Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sample Collection and Processing
2.3. Sample Pretreatment Procedure for Microplastics Analysis in Street Dust
2.4. Health Risk Assessment
2.4.1. Non-Carcinogenic Risk Estimation
2.4.2. Carcinogenic Risk Estimation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Particles and MPs in Samples
3.2. FTIR Analysis for Type Identification of MPs in Street Dust
3.3. Source Appraisal by Principal Component Analysis (PCA) for MPs in Street Dust
3.4. Health Risk Assessment of MPs in Street Dust
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Devnath, B. Air Pollution in Bangladesh: Bangladesh Air World’s Worst in 2019. Available online: https://www.tbsnews.net/environment/bangladesh-air-worlds-worst-2019-47959 (accessed on 4 January 2022).
- Islam, M.S.; Chowdhury, T.A. Effect of COVID-19 Pandemic-Induced Lockdown (General Holiday) on Air Quality of Dhaka City. Environ. Monit. Assess. 2021, 193, 343. [Google Scholar] [CrossRef] [PubMed]
- Hasnat, G.N.T.; Kabir, M.A.; Hossain, M.A. Major Environmental Issues and Problems of South Asia, Particularly Bangladesh. In Handbook of Environmental Materials Management; Springer: Cham, Switzerland, 2018; pp. 1–40. [Google Scholar]
- Haque, H.; Huda, N.; Zaman Tanu, F.; Sultana, N.; Shahid Hossain, M.A.; Hasinur Rahman, M. Ambient Air Quality Scenario in and Around Dhaka City of Bangladesh. Barisal Univ. J. Part 2017, 1, 203–218. [Google Scholar]
- Mercier, F.; Glorennec, P.; Thomas, O.; Bot, B.L. Organic contamination of settled house dust, a review for exposure assessment purposes. Environ. Sci. Technol. 2011, 45, 6716–6727. [Google Scholar] [CrossRef] [PubMed]
- Fortoul, T.; Rodriguez-Lara, V.; Gonzalez-Villalva, A. Health Effects of Metals in Particulate Matter; InTech: London, UK, 2015. [Google Scholar]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Duru, C.E.; Ovuoraye, P.E.; Wang, Q. Evaluation of Nanoplastics Toxicity to the Human Placenta in Systems. J. Hazard. Mater. 2023, 446, 130600. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization Declares Global Emergency: A Review of the 2019 Novel Coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Rabin, M.H.; Wang, Q.; Kabir, M.H.; Wang, W. Pollution Characteristics and Risk Assessment of Potentially Toxic Elements of Fine Street Dust during COVID-19 Lockdown in Bangladesh. Environ. Sci. Pollut. Res. 2022, 30, 4323–4345. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Ohiagu, F.O.; Verla, A.W.; Wang, Q.; Shafea, L.; Verla, E.N.; Isiuku, B.O.; Chowdhury, T.; Ibe, F.C.; Chowdhury, M.A.H. “Plasti-Remediation”: Advances in the Potential Use of Environmental Plastics for Pollutant Removal. Environ. Technol. Innov. 2021, 23, 101791. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and Surface Water Quality: Improved Lake Water Quality during the Lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef]
- Aravinthasamy, P.; Karunanidhi, D.; Shankar, K.; Subramani, T.; Setia, R.; Bhattacharya, P.; Das, S. COVID-19 Lockdown Impacts on Heavy Metals and Microbes in Shallow Groundwater and Expected Health Risks in an Industrial City of South India. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100472. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Setia, R. Effects of COVID-19 Pandemic Lockdown on Microbial and Metals Contaminations in a Part of Thirumanimuthar River, South India: A Comparative Health Hazard Perspective. J. Hazard. Mater. 2021, 416, 125909. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Saxena, A.; Shukla, S. Assessment of the Impact of COVID-19 Lockdown on the Heavy Metal Pollution in the River Gomti, Lucknow City, Uttar Pradesh, India. Environ. Qual. Manag. 2021, 31, 41–49. [Google Scholar] [CrossRef]
- Arora, S.; Bhaukhandi, K.D.; Mishra, P.K. Coronavirus Lockdown Helped the Environment to Bounce Back. Sci. Total Environ. 2020, 742, 140573. [Google Scholar] [CrossRef]
- Kumar, M.; Mazumder, P.; Mohapatra, S.; Kumar Thakur, A.; Dhangar, K.; Taki, K.; Mukherjee, S.; Kumar Patel, A.; Bhattacharya, P.; Mohapatra, P.; et al. A Chronicle of SARS-CoV-2: Seasonality, Environmental Fate, Transport, Inactivation, and Antiviral Drug Resistance. J. Hazard. Mater. 2021, 405, 124043. [Google Scholar] [CrossRef]
- Rabin, M.H.; Wang, Q.; Wang, W.; Enyoh, C.E. Pollution Characteristics, Source Apportionment, and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) of Fine Street Dust during and after COVID-19 Lockdown in Bangladesh. Process 2022, 10, 2575. [Google Scholar] [CrossRef]
- Saha, N.; Bodrud-Doza, M.; Islam, A.R.M.T.; Begum, B.A.; Rahman, M.S. Hydrogeochemical Evolution of Shallow and Deeper Aquifers in Central Bangladesh: Arsenic Mobilization Process and Health Risk Implications from the Potable Use of Groundwater. Environ. Earth Sci. 2020, 79, 477. [Google Scholar] [CrossRef]
- Department of Environment. Air Pollution Reduction Strategy for Bangladesh Final Report; Department of Environment, Government of Bangladesh: Dhaka, Bangladesh, 2012. [Google Scholar]
- Bhuiyan, M.S.I. Public Transport and Environmental Pollution: A Case Study of Dhaka City World Vision. World Vis. Res. J. 2018, 12, 96–108. [Google Scholar]
- Rahman, M.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing Risk to Human Health for Heavy Metal Contamination through Street Dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Qingyue, W.; Ohiagu, F.O.; Chowdhury, A.H.; Enyoh, E.C.; Chowdhury, T.; Verla, E.N.; Chinwendu, U.P. An Overview of Emerging Pollutants in Air: Method of Analysis and Potential Public Health Concern from Human Environmental Exposure. Trends Environ. Anal. Chem. 2020, 28, e00107. [Google Scholar] [CrossRef]
- Pandey, D.; Banerjee, T.; Badola, N.; Chauhan, J.S. Evidences of Microplastics in Aerosols and Street Dust: A Case Study of Varanasi City, India. Environ. Sci. Pollut. Res. 2022, 29, 82006–82013. [Google Scholar] [CrossRef] [PubMed]
- Delibašić, Š.; Đokić-Kahvedžić, N.; Karić, M.; Keskin, I.; Velispahić, A.; Huremović, J.; Herceg, K.; Selimović, A.; Silajdžić, S.; Žero, S.; et al. Health Risk Assessment of Heavy Metal Contamination in Street Dust of Federation of Bosnia and Herzegovina. Hum. Ecol. Risk Assess. 2020, 27, 1296–1308. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, W.; Zhao, H.; Yang, Q.C.; Yang, Z.P. Potential Ecological Risk Assessment and Prediction of Soil Heavy-Metal Pollution around Coal Gangue Dump. Nat. Hazards Earth Syst. Sci. 2014, 14, 1599–1610. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Enyoh, C.E.; Chowdhury, T.; Chowdhury, A.H. Analytical techniques, occurrence and health effects of micro and nano plastics deposited in street dust. Int. J. Environ. Anal. Chem. 2022, 102, 6435–6453. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Wang, Q.; Rabin, M.H.; Bakare, R.O.; Dadiel, J.L.; Shangrong, W.; Lu, S.; Ilechukwu, I. Preliminary characterization and probabilistic risk assessment of microplastics and potentially toxic elements (PTEs) in garri (Cassava flake), a common staple food consumed in West Africa. Environ. Anal. Health Toxicol. 2023, 38, e2023005. [Google Scholar] [CrossRef] [PubMed]
- Rakib, M.R.J.; Al Nahian, S.; Alfonso, M.B.; Khandaker, M.U.; Enyoh, C.E.; Hamid, F.S.; Alsubaie, A.; Almalki, A.S.A.; Bradley, D.A.; Mohafez, H.; et al. Microplastics Pollution in Salt Pans from the Maheshkhali Channel, Bangladesh. Sci. Rep. 2021, 11, 23187. [Google Scholar] [CrossRef] [PubMed]
- Lithner, D.; Larsson, A.; Dave, G. Environmental and Health Hazard Ranking and Assessment of Plastic Polymers Based on Chemical Composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and Risk Assessment of Street Dust in Luanda, Angola: A Tropical Urban Environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Soil Screening Guidance: Technical Background Document; Office of Emergency and Remedial Response U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2002; pp. 1–187. [Google Scholar]
- Enyoh, C.E.; Verla, A.W.; Rakib, M.R.J. Application of Index Models for Assessing Freshwater Microplastics Pollution. World News Nat. Sci. 2021, 38, 37–48. [Google Scholar]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Heavy Metals Exposure of Children from Stairway and Sidewalk Dust in the Smelting District, Northeast of China. Atmos. Environ. 2010, 44, 3239–3245. [Google Scholar] [CrossRef]
- China Statistics Bureau. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2012; p. 62791819. [Google Scholar]
- US EPA. Methods for Collection, Storage and Maripulation of Sediment for Chemical and Toxicological Analyses: Technical Manual; US Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- Van den Berg, R. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis towards Proposals for Human Toxicology C-Standard Values; Report No.7252010; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1995. [Google Scholar]
- Patchaiyappan, A.; Dowarah, K.; Zaki Ahmed, S.; Prabakaran, M.; Jayakumar, S.; Thirunavukkarasu, C.; Devipriya, S.P. Prevalence and Characteristics of Microplastics Present in the Street Dust Collected from Chennai Metropolitan City, India. Chemosphere 2021, 269, 128757. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Delshab, H.; Soltani, N.; Sorooshian, A. Investigation of Microrubbers, Microplastics and Heavy Metals in Street Dust: A Study in Bushehr City, Iran. Environ. Earth Sci. 2017, 76, 798. [Google Scholar] [CrossRef]
- Yukioka, S.; Tanaka, S.; Nabetani, Y.; Suzuki, Y.; Ushijima, T.; Fujii, S.; Takada, H.; Van Tran, Q.; Singh, S. Occurrence and Characteristics of Microplastics in Surface Road Dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environ. Pollut. 2020, 256, 113447. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Mugilarasan, M.; Gurumoorthi, K.; Guganathan, L.; Aboobacker, V.M.; et al. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2681–2743. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Wang, Q.; Eze, V.C.; Rabin, M.H.; Rakib, M.R.J.; Verla, A.W.; Ibe, F.C.; Duru, C.E.; Verla, E.N. Assessment of Potentially Toxic Metals Adsorbed on Small Macroplastics in Urban Roadside Soils in Southeastern Nigeria. J. Hazard. Mater. Adv. 2022, 7, 100122. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Wang, J.; Su, L.; Wang, X.; Zhu, J.; Lan, W. The Distribution of Microplastics in Water, Sediment, and Fish of the Dafeng River, a Remote River in China. Ecotoxicol. Environ. Saf. 2021, 228, 113009. [Google Scholar] [CrossRef] [PubMed]
- Sfriso, A.A.; Tomio, Y.; Rosso, B.; Gambaro, A.; Sfriso, A.; Corami, F.; Rastelli, E.; Corinaldesi, C.; Mistri, M.; Munari, C. Microplastic Accumulation in Benthic Invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ. Int. 2020, 137, 105587. [Google Scholar] [CrossRef]
- Król-Morkisz, K.; Karaś, E.; Majka, T.M.; Pielichowski, K.; Pielichowska, K. Thermal Stabilization of Polyoxymethylene by PEG-Functionalized Hydroxyapatite: Examining the Effects of Reduced Formaldehyde Release and Enhanced Bioactivity. Adv. Polym. Technol. 2019, 2019, 9728637. [Google Scholar] [CrossRef]
- Tang, C.C.; Chen, Y.T.; Zhang, Y.M.; Chen, H.I.; Brimblecombe, P.; Lee, C.L. Cracking and Photo-Oxidation of Polyoxymethylene Degraded in Terrestrial and Simulated Marine Environments. Front. Mar. Sci. 2022, 9, 607. [Google Scholar] [CrossRef]
- Mon, E.E.; Tun, T.Z.; Agusa, T.; Yeh, H.M.; Huang, C.H.; Nakata, H. Monitoring of Microplastics in Road Dust Samples from Myanmar and Taiwan. Environ. Monit. Contam. Res. 2022, 2, 112–119. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Abbasi, H.S.; Moore, F.; Delshab, H.; Soltani, N. Polycyclic Aromatic Hydrocarbons in Street Dust of Bushehr City, Iran: Status, Source, and Human Health Risk Assessment. Polycycl. Aromat. Compd. 2017, 40, 61–75. [Google Scholar] [CrossRef]
- Yao, X.; Luo, X.S.; Fan, J.; Zhang, T.; Li, H.; Wei, Y. Ecological and Human Health Risks of Atmospheric Microplastics (MPs): A Review. Environ. Sci. Atmos. 2022, 2, 921–942. [Google Scholar] [CrossRef]
- Christian, E.E.; Wang, Q.; Andrew, W.V.; Tanzin, C.; Christian, E.E.; Wang, Q.; Andrew, W.V.; Tanzin, C. Index Models for Ecological and Health Risks Assessment of Environmental Micro-and Nano-Sized Plastics. AIMS Environ. Sci. 2022, 9, 51–65. [Google Scholar] [CrossRef]
- Anderson, F.A. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Toxicol. 2005, 24, 21–50. [Google Scholar] [CrossRef]
- USEPA. Guidelines for Carcinogen Risk Assessment; US Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
Factor | Definition | Unit | Value of Children | Value of Adult | Reference |
---|---|---|---|---|---|
C | Number of MP polymer | items/g | C | C | This study |
ED | Exposure duration | y | 6 | 30 | [36] |
EF | Exposure frequency | d/y | 180 | 180 | [36] |
BW | Average body weight | g | 16,200 | 61,800 | [37] |
ATnon-cancer | Average time | d | ED × 365 | ED × 365 | [36] |
ATcancer | Average time | d | LT × 365 | LT × 365 | [36] |
LT | Average lifetime | y | 76 | 76 | [37] |
IngR | Ingestion rate | g/d | 0.2 | 0.1 | [38] |
InhR | Inhalation rate | m3/d | 7.6 | 20 | [39] |
PEF | Particle emission factor | m3/g | 1.36 × 106 | 1.36 × 106 | [38] |
MPs | Industrial Area | Commercial Area | Public Facilities Area | Residential Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WL | PL | CL | WL | PL | CL | WL | PL | CL | WL | PL | CL | |
Polymer risk indices (pRi) | ||||||||||||
PE | 1.91 | - | 1.92 | 1.35 | 1.88 | 0.63 | - | 1.78 | 1.46 | 1.83 | 1.89 | 0.92 |
PP | 0.19 | 0.20 | 0.08 | 0.25 | - | 0.20 | 0.06 | 0.0 | 0.20 | 0.14 | 0.14 | 0.08 |
PVA | 0.06 | 0.09 | 0.15 | 0.06 | 0.15 | 0.09 | - | 0.08 | 0.10 | 0.09 | 0.17 | - |
HDPE | 0.63 | - | 1.65 | 1.35 | 1.35 | - | 0.70 | 1.78 | - | 0.79 | - | 1.83 |
LDPE | - | - | - | - | 1.61 | 0.94 | - | 0.89 | 1.10 | 1.05 | - | 0.92 |
PS | - | - | - | 1.84 | - | - | - | - | - | - | - | - |
PET | - | 0.62 | - | - | - | - | 0.34 | - | - | - | - | - |
PAA | - | 40.94 | - | - | - | - | 14.69 | - | - | - | - | 19.17 |
Nylon 6 | - | 4.17 | - | - | - | - | 3.00 | - | - | - | - | |
PA | - | 5.57 | - | - | - | - | - | - | - | - | - | - |
PDMS | - | - | - | - | - | 0.14 | - | - | - | 0.086 | - | |
POM | - | - | - | - | - | - | - | - | 87.10 | - | - | - |
Total polymer risk indices (pRt) | ||||||||||||
pRt | 0.34 | 1.48 | 0.44 | 0.55 | 1.48 | 0.27 | 0.92 | 0.45 | 1.23 | 0.52 | 0.25 | 1.19 |
MPs | Industrial Area | Commercial Area | Public Facilities Area | Residential Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WL | PL | CL | WL | PL | CL | WL | PL | CL | WL | PL | CL | |
Cancer risk (CR) via ingestion pathway | ||||||||||||
PE | 8.11 × 10−13 | - | 1.89 × 10−12 | 1.62 × 10−12 | 1.89 × 10−12 | 5.43 × 10−13 | 1.62 × 10−12 | 1.08 × 10−12 | 1.89 × 10−12 | 1.62 × 10−12 | 8.11 × 10−13 | |
PP | 6.35 × 10−13 | 5.72 × 10−13 | 1.91 × 10−13 | 7.63 × 10−13 | - | 4.45 × 10−13 | 1.91 × 10−13 | 1.91 × 10−13 | 3.82 × 10−13 | 3.82 × 10−13 | 2.54 × 10−13 | 4.45 × 10−13 |
PET | - | 1.89 × 10−12 | - | - | - | - | 1.08 × 10−12 | - | - | - | - | - |
PA | - | 5.97 × 10−12 | - | - | - | - | - | - | - | - | - | - |
PAA | - | 9.55 × 10−12 | - | - | - | - | 7.16 × 10−12 | - | - | - | - | 3.58 × 10−12 |
HDPE | 1.62 × 10−12 | - | 1.62 × 10−12 | 1.62 × 10−12 | 1.89 × 10−12 | - | 8.11 × 10−13 | 1.35 × 10−12 | - | 1.08 × 10−12 | - | 1.35 × 10−12 |
LDPE | - | - | - | - | 1.62 × 10−12 | 1.62 × 10−12 | 8.11 × 10−13 | 8.11 × 10−13 | 8.11 × 10−13 | - | 8.11 × 10−13 | |
Cancer risk (CR) via inhalation pathway | ||||||||||||
PE | 6.08 × 10−11 | - | 1.42 × 10−10 | 1.22 × 10−10 | 1.42 × 10−10 | 4.07 × 10−11 | - | 1.22 × 10−10 | 8.09 × 10−11 | 1.42 × 10−10 | 1.22 × 10−10 | 6.08 × 10−11 |
PP | 4.76 × 10−11 | 4.29 × 10−11 | 1.43 × 10−11 | 5.72 × 10−11 | - | 3.33 × 10−11 | 1.43 × 10−11 | 1.43 × 10−11 | 2.86 × 10−11 | 2.86 × 10−11 | 1.90 × 10−11 | 3.33 × 10−11 |
PET | - | 1.42 × 10−10 | - | - | - | - | 8.09 × 10−11 | - | - | - | - | - |
PA | - | 4.48 × 10−10 | - | - | - | - | - | - | - | - | - | - |
PAA | - | 7.16 × 10−10 | - | - | - | - | 5.36 × 10−10 | - | - | - | - | 2.68 × 10−10 |
HDPE | 1.22 × 10−10 | - | 1.22 × 10−10 | 1.22 × 10−10 | 1.42 × 10−10 | - | 6.08 × 10−11 | 1.02 × 10−10 | - | 8.09 × 10−11 | - | 1.02 × 10−10 |
LDPE | - | - | - | - | 1.22 × 10−10 | 1.22 × 10−10 | - | 6.08 × 10−11 | 6.08 × 10−11 | 6.08 × 10−11 | - | 6.08 × 10−11 |
Cumulative cancer risk (CCR) via ingestion and inhalation pathway | ||||||||||||
PE | 6.16 × 10−11 | - | 1.44 × 10−10 | 1.23 × 10−10 | 1.44 × 10−10 | 4.13 × 10−11 | 1.23 × 10−10 | 8.19 × 10−11 | 1.44 × 10−10 | 1.23 × 10−10 | 6.16 × 10−11 | |
PP | 4.83 × 10−11 | 4.35 × 10−11 | 1.45 × 10−11 | 5.80 × 10−11 | - | 3.38 × 10−11 | 1.45 × 10−11 | 1.45 × 10−11 | 2.90 × 10−11 | 2.90 × 10−11 | 1.93 × 10−11 | 3.38 × 10−11 |
PET | - | 1.44 × 10−10 | - | - | - | - | 8.19 × 10−11 | - | - | - | - | - |
PA | - | 4.54 × 10−10 | - | - | - | - | - | - | - | - | - | - |
PAA | - | 7.26 × 10−10 | - | - | - | - | 5.44 × 10−10 | - | - | - | - | 2.72 × 10−10 |
HDPE | 1.23 × 10−10 | - | 1.23 × 10−10 | 1.23 × 10−10 | 1.44 × 10−10 | - | 6.16 × 10−11 | 1.03 × 10−10 | - | 8.19 × 10−11 | - | 1.03 × 10−10 |
LDPE | - | - | - | - | 1.23 × 10−10 | 1.23 × 10−10 | - | 6.16 × 10−11 | 6.16 × 10−11 | 6.16 × 10−11 | - | 6.16 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabin, M.H.; Wang, Q.; Enyoh, C.E.; Kai, X.; Sheuty, T.F. Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh. Environments 2023, 10, 130. https://doi.org/10.3390/environments10070130
Rabin MH, Wang Q, Enyoh CE, Kai X, Sheuty TF. Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh. Environments. 2023; 10(7):130. https://doi.org/10.3390/environments10070130
Chicago/Turabian StyleRabin, Mominul Haque, Qingyue Wang, Christian Ebere Enyoh, Xiao Kai, and Tasnoba Firoze Sheuty. 2023. "Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh" Environments 10, no. 7: 130. https://doi.org/10.3390/environments10070130
APA StyleRabin, M. H., Wang, Q., Enyoh, C. E., Kai, X., & Sheuty, T. F. (2023). Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh. Environments, 10(7), 130. https://doi.org/10.3390/environments10070130