Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Scanning Electron Microscopy
2.3. Maceration Extraction
2.4. Total Phenolic Content, Condensed Tannin Content, and Antioxidant Properties
2.5. Antimicrobial Activity
2.6. CIELAB Color Analysis
2.7. FT-IR Analysis
2.8. UV-Vis Analysis
2.9. Statistical Analysis
3. Results
3.1. Morphological Analysis
3.2. Extract Yields and Phenolic Composition
3.3. Antioxidant Properties
3.4. Antimicrobial Properties
3.5. Color Analysis
3.6. FT-IR Analysis
3.7. UV-Vis Analysis
3.8. Two-Way ANOVA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leite, C.; Pereira, H. Cork-containing barks—A review. Front. Mater. 2017, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Pan, S.-Y.; Du, M.A.; Huang, I.-T.; Liu, I.H.; Chang, E.E.; Chiang, P.C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2015, 108, 409–421. [Google Scholar] [CrossRef]
- Sen, A.; Miranda, I.; Esteves, B.; Pereira, H. Chemical characterization, bioactive and fuel properties of waste cork and phloem fractions from Quercus cerris L. bark. Ind. Crop. Prod. 2020, 157, 112909. [Google Scholar] [CrossRef]
- Ferreira, J.P.A.; Quilhó, T.; Pereira, H. Characterization of Betula pendula Outer Bark Regarding Cork and Phloem Components at Chemical and Structural Levels in View of Biorefinery Integration. J. Wood Chem. Technol. 2017, 37, 10–25. [Google Scholar] [CrossRef]
- Soares, B.; Gama, N.; Freire, C.; Barros-Timmons, A.; Brandao, I.; Silva, R.; Pascoal Neto, C.; Ferreira, A. Ecopolyol production from industrial cork powder via acid liquefaction using polyhydric alcohols. ACS Sustain. Chem. Eng. 2014, 2, 846–854. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Ferreira, C.I.A.; Pereira, J.C.; Correia, P.; Silva, S.P.; Vilar, V.J.; Botelho, C.M.; Boaventura, R.A. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012, 46, 3152–3166. [Google Scholar] [CrossRef]
- Şen, A.; Leite, C.; Lima, L.; Lopes, P.; Pereira, H. Industrial valorization of Quercus cerris bark: Pilot scale fractionation. Ind. Crop. Prod. 2016, 92, 42–49. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Kallithraka, S.; Garcia-Viguera, C.; Bridle, P.; Bakker, J. Survey of solvents for the extraction of grape seed phenolics. Phytochem. Anal. 1995, 6, 265–267. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Rezaee, R.; Davarynejad, G.; Karimi, G.; Nemati, S.H.; Asili, J. Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: The influence of different solvents. J. Food Meas. Charact. 2018, 12, 2138–2144. [Google Scholar]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Lim, K.J.A.; Cabajar, A.A.; Lobarbio, C.F.Y.; Taboada, E.B.; Lacks, D.J. Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. J. Food Sci. Technol. 2019, 56, 2536–2544. [Google Scholar]
- Alves, T.P.; Triques, C.C.; Palsikowski, P.A.; da Silva, C.; Fiorese, M.L.; da Silva, E.A.; Fagundes-Klen, M.R. Improved extraction of bioactive compounds from Monteverdia aquifolia leaves by pressurized-liquid and ultrasound-assisted extraction: Yield and chemical composition. J. Supercrit. Fluids 2022, 181, 105468. [Google Scholar] [CrossRef]
- Izquierdo-Hernández, A.; Peña-Neira, Á.; López-Solís, R.; Obreque-Slier, E. Comparative determination of anthocyanins, low molecular weight phenols, and flavanol fractions in Vitis vinifera L. cv Carménère skins and seeds by differential solvent extraction and high-performance liquid chromatography. Anal. Lett. 2016, 49, 1127–1142. [Google Scholar] [CrossRef]
- Gomes, S.V.F.; Portugal, L.A.; dos Anjos, J.P.; de Jesus, O.N.; de Oliveira, E.J.; David, J.P.; David, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Muchagato Maurício, E.; Rosado, C.; Duarte, M.P.; Fernando, A.L.; Díaz-Lanza, A.M. Evaluation of industrial sour cherry liquor wastes as an ecofriendly source of added value chemical compounds and energy. Waste Biomass Valorization 2020, 11, 201–210. [Google Scholar] [CrossRef]
- Şen, A.; Miranda, I.; Santos, S.; Graça, J.; Pereira, H. The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Ind. Crop. Prod. 2010, 31, 417–422. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Correia, R.; Duarte, M.P.; Maurício, E.M.; Brinco, J.; Quintela, J.C.; da Silva, M.G.; Gonçalves, M. Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata. Processes 2022, 10, 2429. [Google Scholar] [CrossRef]
- Pereira, P.; Mauricio, E.M.; Duarte, M.P.; Lima, K.; Fernandes, A.S.; Bernardo-Gil, G.; Cebola, M.J. Potential of supercritical fluid myrtle extracts as an active ingredient and co-preservative for cosmetic and topical pharmaceutical applications. Sustain. Chem. Pharm. 2022, 28, 100739. [Google Scholar] [CrossRef]
- Şen, A.U.; Quilhó, T.; Pereira, H. Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turk. J. Bot. 2011, 35, 45–55. [Google Scholar] [CrossRef]
- Şen, A.; Quilhó, T.; Pereira, H. The cellular structure of cork from Quercus cerris var. cerris bark in a materials’ perspective. Ind. Crop. Prod. 2011, 34, 929–936. [Google Scholar] [CrossRef]
- Lakreb, N.; As, N.; Gorgun, V.; Sen, U.; Gomes, M.G.; Pereira, H. Production and characterization of particleboards from cork-rich Quercus cerris bark. Eur. J. Wood Wood Prod. 2018, 76, 989–997. [Google Scholar] [CrossRef]
- Şen, A.; Marques, A.V.; Gominho, J.; Pereira, H. Study of thermochemical treatments of cork in the 150–400 °C range using colour analysis and FTIR spectroscopy. Ind. Crop. Prod. 2012, 38, 132–138. [Google Scholar] [CrossRef]
- Sen, U.; Longo, A.; Gonçalves, M.; Miranda, I.; Pereira, H. The potential of waste phloem fraction of Quercus cerris bark in biochar production. Environments 2023, 10, 17. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman fingerprints of flavonoids—A review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Roxana, B.; Loghin, F.; Miere, D.; Fetea, F.; Socaciu, C. Romanian wines quality and authenticity using FT-MIR spectroscopy coupled with multivariate data analysis. Not. Bot. Horti Agrobot. 2014, 42, 556–564. [Google Scholar]
- Markham, K.R.; Mabry, T.J. Ultraviolet-Visible and Proton Magnetic Resonance Spectroscopy of Flavonoids. In The Flavonoids; Springer: New York, NY, USA, 1975; pp. 45–77. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1984. [Google Scholar]
- Şen, U.; Esteves, B.; Pereira, H. Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review. Energies 2023, 16, 4848. [Google Scholar] [CrossRef]
- Rodrigues, V.H.; de Melo, M.M.R.; Portugal, I.; Silva, C.M. Extraction of Eucalyptus leaves using solvents of distinct polarity. Cluster analysis and extracts characterization. J. Supercrit. Fluids 2018, 135, 263–274. [Google Scholar] [CrossRef]
- Vieira, P.G.; de Melo, M.M.; Şen, A.; Simões, M.M.; Portugal, I.; Pereira, H.; Silva, C.M. Quercus cerris extracts obtained by distinct separation methods and solvents: Total and friedelin extraction yields, and chemical similarity analysis by multidimensional scaling. Sep. Purif. Technol. 2020, 232, 115924. [Google Scholar] [CrossRef]
- Reis, S.F.; Lopes, P.; Roseira, I.; Cabral, M.; Mateus, N.; Freitas, V. Recovery of added value compounds from cork industry by-products. Ind. Crops Prod. 2019, 140, 111599. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Pinto, P.C.R.O.; Silvestre, A.J.D.; Neto, C.P. Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L. Ind. Crops Prod. 2010, 31, 521–526. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C. M Unravelling the biological potential of Pinus pinaster bark extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.A.O.; Villaverde, J.J.; Sousa, A.F.; Coelho, J.F.; Neto, C.P.; Silvestre, A.J. Phenolic composition and antioxidant activity of industrial cork by-products. Ind. Crops. Prod. 2013, 47, 262–269. [Google Scholar] [CrossRef]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and chemical insights of beech (Fagus sylvatica L.) bark: A source of bioactive compounds with functional properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Zhao, Y.; Padilla-Zakour, O.; Yang, G. Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind. Crop. Prod. 2015, 75, 803–809. [Google Scholar] [CrossRef]
- Molina-Ramírez, C.; Castro, C.; Zuluaga, R.; Gañán, P. Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks. J. Polym. Environ. 2018, 26, 830–837. [Google Scholar] [CrossRef]
- González-Gaitano, G.; Ferrer, M.A.C. Definition of QC Parameters for the Practical Use of FTIR-ATR Spectroscopy in the Analysis of Surface Treatment of Cork Stoppers. J. Wood Chem. Technol. 2013, 33, 217–233. [Google Scholar] [CrossRef]
- Tarantilis, P.A.; Troianou, V.E.; Pappas, C.S.; Kotseridis, Y.S.; Polissiou, M.G. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chem. 2008, 111, 192–196. [Google Scholar] [CrossRef]
- Scano, P. Characterization of the medium infrared spectra of polyphenols of red and white wines by integrating FT IR and UV–Vis spectral data. LWT 2021, 147, 111604. [Google Scholar] [CrossRef]
E | EI | EII | E III | EIV | EV | |
---|---|---|---|---|---|---|
Time | 24 h | 24 h | 168 h | 720 h | 24 h | 168 h |
Extract | 70 mL | 20 mL | 20 mL | 20 mL | 100 mL | 100 mL |
Solvent-(%) | ||||||
H2O-(100) | E1 | EI1 | EII1 | EIII1 | ||
EtOH-H2O-(75/25) | E2 | EI2 | EII2 | EIII2 | ||
MetOH-H2O-(75/25) | E3 | EI3 | EII3 | EIII3 | ||
Acetone-H2O-(75/25) | E4 | EI4 | EII4 | EIII4 | EIV2 | EV2 |
Acetone-H2O-(50/50) | E5 | EI5 | EII5 | EIII5 | ||
Acetone-H2O-(25/75) | E6 | EI6 | EII6 | EIII6 | ||
Acetone-(100) | E7 | EI7 | EII7 | EIII7 | EIV1 | EV1 |
Water100 | EtOH75 | MetOH75 | Ace75 | Ace50 | Ace25 | Ace100 | PC | ||
---|---|---|---|---|---|---|---|---|---|
Gram-positive bacteria | S. aureus | nd | 9.3 ± 0.6 ab | 10.0 ± 0.0 a | 9.0 ± 0.0 b | 10.0 ± 0.0 a | 9.8 ± 0.5 ab | 10.0 ± 0.0 a | 14.9 0.6 1 |
MRSA | nd | 9.0 ± 0.8 b | 10.0 ± 0.8 ab | 10.5 ± 0.6 ab | 10.0 ± 0.0 ab | 9.5 ± 0.6 ab | 9.0 ± 0.0 b | 13.9± 0.7 1 | |
E. faecalis | nd | 7.5 ± 0.7 ab | 8.3 ± 0.6 ab | 7.8 ± 0.5 ab | 8.5 ± 0.6 a | 8.3 ± 0.5 ab | 7.3 ± 0.5 b | 12.5± 0.5 1 | |
B. cereus | nd | 10.8 ± 0.5 b | 12.0 ± 0.0 a | 12.1 ± 0.3 a | 11.5 ± 0.6 ab | 10.8 ± 0.5 b | 11.0 ± 0.0 b | 16.4± 1.1 1 | |
S. mutans | nd | 7.0 ± 0.0 b | 8.3 ± 0.6 ab | 8.7 ± 1.2 ab | 9.0 ± 0.0 a | 7.0 ± 1.0 b | 10.0 ± 0.0 a | 19.3± 0.6 2 | |
S. mitis | nd | 7.0 ± 1.0 c | 8.3 ± 0.6 bc | 8.0 ± 0.0 bc | 11.0 ± 1.0 a | 7.0 ± 1.0 c | 11.0 ± 1.7 ab | 25.7 ±0.6 2 | |
Gram-negative bacteria | P. aeruginosa | nd | nd | nd | nd | nd | nd | nd | 25.3 ± 0.5 3 |
E. coli | nd | nd | nd | nd | nd | nd | nd | 19.5± 0.6 3 | |
Fungus | C. albicans | nd | 9.3 ± 1.2 b | 11.5 ± 0.6 ab | 13.3 ± 1.0 a | 10.8 ± 0.5 b | nd | 10.0 ± 0.8 b | 36.8± 0.5 4 |
Source of Variation | SS | df | MS | F | p-Value | Fcritical | |
---|---|---|---|---|---|---|---|
L-values | Days | 846.5 | 2 | 423.3 | 6.95592 | 0.00987 | 3.88529 |
Solvents | 3356.8 | 6 | 559.5 | 9.19407 | 0.00065 | 2.99612 | |
Error | 730.2 | 12 | 60.9 | ||||
Total | 4933.5 | 20 | |||||
a-values | Days | 881.5 | 2 | 440.8 | 7.58488 | 0.00742 | 3.88529 |
Solvents | 4448.6 | 6 | 741.4 | 12.75913 | 0.00014 | 2.99612 | |
Error | 697.3 | 12 | 58.1 | ||||
Total | 6027.4 | 20 | |||||
b-values | Days | 1703.7 | 2 | 851.9 | 4.21036 | 0.04118 | 3.88529 |
Solvents | 7995.5 | 6 | 1332.6 | 6.58630 | 0.00287 | 2.99612 | |
Error | 2427.9 | 12 | 202.3 | ||||
Total | 12,127.2 | 20 |
Solvents | L-Value | a-Value | b-Value |
---|---|---|---|
Water100 | 1.000 | 0.998 | 0.998 |
EtOH75 | 0.993 | 0.854 | 0.219 |
MetOH75 | 0.632 | 0.601 | 0.520 |
Ace75 | 0.749 | 0.985 | 0.154 |
Ace50 | 0.759 | 0.604 | 0.029 |
Ace25 | 0.649 | 0.606 | 0.390 |
Ace100 | 0.502 | 0.737 | 0.903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şen, U.; Viegas, C.; Duarte, M.P.; Maurício, E.M.; Nobre, C.; Correia, R.; Pereira, H.; Gonçalves, M. Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts. Environments 2023, 10, 142. https://doi.org/10.3390/environments10080142
Şen U, Viegas C, Duarte MP, Maurício EM, Nobre C, Correia R, Pereira H, Gonçalves M. Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts. Environments. 2023; 10(8):142. https://doi.org/10.3390/environments10080142
Chicago/Turabian StyleŞen, Umut, Catarina Viegas, Maria Paula Duarte, Elisabete Muchagato Maurício, Catarina Nobre, Ricardo Correia, Helena Pereira, and Margarida Gonçalves. 2023. "Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts" Environments 10, no. 8: 142. https://doi.org/10.3390/environments10080142
APA StyleŞen, U., Viegas, C., Duarte, M. P., Maurício, E. M., Nobre, C., Correia, R., Pereira, H., & Gonçalves, M. (2023). Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts. Environments, 10(8), 142. https://doi.org/10.3390/environments10080142