Sustainable Co-Management of Acid Mine Drainage with Struvite Synthesis Effluent: Pragmatic Synergies in Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Methods for Sample Characterization
2.3. Co-Treatment Experimental Setup
2.4. Statistical Analyses
3. Results and Discussion
3.1. Effect of Liquid-to-Liquid Ratio
3.2. Co-Management at Optimal Conditions
3.3. Product Sludge Characterization
3.3.1. Elemental Analysis Using X-ray Fluorescence
3.3.2. Elemental Analysis Using Energy-Dispersive X-ray Spectroscopy
3.3.3. Functional Groups and Mineral Analysis
3.3.4. Morphological and Microstructural Characteristics
3.3.5. Energy Dispersive X-ray Spectroscopy Elemental Mapping
3.3.6. Spot Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Dai, H.; Wu, Y.; Peng, Y.; Lu, X. A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 2018, 197, 768–781. [Google Scholar] [CrossRef]
- Sena, M.; Hicks, A. Life cycle assessment review of struvite precipitation in wastewater treatment. Resour. Conserv. Recycl. 2018, 139, 194–204. [Google Scholar] [CrossRef]
- Mavhungu, A.; Masindi, V.; Foteinis, S.; Mbaya, R.; Tekere, M.; Kortidis, I.; Chatzisymeon, E. Advocating circular economy in wastewater treatment: Struvite formation and drinking water reclamation from real municipal effluents. J. Environ. Chem. Eng. 2020, 8, 103957. [Google Scholar] [CrossRef]
- Masindi, V.; Fosso-Kankeu, E.; Mamakoa, E.; Nkambule, T.T.I.; Mamba, B.B.; Naushad, M.; Pandey, S. Emerging remediation potentiality of struvite developed from municipal wastewater for the treatment of acid mine drainage. Environ. Res. 2022, 210, 112944. [Google Scholar] [CrossRef]
- Masindi, V.; Shabalala, A.; Foteinis, S. Passive co-treatment of phosphorus-depleted municipal wastewater with acid mine drainage: Towards sustainable wastewater management systems. J. Environ. Manag. 2022, 324, 116399. [Google Scholar] [CrossRef] [PubMed]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Wilfong, W.C.; Ji, T.; Duan, Y.; Shi, F.; Wang, Q.; Gray, M.L. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. J. Hazard. Mater. 2022, 424, 127625. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.-H.; Ren, N.-Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef] [PubMed]
- Gazea, B.; Adam, K.; Kontopoulos, A. A review of passive systems for the treatment of acid mine drainage. Miner. Eng. 1996, 9, 23–42. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Chen, G.; Ye, Y.; Yao, N.; Hu, N.; Zhang, J.; Huang, Y. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. J. Clean. Prod. 2021, 329, 129666. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Chatzisymeon, E. Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. J. Hazard. Mater. 2022, 421, 126677. [Google Scholar] [CrossRef]
- Nkele, K.; Mpenyana-Monyatsi, L.; Masindi, V. Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review. J. Clean. Prod. 2022, 377, 134152. [Google Scholar] [CrossRef]
- Spellman, C.D.; Tasker, T.L.; Goodwill, J.E.; Strosnider, W.H.J. Potential Implications of Acid Mine Drainage and Wastewater Cotreatment on Solids Handling: A Review. J. Environ. Eng. 2020, 146, 03120010. [Google Scholar] [CrossRef]
- Mavhungu, A.; Mbaya, R.; Masindi, V.; Foteinis, S.; Muedi, K.L.; Kortidis, I.; Chatzisymeon, E. Wastewater treatment valorisation by simultaneously removing and recovering phosphate and ammonia from municipal effluents using a mechano-thermo activated magnesite technology. J. Environ. Manag. 2019, 250, 109493. [Google Scholar] [CrossRef]
- Mavhungu, A.; Foteinis, S.; Mbaya, R.; Masindi, V.; Kortidis, I.; Mpenyana-Monyatsi, L.; Chatzisymeon, E. Environmental sustainability of municipal wastewater treatment through struvite precipitation: Influence of operational parameters. J. Clean. Prod. 2021, 285, 124856. [Google Scholar] [CrossRef]
- South African National Standard (SANS) by South African Bureau of Standards (SABS) Drinking Water—Part 2: Application of SANS 241-1; Sabs: Pretoria, South Africa, 2015.
- Wei, X.; Viadero, R.C., Jr.; Buzby, K.M. Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environ. Eng. Sci. 2005, 22, 745–755. [Google Scholar] [CrossRef]
- Masindi, V.; Osman, M.S.; Mbhele, R.N.; Rikhotso, R. Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model. J. Clean. Prod. 2018, 172, 2899–2909. [Google Scholar] [CrossRef]
- Akinwekomi, V.; Maree, J.P.; Zvinowanda, C.; Masindi, V. Synthesis of magnetite from iron-rich mine water using sodium carbonate. J. Environ. Chem. Eng. 2017, 5, 2699–2707. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Corpuz, R.D.; Igarashi, T.; Villacorte-Tabelin, M.; Alorro, R.D.; Yoo, K.; Raval, S.; Ito, M.; Hiroyoshi, N. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. J. Hazard. Mater. 2020, 399, 122844. [Google Scholar] [CrossRef] [PubMed]
- Tabelin, C.B.; Veerawattananun, S.; Ito, M.; Hiroyoshi, N.; Igarashi, T. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Sci. Total Environ. 2017, 580, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Gitari, M.W.; Tutu, H.; De Beer, M. Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model. J. Environ. Chem. Eng. 2016, 4, 4846–4856. [Google Scholar] [CrossRef]
- Masindi, V.; Osman, M.S.; Shingwenyana, R. Valorization of acid mine drainage (AMD): A simplified approach to reclaim drinking water and synthesize valuable minerals—Pilot study. J. Environ. Chem. Eng. 2019, 7, 103082. [Google Scholar] [CrossRef]
Parameters | AMD | Struvite Supernatant | Co-Treated Effluent |
---|---|---|---|
Sulphate (mg/L) | 18000 ± 2.61 | 22 ± 0.69 | 2153 ± 1.44 |
Total iron (mg/L) | 4500 ± 0.31 | 7 ± 0.05 | 0.1 ± 0.00 |
Total aluminium (mg/L) | 800 ± 0.01 | 0.01 ± 0.00 | 50.3 ± 0.13 |
Total manganese (mg/L) | 150 ± 0.50 | 0.19 ± 0.92 | 15 ± 0.13 |
Total chromium (mg/L) | 0.1 ± 0.00 | 0.06 ± 0.22 | 0.01 ± 0.00 |
Total copper (mg/L) | 0.5 ± 0.00 | 0.03 ± 0.02 | 0.02 ± 0.01 |
Total nickel (mg/L) | 2.5 ± 0.02 | 0.07 ± 0.13 | 0.01 ± 0.00 |
Total arsenic (mg/L) | 0.1 ± 0.00 | 0.05 ± 0.01 | 0.005 ± 0.09 |
Total lead (mg/L) | 0.35 ± 0.58 | 0.05 ± 0.05 | 0.00001 ± 0.06 |
pH (logarithmic units) | 2.5 ± 0.01 | 10.5 ± 0.01 | 6.5 ± 0.07 |
Electrical conductivity (mS/cm) | 2800 ± 0.02 | 89 ± 0.05 | 458 ± 1.33 |
Total zinc (mg/L) | 15 ± 0.08 | 0.02 ± 0.01 | 1.1 ± 0.04 |
Orthophosphate (mg/L) | 0.05 ± 0.19 | 0.7 ± 0.12 | 0.00001 ± 0.05 |
Ammonia (mg/L) | 5.7 ± 0.23 | 28 ± 1.55 | 22.7 ± 0.75 |
Total calcium (mg/L) | 576 ± 2.1 | 8.9 ± 0.75 | 55 ± 0.83 |
Total magnesium (mg/L) | 771 ± 1.13 | 68 ± 0.99 | 110 ± 0.51 |
Element/Metal | Mass Fraction (%) | Element/Metal | Mass Fraction (%) |
---|---|---|---|
SiO2 | 1.82 | MnO | 0.65 |
Al2O3 | 3.89 | NiO | <0.01 |
MgO | 12.12 | CuO | <0.01 |
Na2O | 0.37 | ZrO2 | <0.01 |
P2O5 | 0.09 | S | 10.33 |
Fe2O3 | 29.43 | Cl | <0.01 |
K2O | 0.03 | Co3O4 | 0.02 |
CaO | 13.77 | ZnO | 0.09 |
TiO2 | <0.01 | Ag2O | 0.19 |
V2O5 | <0.01 | LOI | 26.53 |
Cr2O3 | <0.01 | TOTAL | 99.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masindi, V.; Mbhele, R.; Foteinis, S. Sustainable Co-Management of Acid Mine Drainage with Struvite Synthesis Effluent: Pragmatic Synergies in Circular Economy. Environments 2023, 10, 60. https://doi.org/10.3390/environments10040060
Masindi V, Mbhele R, Foteinis S. Sustainable Co-Management of Acid Mine Drainage with Struvite Synthesis Effluent: Pragmatic Synergies in Circular Economy. Environments. 2023; 10(4):60. https://doi.org/10.3390/environments10040060
Chicago/Turabian StyleMasindi, Vhahangwele, Ryneth Mbhele, and Spyros Foteinis. 2023. "Sustainable Co-Management of Acid Mine Drainage with Struvite Synthesis Effluent: Pragmatic Synergies in Circular Economy" Environments 10, no. 4: 60. https://doi.org/10.3390/environments10040060
APA StyleMasindi, V., Mbhele, R., & Foteinis, S. (2023). Sustainable Co-Management of Acid Mine Drainage with Struvite Synthesis Effluent: Pragmatic Synergies in Circular Economy. Environments, 10(4), 60. https://doi.org/10.3390/environments10040060