Evaluating Groundwater Nitrate Status across the River Ythan Catchment (Scotland) following Two Decades of Nitrate Vulnerable Zone Designation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Description of Groundwater Quality Datasets
2.3. Groundwater Vulnerability Assessment
2.4. Groundwater Nitrate Time Series Analyses
2.5. Determination of Land Use
3. Results
3.1. Spatial Distribution of Nutrients in Groundwater and Groundwater Vulnerability Assignment
3.2. Land Use Change of SEPA Groundwater Monitoring Stations
3.3. Groundwater Nitrate Trends and Seasonality
4. Discussion
4.1. Spatial Distribution of Groundwater Nitrate and Hydrogeological Interpretation
4.2. Groundwater Vulnerability
4.3. Groundwater Nitrate Trends and Relation to Climate and Land Use Changes
4.4. Implications to Groundwater Management and Limitations of Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Puckett, L.J.; Tesoriero, A.J.; Dubrovsky, N.M. Nitrogen Contamination of Surficial Aquifers—A Growing Legacy. Environ. Sci. Technol. 2010, 45, 839–844. [Google Scholar] [CrossRef]
- Stayner, L.T.; Schullehner, J.; Semark, B.D.; Jensen, A.S.; Trabjerg, B.B.; Pedersen, M.; Olsen, J.; Hansen, B.; Ward, M.H.; Jones, R.R.; et al. Exposure to nitrate from drinking water and the risk of childhood cancer in Denmark. Environ. Int. 2021, 155, 106613. [Google Scholar] [CrossRef]
- Maier, G.; Nimmo-Smith, R.J.; Glegg, G.A.; Tappin, A.D.; Worsfold, P.J. Estuarine eutrophication in the UK: Current incidence and future trends. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 43–56. [Google Scholar] [CrossRef]
- Lloyd, C.E.M.; Johnes, P.J.; Freer, J.E.; Carswell, A.M.; Jones, J.I.; Stirling, M.W.; Hodgkinson, R.A.; Richmond, C.; Collins, A.L. Determining the sources of nutrient flux to water in headwater catchments: Examining the speciation balance to inform the targeting of mitigation measures. Environ. Sci. Technol. 2019, 648, 1179–1200. [Google Scholar] [CrossRef]
- Strachan, N.; Rotariu, O.; Neill, A.; Allan, R.; Avery, L.; Akoumianaki, I.; Coull, M.; Pagaling, E.; Hansraj, F.; McDonald, E.; et al. The Epidemiology and Disease Burden Potential Relating to Private Water Supplies in Scotland; Report CRW2014_08; Scotland’s Centre of Expertise for Waters (CREW): Aberdeen, UK, 2021; Available online: https://www.crew.ac.uk/publication/epidemiology-and-disease-burden-potential-relating-private-water-supplies-scotland (accessed on 2 March 2023).
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; de Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Pretty, J.N.; Mason, C.F.; Nedwell, D.B.; Hine, R.E.; Leaf, S.; Dils, R. Environmental costs of freshwater eutrophication in England and Wales. Environ. Sci. Technol. 2003, 32, 201–208. [Google Scholar] [CrossRef]
- Thomsen, R.; Søndergaard, V.H.; Sørensen, K.I. Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark. Hydrogeol. J. 2004, 12, 550–562. [Google Scholar] [CrossRef]
- De Vito, L.; Fairbrother, M.; Russel, D. Implementing the Water Framework Directive and Tackling Diffuse Pollution from Agriculture: Lessons from England and Scotland. Water 2020, 12, 244. [Google Scholar] [CrossRef]
- Dunn, S.M.; Darling, W.G.; Birkel, C.; Bacon, J.R. The role of groundwater characteristics in catchment recovery from nitrate pollution. Hydrol. Res. 2012, 43, 560–575. [Google Scholar] [CrossRef]
- Worrall, F.; Spencer, E.; Burt, T.P. The effectiveness of nitrate vulnerable zones for limiting surface water nitrate concentrations. J. Hydrol. 2009, 370, 21–28. [Google Scholar] [CrossRef]
- Stuart, M.E.; Gooddy, D.C.; Bloomfield, J.P.; Williams, A.T. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total. Environ. 2011, 409, 2859–2873. [Google Scholar] [CrossRef]
- Novo, P. Accounting for the Assimilative Capacity of Water Systems in Scotland. J. Water 2017, 9, 559. [Google Scholar] [CrossRef]
- Bowes, M.; Charlton, M.; Hutchins, M.; Bachiller-Jareno, N.; Orr, H. Climate Change and Eutrophication Risk Thresholds in English Rivers; EA Report SC140013/R2; Environment Agency: Bristol, UK, 2019. Available online: https://www.gov.uk/government/publications/eutrophication-risk-in-english-rivers-under-climate-change (accessed on 6 February 2023).
- Scottish Environmental Protection Agency (SEPA). An Introduction to the Significant Water Management Issues in the Scotland River Basin District; Scottish Environmental Protection Agency: Stirling, UK, 2019. Available online: https://www.sepa.org.uk/media/38319/an-introduction-to-the-significant-water-management-issues-in-the-scotland-river-basin-district.pdf (accessed on 6 February 2023).
- Ball, D.F.; MacDonald, A.M. Groundwater Nitrate Vulnerable Zones for Scotland; Commissioned Report, CR/01/250N; British Geological Survey: Nottingham, UK, 2001. Available online: https://nora.nerc.ac.uk/id/eprint/501049/ (accessed on 19 March 2023).
- Ball, D.F.; MacDonald, A.M.; Ó Dochartaigh, B.É.; del Rio, M.; Fitzsimons, V.; Auton, C.A.; Lilly, A. Development of a Groundwater Vulnerability Screening Methodology for the Water Framework Directive; Scotland & Northern Ireland Forum for Environmental Research (SNIFFER) Report; Edinburgh Climate Change Institute: Edinburgh, UK, 2004; Available online: https://www.sniffer.org.uk/wfd28-pdf (accessed on 20 March 2023).
- Ó Dochartaigh, B.É.; Ball, D.F.; MacDonald, A.M.; Lilly, A.; Fitzsimons, V.; del Rio, M.; Auton, C.A. Mapping groundwater vulnerability in Scotland: A new approach for the Water Framework Directive. Scot. J. Geol. 2005, 41, 21–30. [Google Scholar] [CrossRef]
- Ó Dochartaigh, B.É.; Doce, D.D.; Rutter, H.K.; MacDonald, A.M. User Guide: Groundwater Vulnerability (Scotland) GIS Dataset, Version 2; Open Report OR/11/064; British Geological Survey: Nottingham, UK, 2011; 25p. Available online: https://nora.nerc.ac.uk/id/eprint/17084/ (accessed on 2 March 2023).
- Scottish Environmental Protection Agency. The River Basin Management Plan for the Scotland River Basin District 2021–2027; Scottish Environmental Protection Agency: Stirling, UK, 2021. Available online: https://www.sepa.org.uk/media/594088/211222-final-rbmp3-scotland.pdf (accessed on 2 March 2022).
- Arauzo, M.; Valladolid, M.; García, G.; Andries, D.M. N and P behaviour in alluvial aquifers and in the soil solution of their catchment areas: How land use and the physical environment contribute to diffuse pollution. Sci. Total. Environ. 2022, 804, 150056. [Google Scholar] [CrossRef]
- Orellana-Macais, J.M.; Merchán, D.; Causapé, J. Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeol. J. 2020, 28, 2207–2221. [Google Scholar] [CrossRef]
- Gomes, E.; Antunes, I.M.H.R.; Leitão, B. Groundwater management: Effectiveness of mitigation measures in nitrate vulnerable zones—A Portuguese case study. Groundw. Sustain. Dev. 2023, 21, 100899. [Google Scholar] [CrossRef]
- Bibby, J.S.; Douglas, H.A.; Thomasson, A.J.; Robertson, J.S. Land Capability Classification for Agriculture; Macaulay Institute for Soil Research: Aberdeen, UK, 1982; Available online: https://www.hutton.ac.uk/sites/default/files/files/soils/LAND%20CAPABILITY%20CLASSIFICATION%20FOR%20AGRICULTURE.PDF (accessed on 19 March 2023).
- Raffaelli, D.; Hull, S.; Milne, H. Long-term changes in nutrients, weed mats and shorebirds in an Estuarine System. Cah. Biol. Mar. 1989, 30, 259–270. [Google Scholar]
- MacDonald, A.M.; Edwards, A.C.; Pugh, K.B.; Balls, P.W. Soluble nitrogen and phosphorus in the River Ythan system, U.K.: Annual and seasonal trends. Water Res. 1995, 29, 837–846. [Google Scholar] [CrossRef]
- European Union. The River of LIFE: A Report on the Actions of the Ythan Project 2001–2005. European Commission LIFE Public Database (LIFE00 ENV/UK/00089). 2005. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/details/1770 (accessed on 19 March 2023).
- Sample, J.; Dunn, S.M. Trend Analysis of Nitrate Concentrations in the Ythan; Report CRW2013/2; Scotland’s Centre of Expertise for Waters (CREW): Aberdeen, UK, 2014. [Google Scholar] [CrossRef]
- SEPA Ythan Project Group. Nitrates and Pesticides Impacts and Pressures in the Ythan Catchment. Volume 2: Technical Report; Scottish Environmental Protection Agency: Stirling, UK, 2011.
- Ó Dochartaigh, B.É.; Macdonald, A.M.; Fitzsimons, V.; Ward, R. Scotland’s Aquifers and Groundwater Bodies; Report (OR/15/028); British Geological Survey Open: Nottingham, UK, 2015; Unpublished. Available online: https://nora.nerc.ac.uk/id/eprint/511413/ (accessed on 19 March 2023).
- Merritt, J.W.; Auton, C.A.; Connell, E.R.; Hall, A.M.; Peacock, J.D. Cainozoic Geology and Landscape Evolution of North-East Scotland; British Geological Survey: Nottingham, UK, 2003. Available online: https://earthwise.bgs.ac.uk/index.php/Cainozoic_geology_and_landscape_evolution_of_north-east_Scotland._Memoir_of_the_British_Geological_Survey,_sheets_66E,_67,_76E,_77,_86E,_87W,_87E,_95,_96W,_96E_and_97_(Scotland) (accessed on 2 March 2023).
- Gunn, A.G.; Mendum, J.R.; Thomas, C.W. Geology of the Huntly and Turriff Districts. Sheet Description for the 1:50,000 Geological Sheets 86W (Huntly) and 86E (Turriff) (Scotland); Open Report (OR/15/026); British Geological Survey: Nottingham, UK, 2015. Available online: https://nora.nerc.ac.uk/id/eprint/512185 (accessed on 19 March 2023).
- Glentworth, R.; Dion, H.G. The association or hydrologic sequence in certain soils of the Podzolic zone of the NE Scotland. Eur. J. Soil. Sci. 1950, 1, 35–49. [Google Scholar] [CrossRef]
- Hay, R.K.M.; Russell, G.; Edwards, T.W. Crop Production in the East of Scotland; Institute for Ecology and Resource Management, University of Edinburgh: Edinburgh, UK, 2000. Available online: https://www.sasa.gov.uk/document-library/crop-production-east-scotland (accessed on 19 March 2023).
- British Geological Survey. Bedrock Aquifer Productivity Scotland Version 2; British Geological Survey: Nottingham, UK, 2015. [CrossRef]
- British Geological Survey. Superficial Aquifer Productivity Scotland Version 2; British Geological Survey: Nottingham, UK, 2015; (Dataset). [CrossRef]
- MacDonald, A.M.; Griffiths, K.J.; Ó Dochartaigh, B.É.; Lilly, A.; Chilton, P.J. Scotland’s Groundwater Monitoring Network: Its Effectiveness for Monitoring Nitrate; Commissioned Report No. CR/05/205N; British Geological Survey: Nottingham, UK, 2005; 63p, Unpublished. Available online: https://nora.nerc.ac.uk/id/eprint/11324/ (accessed on 2 March 2023).
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; U.S. Environmental Protection Agency: Oklahoma City, OK, USA, 1987. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=126933 (accessed on 2 March 2023).
- Luoma, S.; Ikonen, I. Vulnerability Assessment of the Shallow Groundwater in Finland; Geological Survey of Finland Public Report (50403-30112); Geological Survey of Finland: Espoo, Finland, 2020. Available online: https://tupa.gtk.fi/raportti/arkisto/35_2020.pdf (accessed on 20 March 2023).
- Simpson, E.M. Mapping Groundwater Vulnerability of the Ythan Catchment. Bachelor’s Thesis, University of Aberdeen, Aberdeen, UK, January 2022. [Google Scholar]
- Boorman, D.B.; Hollis, J.M.; Lilly, A. Hydrology of Soil Types: A Hydrologically-Based Classification of the Soils of the United Kingdom; Institute of Hydrology Report No. 126; Institute of Hydrology: Wallingford, UK, 1995; Available online: https://nora.nerc.ac.uk/id/eprint/7369/ (accessed on 19 March 2021).
- Mansour, M.M.; Wang, L.; Whiteman, M.; Hughes, A.G. Estimation of spatially distributed groundwater potential recharge for the United Kingdom. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 247–263. [Google Scholar] [CrossRef]
- British Geological Survey. BGS Geology—50k (DiGMapGB-50) Bedrock Version 8; British Geological Survey: Nottingham, UK, 2015. [CrossRef]
- British Geological Survey. BGS Geology—50k (DiGMapGB-50) Superficial Version 8; British Geological Survey: Nottingham, UK, 2015. [CrossRef]
- Soil Survey of Scotland Staff. Digital Soil Map of Scotland, Scale 1:250,000; Macaulay Institute of Soil Research: Aberdeen, Scotland, 1981. Available online: https://soils.environment.gov.scot/maps/soil-maps/national-soil-map-of-scotland/ (accessed on 19 March 2023).
- Ordnance Survey. MasterMap Topography Layer; EDINA Digimap Service; University of Edinburgh: Edinburgh, UK, 2018; Available online: http://digimap.edina.ac.uk/ (accessed on 19 March 2023).
- Lawley, R.; Garcia-Bajo, M. The National Superficial Deposit Thickness Model (SDTM V5): A User Guide; Internal Report (OR/09/049); British Geological Survey: Nottingham, UK, 2010. Available online: https://nora.nerc.ac.uk/id/eprint/8279 (accessed on 21 March 2023).
- British Geological Survey. BGS Permeability Index Version 8; British Geological Survey: Nottingham, UK, 2021. [CrossRef]
- Jowett, I. TimeTrends—Trend Analysis and Equivalence Testing for Environmental Data Version 9.0; Jowett Consulting Ltd.: Tairua, New Zealand, 2022; Available online: https://www.jowettconsulting.co.nz/home/time-1 (accessed on 2 March 2023).
- Frollini, E.; Preziosi, E.; Calace, N.; Guerra, M.; Guyennon, N.; Marcaccio, M.; Ghergo, S. Groundwater quality trend and trend reversal assessment in the European Water Framework Directive context: An example with nitrates in Italy. Environ. Sci. Pollut. Res. 2021, 28, 22092–22104. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.E.; Chilton, P.J.; Kinniburgh, D.G.; Cooper, D.M. Screening for long-term trends in groundwater nitrate monitoring data. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 361–376. [Google Scholar] [CrossRef]
- Baker, T. Groundwater Nitrate Trend Analysis Report for Data Collected between 2003 and 2016. Greater Wellington Regional Council, New Zealand. 2017. Available online: https://www.gw.govt.nz/assets/Documents/2022/05/Groundwater-Nitrate-Trend-Analysis-Report-2017.pdf (accessed on 6 April 2023).
- Brown, M.J.; Robinson, E.L.; Kay, A.L.; Chapman, R.; Bell, V.A.; Blyth, E.M. Potential Evapotranspiration Derived from HadUK-Grid 1km Gridded Climate Observations 1969–2021; (Hydro-PE HadUK-Grid); NERC EDS Environmental Information Data Centre: Lancaster, UK, 2022. [Google Scholar] [CrossRef]
- Met Office; Hollis, D.; McCarthy, M.; Kendon, M.; Legg, T. HadUK-Grid Gridded Climate Observations on a 1km Grid over the UK, v1.1.0.0 (1836–2021); NERC EDS Centre for Environmental Data Analysis: Chilton, UK, 2022. [Google Scholar] [CrossRef]
- Google Earth v. 7.3.6.9345. 2022. Available online: https://www.google.com/intl/en_uk/earth/versions/ (accessed on 20 March 2023).
- EDINA Environment Digimap Service. Land Cover map of Great Britain 2007, 2015, 2017, 2018. EDINA Environment Digimap Service. 2021. Available online: https://digimap.edina.ac.uk (accessed on 20 March 2023).
- Esri; USGS; AWS; NASA. Landsat Explorer App. ArcGIS Online Web Application (5670f96c2d0d4ad8ac549e092d6c2bd4). 2020. Available online: https://livingatlas2.arcgis.com/landsatexplorer/ (accessed on 19 March 2023).
- Dubrovsky, N.M.; Hamilton, P.A. The Quality of Our Nation’s Water: Nutrients in the Nation’s Streams and Groundwater; National Findings and Implications; National Water-Quality Assessment Program Report USGS; United States Geological Survey (USGS): Reston, VA, USA, 2010. Available online: https://pubs.usgs.gov/fs/2010/3078/ (accessed on 20 March 2023).
- Smedley, P.L.; Ó Dochartaigh, B.É.; MacDonald, A.M.; Darling, W.G. Baseline Scotland: Groundwater chemistry of Aberdeenshire; Open Report OR/09/065; British Geological Survey: Nottingham, UK, 2009; Unpublished. Available online: https://nora.nerc.ac.uk/id/eprint/9161/ (accessed on 2 March 2023).
- Orr, A.; Nitsche, J.; Archbold, M.; Deakin, J.; Ofterdinger, U.; Flynn, R. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers. Sci. Total. Environ. 2016, 569–570, 1040–1052. [Google Scholar] [CrossRef]
- Wolters, T.; Bach, T.; Eisele, M.; Eschenbach, W.; Kunkel, R.; McNamara, I.; Well, R.; Wendland, F. The derivation of denitrification conditions in groundwater: Combined method approach and application for Germany. Ecol. Indic. 2022, 144, 109564. [Google Scholar] [CrossRef]
- Knoll, L.; Häußermann, U.; Breuer, L.; Bach, M. Spatial distribution of integrated nitrate reduction across the unsaturated zone and the groundwater body in Germany. Water 2020, 12, 2456. [Google Scholar] [CrossRef]
- Haslauder, C.P. Hydrogeologic Analysis of a Complex Aquifer System and Impacts of Changes in Agricultural Practices on Nitrate Concentrations in a Municipal Well Field Woodstock, Ontario. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2005. Available online: https://uwspace.uwaterloo.ca/handle/10012/1223 (accessed on 2 March 2023).
- Tetzlaff, D.; Soulsby, C.; Hrachowitz, M.; Speed, M. Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments. J. Hydrol. 2011, 400, 438–447. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Warren, C.R. Adopting sustainable farm management practices within a nitrate vulnerable zone in Scotland: The view from the farm. Agric. Ecosyst. Environ. 2006, 113, 108–119. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Bradbury, N.J.; Johnson, P.A. The potential of ploughed grassland to nitrate leaching. Agric. Ecosyst. Environ. 1992, 3–4, 221–223. [Google Scholar] [CrossRef]
- Foster, S.S.D. Assessing and Controlling the Impacts of Agriculture on Groundwater: From Barley Barons to Beef Bans. Q. J. Eng. Geol. Hydrogeol. 2000, 33, 253–280. [Google Scholar] [CrossRef]
- Hatch, D.; Easson, L.; Goulding, K.; Haygarth, P.; Shepherd, M.; Watson, C. Grassland resowing and grass-arable rotations in the United Kingdom: Agricultural and environmental issues. In Crop Rotations, International Workshop on Agricultural and Environmental Issues; Wageningen University: Wageningen, The Netherlands, 2002; pp. 93–104. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/22788#page=101 (accessed on 4 April 2023).
- Smit, H.P.J.; Reinsch, T.; Kluß, C.; Loges, R.; Taube, F. Very Low Nitrogen Leaching in Grazed Ley-Arable-Systems in Northwest Europe. Agronomy 2021, 11, 2155. [Google Scholar] [CrossRef]
- Shepherd, M.A.; Hatch, D.J.; Jarvis, S.C.; Bhogal, A. Nitrate leaching from reseeded pasture. Soil Use Manag. 2001, 17, 97–105. [Google Scholar] [CrossRef]
- Trolove, S.; Thomas, S.; van der Klei, G.; Beare, M.; Cichota, R.; Meenken, E. Nitrate leaching losses during pasture renewal—Effects of treading, urine, forages and tillage. Sci. Total. Environ. 2019, 651, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Seidal, K.; Kayser, M.; Müller, J.; Isslelstein, J. The effect of grassland renovation on soil mineral nitrogen and on nitrate leaching during winter. J. Plant Nutr. Soil Sci. 2009, 172, 512–519. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.; Tan, K.; Lei, Y. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain. Sci. Total. Environ. 2020, 707, 136168. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S. Extreme precipitation accelerates the contribution of nitrate sources from anthropogenetic activities to groundwater in a typical headwater area of the North China Plain. J. Hydrol. 2021, 603, 127110. [Google Scholar] [CrossRef]
- Hulme, M.; Jenkins, G.J.; Lu, X.; Turnpenny, J.R.; Mitchell, T.D.; Jones, R.G.; Low, J.; Murphey, J.M.; Hassell, D.; Boorman, P.; et al. Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report; Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia: Norwich, UK, 2002; 120p, Available online: https://artefacts.ceda.ac.uk/badc_datadocs/link/UKCIP02_tech.pdf (accessed on 2 March 2023).
- Rivington, M.; Akoumianaki, I.; Coill, M. Private Water Supplies and Climate Change the Likely Impacts of Climate Change (Amount, Frequency and Distribution of Precipitation), and the Resilience of Private Water Supplies; CRW2018_05; Scotland’s Centre of Expertise for Waters (CREW): Aberdeen, UK, 2020; Available online: https://www.crew.ac.uk/publication/PWS-water-scarcity (accessed on 2 March 2023).
- Begum, S.; Adnan, M.; McClean, C.J.; Cresser, M.S. A critical re-evaluation of controls on spatial and seasonal variations in nitrate concentrations in river waters throughout the River Derwent catchment in North Yorkshire, UK. Environ. Monit. Assess. 2016, 188, 305. [Google Scholar] [CrossRef]
- European Commission. Report on the Implementation of Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources Based on Member State Reports for the Period 2012–2015. European Commission, Brussels. 2018. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52018DC0257 (accessed on 13 April 2023).
- Ortmeyer, F.; Hansen, B.; Banning, A. Groundwater nitrate problem and countermeasures in strongly affected EU countries—A comparison between Germany, Denmark and Ireland. Grundwasser 2022, 28, 3–22. [Google Scholar] [CrossRef]
- Petersen, R.J.; Blicher-Mathiesen, G.; Rolighed, J.; Andersen, H.E.; Kronvang, B. Three decades of regulation of agricultural nitrogen losses: Experiences from the Danish Agricultural Monitoring Program. Sci. Total. Environ. 2021, 787, 147619. [Google Scholar] [CrossRef]
- Hashemi, F.; Olesen, J.E.; Hansen, A.L.; Børgesen, C.D.; Dalgaard, T. Spatially differentiated strategies for reducing nitrate loads from agriculture in two Danish catchments. J. Environ. Manag. 2018, 208, 77–91. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Kim, H.; Blicher-Mathiesen, G. Long-term nitrate response in shallow groundwater to agricultural N regulations in Denmark. J. Environ. Manag. 2019, 240, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.M.; Munkholm, L.J.; Olesen, J.E.; Melander, B. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention. J. Environ. Qual. 2015, 44, 868–881. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Shalloo, L.; Wallace, M.; Dillon, P. The Irish dairy industry—Recent history and strategy, current state and future challenges. Int. J. Dairy Technol. 2020, 73, 309–323. [Google Scholar] [CrossRef]
- Buckley, C.; Carney, P. The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level. Environ. Sci. Policy 2013, 25, 118–126. [Google Scholar] [CrossRef]
- van den Berg, L.M.; Dingkuhn, E.L.; Meehan, N.; O’Sullivan, L. Investigating Bottlenecks Hampering the Adoption of Water Quality-Enhancing Practices for Sustainable Land Management in Ireland. 2023. Available online: https://ssrn.com/abstract=4358520 (accessed on 6 April 2023).
- Vogeler, I.; Jensen, J.L.; Thomsen, I.K.; Labouriau, R.; Hansen, E.M. Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching. Eur. J. Agron. 2021, 124, 126244. [Google Scholar] [CrossRef]
- De Waele, J.; D’Haene, K.; Salomez, J.; Hofman, G.; De Neve, S. Simulating the environmental performance of post-harvest management measures to comply with the EU Nitrates Directive. J. Environ. Manag. 2017, 187, 513–526. [Google Scholar] [CrossRef]
- Jarvis, S.C. The Coates Farm Study II: Nitrogen Flows in a Changing Mixed Farming System; 1st Annual Report to DEFRA NT1853; Rothamsted Research: Harpenden, UK, 2003; Unpublished; 26p. [Google Scholar]
- Ryan, F.R. The Opportunities to Understand and Improve Nutrient Assessment within a Scottish Nitrate Vulnerable Zone. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, November 2020. Available online: https://era.ed.ac.uk/handle/1842/38210?show=full (accessed on 3 March 2023).
- Maris, S.C.; Abalos, D.; Capra, F.; Moscatelli, G.; Scaglia, F.; Reyes, G.E.C.; Ardenti, F.; Boselli, R.; Ferrani, A.; Mantovi, P.; et al. Strong potential of slurry application timing and method to reduce N losses in a permanent grassland. Agric. Ecosyst. Environ. 2021, 311, 107329. [Google Scholar] [CrossRef]
- Scottish Environmental Protection Agency. Nitrate Vulnerable Zones in Scotland Review of Designations 2013 Methodology Report; Scottish Environmental Protection Agency: Stirling, UK, 2013.
- Dunn, S.M.; Vinten, A.J.A.; Lilly, A.; DeGroote, J.; Sutton, M.A.; McGechan, M. Nitrogen Risk Assessment Model for Scotland: I. Nitrogen leaching. Hydrol. Earth Syst. Sci. 2004, 8, 191–204. [Google Scholar] [CrossRef]
- Conrad, Y.; Fohrer, N. Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field. Phys. Chem. Earth 2009, 34, 530–540. [Google Scholar] [CrossRef]
- Landon, M.K.; Green, C.T.; Belitz, K.; Singleton, M.J.; Esser, B.K. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA. Hydrogeol. J. 2011, 19, 1203–1224. [Google Scholar] [CrossRef]
MS | SEPA Site Code | Construction | Aquifer Type | Geomorphology | Current Land Use |
---|---|---|---|---|---|
1 | 365224 | Monitoring borehole | Weathered bedrock | Hilltop | Improved grassland |
2 | 340586 | PWS spring | Superficial | Slope break | Improved grassland |
3 | 345069 | PWS spring | Superficial | Meltwater channel | Mixed agriculture |
4 | 338000 | PWS well | Superficial | Meltwater channel | Arable (cereals) |
5 | 337736 | PWS well | Superficial | Meltwater channel | Arable (cereals) |
6 | 338297 | PWS well | Superficial | Hillslope | Arable (cereals) |
7 | 326656 | PWS spring | Superficial | Fracture valley | Mixed agriculture |
8 | 365223 1 | Monitoring borehole | Fractured bedrock | Hillslope | Forestry |
9 | 365228 1 | Monitoring borehole | Fractured bedrock | Valley bottom | Mixed agriculture |
10 | 365226 1 | Monitoring borehole | Weathered bedrock | Valley bottom | Bog peatland |
Hydrogeological Property | BGS | DRASTIC |
---|---|---|
Depth to groundwater table | River head space [18], corrected by soil indicators of groundwater depth [42] | PWS dip well data collection [41] |
Recharge | - | 2 km2 gridded average groundwater recharge 1950–2009 [43] |
Aquifer media | Dominant flow mechanism (fracture vs. intergranular) inferred from BGS bedrock aquifer productivity [36] | DRASTIC lithology ratings [39,40] applied to UK bedrock and superficial geology maps [44,45] |
Soil media | Soil hydrology classifications [42] used to define permeability indices | DRASTIC soil texture ratings [39] applied to Scottish soil map [46] |
Topography (slope) | - | Ordnance Survey 10 m DEM [47] |
Impact of vadose zone | Superficial deposit thickness model [48]. Maximum superficial geology permeability map [49] | DRASTIC superficial geology texture ratings [39] applied to BGS superficial geology map [45] |
Impact of vadose zone | Superficial deposit thickness model [48]. Maximum superficial geology permeability map [49] | DRASTIC superficial geology texture ratings [39] applied to BGS superficial geology map [45] |
Bedrock aquifer hydraulic conductivity | - | Literature review [41] |
Monitoring Station No. Sub-Trend Duration | n | Median NO3-N (mg L−1) | Seasonality p-Value | Trend p-Value | Trend Direction | Annual Sen Slope (mg L−1 NO3-N yr−1) | Relative Slope (% yr−1) | Slope Direction Likelihood |
---|---|---|---|---|---|---|---|---|
1 | 63 | 12.4 | 0.025 * | 0.000 ** | Decreasing | −0.369 | −2.975 | 1.000 |
23/02/09–03/12/12 | 38 | 13 | 0.009 * | 0.000 ** | Decreasing | −0.926 | −7.119 | 1.000 |
07/01/13–14/11/18 | 25 | 11.6 | 0.007 * | 0.021 * | Decreasing | −0.158 | −1.366 | 0.987 |
2 | 55 | 17.4 | 0.102 | 0.000 ** | Decreasing | −0.361 | −2.073 | 1.000 |
13/05/09–07/11/12 | 31 | 18.1 | 0.277 | 0.020 * | Decreasing | −0.300 | −1.660 | 0.991 |
05/12/12–17/11/16 | 16 | 16.4 | 0.419 | 0.342 | Decreasing? | −0.190 | −1.158 | 0.851 |
15/02/17–19/11/18 | 8 | 16.55 | - | 0.360 | Increasing? | 0.471 | 2.844 | 0.641 |
3 | 54 | 10.75 | 0.599 | 0.748 | No trend | - | - | 0.632 |
13/05/09–21/05/13 | 35 | 10.6 | 0.034 * | 0.000 ** | Decreasing | −0.354 | −3.337 | 1.000 |
26/11/13–12/11/18 | 19 | 11 | 0.069 | 0.045 * | Decreasing? | −0.200 | −1.817 | 0.970 |
4 | 59 | 6.37 | 0.743 | 0.00 ** | Increasing | 0.355 | 5.574 | 1.000 |
13/05/09–02/11/11 | 23 | 5.3 | 0.014 ** | 0.001 ** | Decreasing | −0.638 | −12.039 | 0.999 |
08/12/11–07/11/12 | 12 | 5.72 | 0.248 | 0.000 ** | Increasing | 1.417 | 24.780 | 1.000 |
05/12/12–12/11/18 | 23 | 7.79 | 0.740 | 0.665 | No trend | −0.019 | −0.238 | 0.690 |
5 | 56 | 11.6 | 0.299 | −0.521 | Decreasing? | −0.521 | −4.487 | 1.000 |
13/05/09–21/05/13 | 35 | 12.3 | 0.105 | 0.000 ** | Decreasing | −0.556 | −4.522 | 1.000 |
26/11/13–06/11/17 | 17 | 9.7 | 0.907 | 0.021 * | Decreasing | −0.101 | −1.043 | 0.992 |
06/02/18–12/11/18 | 4 | 10.23 | - | 0.167 | Increasing? | 1.524 | 14.895 | 0.890 |
6 | 32 | 13.65 | 0.231 | 0.025 * | Increasing | 0.135 | 0.984 | 0.988 |
No sub-trends identified | ||||||||
7 | 56 | 10.15 | 0.215 | 0.00 ** | Decreasing | −0.156 | −1.533 | 1.000 |
No sub-trends identified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, H.; Simpson, E.M.; Troldborg, M.; Ofterdinger, U.; Cassidy, R.; Soulsby, C.; Comte, J.-C. Evaluating Groundwater Nitrate Status across the River Ythan Catchment (Scotland) following Two Decades of Nitrate Vulnerable Zone Designation. Environments 2023, 10, 67. https://doi.org/10.3390/environments10040067
Johnson H, Simpson EM, Troldborg M, Ofterdinger U, Cassidy R, Soulsby C, Comte J-C. Evaluating Groundwater Nitrate Status across the River Ythan Catchment (Scotland) following Two Decades of Nitrate Vulnerable Zone Designation. Environments. 2023; 10(4):67. https://doi.org/10.3390/environments10040067
Chicago/Turabian StyleJohnson, Hamish, Emma May Simpson, Mads Troldborg, Ulrich Ofterdinger, Rachel Cassidy, Chris Soulsby, and Jean-Christophe Comte. 2023. "Evaluating Groundwater Nitrate Status across the River Ythan Catchment (Scotland) following Two Decades of Nitrate Vulnerable Zone Designation" Environments 10, no. 4: 67. https://doi.org/10.3390/environments10040067
APA StyleJohnson, H., Simpson, E. M., Troldborg, M., Ofterdinger, U., Cassidy, R., Soulsby, C., & Comte, J. -C. (2023). Evaluating Groundwater Nitrate Status across the River Ythan Catchment (Scotland) following Two Decades of Nitrate Vulnerable Zone Designation. Environments, 10(4), 67. https://doi.org/10.3390/environments10040067