. Behaviour of Pharmaceuticals and Personal Care Products in Constructed Wetland Compartments: Influent, Effluent, Pore Water, Substrate and Plant Roots. Chemosphere 2016, 145, 508–517. [Google Scholar] [CrossRef]
- Kahl, S.; Nivala, J.; van Afferden, M.; Müller, R.A.; Reemtsma, T. Effect of Design and Operational Conditions on the Performance of Subsurface Flow Treatment Wetlands: Emerging Organic Contaminants as Indicators. Water Res. 2017, 125, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, H.; van Hullebusch, E.D. Performance Comparison of Different Types of Constructed Wetlands for the Removal of Pharmaceuticals and Their Transformation Products: A Review. Environ. Sci. Pollut. Res. 2020, 27, 14342–14364. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Diaz, O.; Schultze-Nobre, L.; Moeder, M.; Nivala, J.; Kuschk, P.; Koeser, H. Removal of Selected Organic Micropollutants in Planted and Unplanted Pilot-Scale Horizontal Flow Constructed Wetlands under Conditions of High Organic Load. Ecol. Eng. 2014, 71, 234–245. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Gersberg, R.M.; Zhu, J.; Hua, T.; Jinadasa, K.B.S.N.; Tan, S.K. Batch versus Continuous Feeding Strategies for Pharmaceutical Removal by Subsurface Flow Constructed Wetland. Environ. Pollut. 2012, 167, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Alvarino, T.; Suarez, S.; Lema, J.M.; Omil, F. Understanding the Removal Mechanisms of PPCPs and the Influence of Main Technological Parameters in Anaerobic UASB and Aerobic CAS Reactors. J. Hazard. Mater. 2014, 278, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Nguyen, L.X.; Arias, C.A.; Salvadó, V.; Brix, H. Evaluation of Aquatic Plants for Removing Polar Microcontaminants: A Microcosm Experiment. Chemosphere 2012, 88, 1257–1264. [Google Scholar] [CrossRef]
- Nivala, J.; Kahl, S.; Boog, J.; van Afferden, M.; Reemtsma, T.; Müller, R.A. Dynamics of Emerging Organic Contaminant Removal in Conventional and Intensified Subsurface Flow Treatment Wetlands. Sci. Total Environ. 2019, 649, 1144–1156. [Google Scholar] [CrossRef]
- Conkle, J.L.; Lattao, C.; White, J.R.; Cook, R.L. Competitive Sorption and Desorption Behavior for Three Fluoroquinolone Antibiotics in a Wastewater Treatment Wetland Soil. Chemosphere 2010, 80, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.; Al Aukidy, M.; Zambello, E. Removal of Selected Pharmaceuticals from Domestic Wastewater in an Activated Sludge System Followed by a Horizontal Subsurface Flow Bed—Analysis of Their Respective Contributions. Sci. Total Environ. 2013, 454–455, 411–425. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.S.; Su, H.C.; Ying, G.G.; Liu, F.; Liu, S.S.; He, L.Y.; Chen, Z.F.; Yang, Y.Q.; Chen, F.R. Removal of Antibiotics and Antibiotic Resistance Genes in Rural Wastewater by an Integrated Constructed Wetland. Environ. Sci. Pollut. Res. 2015, 22, 1794–1803. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Xu, Y.; Yu, Y.; Zhu, Z.W.; Feng, G. Effects of Pharmaceuticals on Microbial Communities and Activity of Soil Enzymes in Mesocosm-Scale Constructed Wetlands. Chemosphere 2018, 212, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jing, R.; Feng, X.; Dai, Y.; Tao, R.; Vymazal, J.; Cai, N.; Yang, Y. Removal of Acidic Pharmaceuticals by Small-Scale Constructed Wetlands Using Different Design Configurations. Sci. Total Environ. 2018, 639, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Francini, A.; Mariotti, L.; Di Gregorio, S.; Sebastiani, L.; Andreucci, A. Removal of Micro-Pollutants from Urban Wastewater by Constructed Wetlands with Phragmites Australis and Salix Matsudana. Environ. Sci. Pollut. Res. 2018, 25, 36474–36484. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Salvadó, V. Evaluation of a Coagulation/Flocculation-Lamellar Clarifier and Filtration-UV-Chlorination Reactor for Removing Emerging Contaminants at Full-Scale Wastewater Treatment Plants in Spain. J. Environ. Manag. 2013, 117, 96–102. [Google Scholar] [CrossRef]
- Cardinal, P.; Anderson, J.C.; Carlson, J.C.; Low, J.E.; Challis, J.K.; Beattie, S.A.; Bartel, C.N.; Elliott, A.D.; Montero, O.F.; Lokesh, S.; et al. Macrophytes May Not Contribute Significantly to Removal of Nutrients, Pharmaceuticals, and Antibiotic Resistance in Model Surface Constructed Wetlands. Sci. Total Environ. 2014, 482–483, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Mathon, B.; Coquery, M.; Miège, C.; Vandycke, A.; Choubert, J.M. Influence of Water Depth and Season on the Photodegradation of Micropollutants in a Free-Water Surface Constructed Wetland Receiving Treated Wastewater. Chemosphere 2019, 235, 260–270. [Google Scholar] [CrossRef]
- Gabet-Giraud, V.; Miège, C.; Choubert, J.M.; Ruel, S.M.; Coquery, M. Occurrence and Removal of Estrogens and Beta Blockers by Various Processes in Wastewater Treatment Plants. Sci. Total Environ. 2010, 408, 4257–4269. [Google Scholar] [CrossRef] [PubMed]
- Conkle, J.L.; White, J.R.; Metcalfe, C.D. Reduction of Pharmaceutically Active Compounds by a Lagoon Wetland Wastewater Treatment System in Southeast Louisiana. Chemosphere 2008, 73, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.; Pedescoll, A.; Matamoros, V.; Bayona, J.M.; García, J. Capacity of a Horizontal Subsurface Flow Constructed Wetland System for the Removal of Emerging Pollutants: An Injection Experiment. Chemosphere 2010, 81, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.; Reyes, C.; Bayona, J.M.; García, J. Emerging Organic Contaminant Removal Depending on Primary Treatment and Operational Strategy in Horizontal Subsurface Flow Constructed Wetlands: Influence of Redox. Water Res. 2013, 47, 315–325. [Google Scholar] [CrossRef]
- Ávila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J. Emerging Organic Contaminants in Vertical Subsurface Flow Constructed Wetlands: Influence of Media Size, Loading Frequency and Use of Active Aeration. Sci. Total Environ. 2014, 494–495, 211–217. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Critical Perspective on Advanced Treatment Processes for Water and Wastewater: AOPs, ARPs, and AORPs. Appl. Sci. 2020, 10, 4549. [Google Scholar] [CrossRef]
Period | I | II | III | IV | V |
---|---|---|---|---|---|
Operation time (d) | 0–16 | 17–45 | 46–74 | 75–101 | 102–122 |
System configuration a | (1) | (2) | (2) | (3) | (1) |
Q1 (L·d−1) | 4.28 ± n.d. | 3.76 ± 0.09 | 3.36 ± 0.96 | 3.60 ± 0.32 | 5.77 ± 0.58 |
Recirculation ratio, QR/Q1 b | 1.03 (VF) | 1.03 (VF) | 2.37 (VF) | 2.20 (PD) | 2.54 (VF) |
External addition EPs | no | yes | yes | yes | no |
Overall HLR (mm·d−1) | 212 | 184 | 166 | 178 | 292 |
Overall TSS SLR (g·m−2·d−1) | 48.0 | 36.2 | 26.5 | 37.2 | 95.2 |
Overall COD SLR (g·m−2·d−1) | 87.3 | 71.4 | 45.1 | 67.7 | 193.8 |
Overall NH4+-N SLR (g·m−2·d−1) | 8.6 | 7.4 | 5.9 | 7.2 | 15.7 |
HD HRT (h) | 4.9 | 5.7 | 6.3 | 5.9 | 3.6 |
HD v (m·h−1) | 0.130 | 0.113 | 0.169 | 0.172 | 0.313 |
VF HLR (mm·d−1) | 282 | 245 | 221 | 237 | 389 |
PD HRT (h) | - | 0.5 | 0.5 | 0.25–0.5 c | - |
Period | SLR (g·m−2·d−1) | Removal (%) | SRR (g·m−2·d−1) | ||||
---|---|---|---|---|---|---|---|
TSS | COD | NH4+-N | TSS | COD | NH4+-N | NH4+-N | |
II | 21.5 | 39.8 | 10.1 | 79.3 | 63.2 | 48.7 | 5.2 |
III | 0.8 | 21.0 | 8.2 | −407.6 | 40.1 | 63.6 | 5.5 |
IV | 5.6 | 31.5 | 9.3 | 17.9 | 47.4 | 59.4 | 5.5 |
V | 16.5 | 83.5 | 23.4 | 33.2 | 52.1 | 43.6 | 11.9 |
Period | I | II | III | IV | V |
---|---|---|---|---|---|
Biomass of AF gravel | |||||
VS (% d.m.) | 1.78 | 1.15 | n.d. | 1.23 | 1.59 |
H2O (% d.m.) | 13.75 | 16.46 | n.d. | 19.04 | 21.46 |
VS (g) | 10.9 | 7.1 | n.d. | 7.5 | 9.7 |
SDA (mg N·g VS−1·h−1) | n.d. | 3.05 | n.d. | 2.57 | n.d. |
Biomass of HUSB zone | |||||
Sludge bed volume (mL) | 140.0 | 143.6 | n.d. | 149.8 | 152.2 |
TSS (g·L−1) | 8.00 | 8.63 | n.d. | 11.35 | 9.08 |
VSS (g·L−1) | 5–76 | 5.78 | n.d. | 9.28 | 6.33 |
SMA (g COD·g VSS−1·d−1) | 0.023 | 0.039 | n.d. | 0.017 | n.d. |
SMA latency (h) | 150 | 300 | n.d. | 100 | n.d. |
SDA (mg N·g VSS−1·h−1) | 4.71 | 6.65 | n.d. | 6.48 | n.d. |
Overall HD | |||||
SDR (g N·m−2·d−1) | n.d. | 16.87 | 14.19 | 19.23 | 39.70 |
ACE | OFL | CAF | KET | IBU | ACB | BPA | SOT | DCL | CBZ | |
---|---|---|---|---|---|---|---|---|---|---|
Mean (µg·L−1) | 68.1 | 20.0 | 27.3 | 4.50 | 0.19 | 1.10 | 7.40 | 2.11 | <0.10 | <0.10 |
St. Dev. (µg·L−1) | 10.6 | 1.2 | 3.4 | 0.39 | 0.38 | 0.15 | 0.95 | 0.41 | n.a. | n.a. |
VC (%) | 15.6 | 6.0 | 12.6 | 8.7 | 200.0 | 13.7 | 12.9 | 19.5 | n.a. | n.a. |
ACE | OFL | CAF | KET | IBU | ACB | BPA | SOT | CBZ | DCL | |
---|---|---|---|---|---|---|---|---|---|---|
Hybrid digester | ||||||||||
HUSB sludge | 5.3 | 2.4 | 10.3 | <0.5 | 3.2 | <0.5 | 21.4 | <0.5 | 4.2 | 8.4 |
AF gravel | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Vertical Flow CW | ||||||||||
FM2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
FM1 | 1.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 2.4 | <0.5 | <0.5 | <0.5 |
ACE | OFL | CAF | KET | IBU | ACB | BPA | SOT | |
---|---|---|---|---|---|---|---|---|
Raw MW | ||||||||
Influent | 91.09 | 17.83 | 44.17 | 5.95 | 0.89 | 1.17 | 6.40 | 3.09 |
Effluent | 92.46 | 18.74 | 46.43 | <0.10 | <0.10 | 0.94 | 6.79 | <0.10 |
Removal (%) | −1.5 | −5.1 | −5.1 | 100.0 | 100.0 | 19.2 | −6.0 | 100 |
HD–VF effluent | ||||||||
Influent | 1.38 | 19.33 | 17.62 | 4.58 | <0.10 | 1.16 | 7.37 | 2.38 |
Effluent | <0.10 | 19.1 | 14.0 | <0.10 | <0.10 | 0.83 | 6.32 | <0.10 |
Removal (%) | 100.0 | 1.3 | 20.8 | 100 | n.a. | 28.9 | 14.1 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.; Fernández, M.I.; Ruiz, I.; Canle, M.; Soto, M. Combining Constructed Wetlands and UV Photolysis for the Advanced Removal of Organic Matter, Nitrogen, and Emerging Pollutants from Wastewater. Environments 2023, 10, 35. https://doi.org/10.3390/environments10030035
Sánchez M, Fernández MI, Ruiz I, Canle M, Soto M. Combining Constructed Wetlands and UV Photolysis for the Advanced Removal of Organic Matter, Nitrogen, and Emerging Pollutants from Wastewater. Environments. 2023; 10(3):35. https://doi.org/10.3390/environments10030035
Chicago/Turabian StyleSánchez, Marta, María Isabel Fernández, Isabel Ruiz, Moisés Canle, and Manuel Soto. 2023. "Combining Constructed Wetlands and UV Photolysis for the Advanced Removal of Organic Matter, Nitrogen, and Emerging Pollutants from Wastewater" Environments 10, no. 3: 35. https://doi.org/10.3390/environments10030035
APA StyleSánchez, M., Fernández, M. I., Ruiz, I., Canle, M., & Soto, M. (2023). Combining Constructed Wetlands and UV Photolysis for the Advanced Removal of Organic Matter, Nitrogen, and Emerging Pollutants from Wastewater. Environments, 10(3), 35. https://doi.org/10.3390/environments10030035